首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bioremediation of aromatic hydrocarbons in groundwater and sediments is often limited by dissolved oxygen. Many aromatic hydrocarbons degrade very slowly or not at all under anaerobic conditions. Nitrate is a good alternative electron acceptor to oxygen, and denitrifying bacteria are commonly found in the subsurface and in association with contaminated aquifer materials. Providing both nitrate and microaerophilic levels of oxygen may result in oxidation of the stable benzene rings in aromatic contaminants and allow for the intermediates of this oxidation to degrade via denitrification. The effects of using mixed electron acceptors on biodegradation of subsurface contaminants is unclear. Below some critical oxygen threshold, aerobic biodegradation is inhibited, however high levels of oxygen inhibit denitrification. The mechanisms which regulate electron transfer to oxygen and nitrate are complex. This review: 1) describes the factors which may affect the utilization of oxygen and nitrate as dual electron acceptors during biodegradation; 2) summarizes the incidence of dual use of nitrate and oxygen (aerobic denitrification); and 3) presents evidence of the effectiveness of bioremediation under mixed oxygen/nitrate conditions. Received 08 November 1995/ Accepted in revised form 09 June 1996  相似文献   

2.
Although aerobic degradation of ethylene glycol is well documented, only anaerobic biodegradation via methanogenesis or fermentation has been clearly shown. Enhanced ethylene glycol degradation has been demonstrated by microorganisms in the rhizosphere of shallow-rooted plants such as alfalfa and grasses where conditions may be aerobic, but has not been demonstrated in the deeper rhizosphere of poplar or willow trees where conditions are more likely to be anaerobic. This study evaluated ethylene glycol degradation under nitrate-, and sulphate-reducing conditions by microorganisms from the rhizosphere of poplar and willow trees planted in the path of a groundwater plume containing up to 1.9 mol l−1 (120 g l−1) ethylene glycol and, the effect of fertilizer addition when nitrate or sulphate was provided as a terminal electron acceptor (TEA). Microorganisms in these rhizosphere soils degraded ethylene glycol using nitrate or sulphate as TEAs at close to the theoretical stoichiometric amounts required for mineralization. Although the added nitrate or sulphate was primarily used as TEA, TEAs naturally present in the soil or CO2 produced from ethylene glycol degradation were also used, demonstrating multiple TEA usage. Anaerobic degradation produced acetaldehyde, less acetic acid, and more ethanol than under aerobic conditions. Although aerobic degradation rates were faster, close to 100% disappearance was eventually achieved anaerobically. Degradation rates under nitrate-reducing conditions were enhanced upon fertilizer addition to achieve rates similar to aerobic degradation with up to 19.3 mmol (1.20 g) of ethylene glycol degradation l−1 day−1 in poplar soils. This is the first study to demonstrate that microorganisms in the rhizosphere of deep rooted trees like willow and poplar can anaerobically degrade ethylene glycol. Since anaerobic biodegradation may significantly contribute to the phytoremediation of ethylene glycol in the deeper subsurface, the need for “pump and treat” or an aerobic treatment would be eliminated, hence reducing the cost of treatment.  相似文献   

3.
Batch experiments were conducted to evaluate the biodegradation rates of limonene, α-pinene, γ-terpinene, terpinolene and α-terpineol at 23 °C under aerobic conditions. Biodegradation was demonstrated by the depletion of monoterpene mass, CO2 production and a corresponding increase in biomass. Monoterpene degradation in liquid cultures devoid of soil followed Monod kinetics. The maximum specific growth rate (μmax) was 0.02 h−1 and 0.06 h−1 and the half-velocity constant (K s ) varied from 32 mg/l to 3 mg/l for the limonene and α-terpineol respectively. The recovery of monoterpenes by solvent extraction from autoclaved and azide-amended soil-slurry samples decreased over time and ranged from 69% to 73% for 120 h of incubation period. Although a significant fraction of monoterpene hydrocarbon could not be extracted, mineralization of these compounds in the soil-slurry systems took place, as shown by CO2 production. The soil-normalized degradation rates for the hydrocarbon monoterpenes ranged from 0.6 μg g−1 h−1 to 2.1 μg g−1 h−1. A kinetic model – which combined monoterpene biodegradation in the liquid phase and net desorption – was developed and applied to data obtained from soil-slurry assays. Received: 10 September 1996 / Received revision: 16 December 1996 / Accepted: 10 January 1997  相似文献   

4.
The fuel oxygenate, methyl tert-butyl ether (MTBE), although now widely banned or substituted, remains a persistent groundwater contaminant. Multidimensional compound-specific isotope analysis (CSIA) of carbon and hydrogen is being developed for determining the extent of MTBE loss due to biodegradation and can also potentially distinguish between different biodegradation pathways. Carbon and hydrogen isotopic fractionation factors were determined for MTBE degradation in aerobic and anaerobic laboratory cultures. The carbon isotopic enrichment factor (εC) for aerobic MTBE degradation by a bacterial consortium containing the aerobic MTBE-degrading bacterium, Variovorax paradoxus, was −1.1 ± 0.2‰ and the hydrogen isotope enrichment factor (εH) was −15 ± 2‰. This corresponds to an approximated lambda value (Λ = εH/εC) of 14. Carbon isotope enrichment factors for anaerobic MTBE-degrading enrichment cultures were −7.0 ± 0.2‰ and did not vary based on the original inoculum source, redox condition of the enrichment, or supplementation with syringic acid as a co-substrate. The hydrogen enrichment factors of cultures without syringic acid were insignificant, however a strong hydrogen enrichment factor of −41 ± 3‰ was observed for cultures which were fed syringic acid during MTBE degradation. The Λ = 6 obtained for NYsyr cultures might be diagnostic for the stimulation of anaerobic MTBE degradation by methoxylated compounds by an as yet unknown pathway and mechanism. The stable-isotope enrichment factors determined in this study will enhance the use of CSIA for monitoring anaerobic and aerobic MTBE biodegradation in situ.  相似文献   

5.
The effectiveness of biosparging to mitigate N,N diethylaniline in aquifer was evaluated by measuring the time course of decrease in concentration of the aforementioned compound in aerobic microcosm experiments. The first-order kinetic constant for N,N diethylaniline aerobic biodegradation was estimated from microcosm data (0.037 ± 0.004 d−1), and the value was consistent with the best-fitting value in the transport and reaction model of the aquifer (0.020 d−1). Furthermore, the biodegradability of the compound was evaluated under anaerobic condition in microcosm experiments, which was supported by field modelling. There was no significant degradation in the anaerobic microcosm experiments, confirming the recalcitrance of N,N diethyl aniline under the aforementioned aquifer condition.  相似文献   

6.
Pentachlorophenol (PCP) use as a general biocide, particularly for treating wood, has led to widespread environmental contamination. Biodegradation has emerged as the main mechanism for PCP degradation in soil and groundwater and a key strategy for remediation. Examining the microbial biodegrading potential for PCP at a contaminated site is crucial in determining its fate. Hundreds of studies have been published on PCP microbial degradation, but few have described the biodegradation of PCP that has been in contact with soils for many years. The bioavailability of “aged” hydrophobic organics is a significant concern. PCP- and 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP)-contaminated soil samples from several depths at a former wood treatment site were placed under varying conditions in the laboratory to determine the anaerobic and aerobic potential for biodegradation of chlorophenols at the site. PCP biodegradation occurred in both anaerobic and aerobic soil samples. Rapid aerobic degradation occurred in samples spiked with 2- and 4-chlorophenol, but not with 3-chlorophenol. Reductive dechlorination of PCP in anaerobic samples resulted in the accumulation of 3-chlorophenol. In most anaerobic replicates, 3-chlorophenol was degraded with the appearance of detectable, but not quantifiable amounts of phenol. These results indicate excellent potential for remediation at the site using the indigenous microorganisms under both aerobic and anaerobic conditions. However, a fraction of the PCP was unavailable for degradation.  相似文献   

7.
We report the aerobic biodegradation of Microcystin-RR (MC-RR) by a bacterial strain isolated from San Roque reservoir (Córdoba – Argentina). This bacterium was identified as Sphingomonas sp. (CBA4) on the basis of 16S rDNA sequencing. The isolated strain was capable of degrading completely MC-RR (200 μg l−1) within 36 h. We have found evidence that MC-RR biodegradation pathway by this Sphingomonas sp. strain would start by demethylating MC-RR, affording an intermediate product, which is finally biodegraded by this strain within 72 h. Our results confirm that certain environmental bacteria, living in the same habitat as toxic cyanobacteria, have the capability to perform complete biodegradation of MC, leading to natural bioremediation of waterbodies. The bacterium reported here presents genetic homologies with other strains that degrade MC-LR. However, initial demethylation of MC-RR has been not described previously, raising questions on the probable presence of different biodegradation pathways for different MC variants.  相似文献   

8.
The remediation of benzene contaminated groundwater often involves biodegradation and although the mechanisms of aerobic benzene biodegradation in laboratory cultures have been well studied, less is known about the microorganisms responsible for benzene degradation in mixed culture samples or at contaminated sites. To address this knowledge gap, DNA based stable isotope probing (SIP) was utilized to identify active benzene degraders in microcosms constructed with soil from three sources (a contaminated site and two agricultural sites). For this, replicate microcosms were amended with either labeled (13C) or unlabeled benzene and the extracted DNA samples were ultracentrifuged, fractioned and subject to terminal restriction fragment length polymorphism (TRFLP). The dominant benzene degraders (responsible for 13C uptake) were determined by comparing relative abundance of TRFLP phylotypes in heavy fractions of labeled benzene (13C) amended samples to the controls (from unlabeled benzene amended samples). Two phylotypes (a Polaromonas sp. and an Acidobacterium) were the major benzene degraders in the microcosms constructed from the contaminated site soil, whereas one phylotype incorporated the majority of the benzene-derived 13C in each of the agricultural soils (“candidate” phylum TM7 and an unclassified Sphingomonadaceae).  相似文献   

9.

Background  

Polychlorinated biphenyls (PCBs) are widespread toxic pollutants. Bioremediation might be an effective, cost competitive and environment-friendly solution for remediating environmental matrices contaminated by PCBs but it is still unsatisfactory, mostly for the limited biodegradation potential of bacteria involved in the processes. Very little is known about mitosporic fungi potential in PCB bioremediation and their occurrence in actual site historically contaminated soils. In the present study, we characterised the native mycoflora of an aged dump site soil contaminated by about 0.9 g kg-1 of Aroclor 1260 PCBs and its changing after aerobic biotreatment with a commercial complex source of bacteria and fungi. Fungi isolated from the soil resulting from 120 days of treatment were screened for their ability to adsorb or metabolise 3 target PCBs.  相似文献   

10.
The objective of this study was the application of the experimental design technique to optimize the conditions for the bioremediation of contaminated soil by means of composting. A low-cost material such as compost from the Organic Fraction of Municipal Solid Waste as amendment and pyrene as model pollutant were used. The effect of three factors was considered: pollutant concentration (0.1–2 g/kg), soil:compost mixing ratio (1:0.5–1:2 w/w) and compost stability measured as respiration index (0.78, 2.69 and 4.52 mg O2 g−1 Organic Matter h−1). Stable compost permitted to achieve an almost complete degradation of pyrene in a short time (10 days). Results indicated that compost stability is a key parameter to optimize PAHs biodegradation. A factor analysis indicated that the optimal conditions for bioremediation after 10, 20 and 30 days of process were (1.4, 0.78, 1:1.4), (1.4, 2.18. 1:1.3) and (1.3, 2.18, 1:1.3) for concentration (g/kg), compost stability (mg O2 g−1 Organic Matter h−1) and soil:compost mixing ratio, respectively.  相似文献   

11.
Ye FX  Li Y 《Biodegradation》2007,18(5):617-624
In order to understand the fate of PCP in upflow anaerobic sludge blanket reactor (UASB) more completely, the sorption and biodegradation of pentachlorophenol (PCP) by anaerobic sludge granules were investigated. The anaerobic granular sludge degrading PCP was formed in UASB reactor, which was seeded with anaerobic sludge acclimated by chlorophenols. At the hydraulic retention time (HRT) of 20–22 h, and PCP loading rate of 200–220 mg l−1 d−1, UASB reactor exhibited good performance in treating wastewater which containing 170–180 mg l−1 PCP and the PCP removal rate of 99.5% was achieved. Sequential appearance of tetra-, tri-, di-, and mono-chlorophenol was observed in the reactor effluent after 20 mg l−1 PCP introduction. Sorption and desorption of PCP on the anaerobic sludge granules were all fitted to the Freundlich isotherm equation. Sorption of PCP was partly irreversible. The Freundlich equation could describe the behavior of PCP amount sorbed by granular sludge in anaerobic reactor reasonably well. The results demonstrated that the main mechanism leading to removal of PCP on anaerobic granular sludge was biodegradation, not sorption or volatization.  相似文献   

12.
The release of methyl tert-butyl ether (MTBE) to the environment, mainly from damaged gasoline underground storage tanks or distribution systems spills, has provoked extended groundwater pollution. Biological treatments are, in general, a good alternative for bioremediation of polluted sites; however, MTBE elimination from environment has constituted a challenge because of its chemical structure and physicochemical properties. The combination of a stable ether link and the branched moiety hinder biodegradation. Initial studies found MTBE to be highly recalcitrant but, in the last decade, reports of its biodegradation have been published first under aerobic conditions and just recently under anaerobic conditions. Microbial MTBE degradation is characterized by bacteria having low growth rates (0.35 day−1) and biomass yields (average value 0.24 g biomass/g MTBE). Alternatively, cometabolism (defined as the transformation of a non-growth substrate in the obligate presence of a growth substrate), has been considered since it uncouples biodegradation of the contaminant from growth, reducing the long adaptation and propagation period. This period has been reported to be of several months in systems where it is degraded as sole carbon source. Cometabolic degradation rates are between 0.3 and 61 nmol/min/mg protein (in the same range of direct aerobic metabolism). However, a major concern in MTBE cometabolism is that the accumulation of tert-butyl alcohol (TBA) may, under certain cases, result in an incomplete site cleanup. This paper reviews in detail the implicated enzymes and field treatments for the cometabolism of MTBE degradation with alkanes as growth substrates.  相似文献   

13.
Groundwater contamination by the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a global problem. Israel’s coastal aquifer was contaminated with RDX. This aquifer is mostly aerobic and we therefore sought aerobic bacteria that might be involved in natural attenuation of the compound in the aquifer. RDX-degrading bacteria were captured by passively sampling the indigenous bacteria onto sterile sediments placed within sampling boreholes. Aerobic RDX biodegradation potential was detected in the sediments sampled from different locations along the plume. RDX degradation with the native sampled consortium was accompanied by 4-nitro-2,4-diazabutanal formation. Two bacterial strains of the genus Rhodococcus were isolated from the sediments and identified as aerobic RDX degraders. The xplA gene encoding the cytochrome P450 enzyme was partially (~500 bp) sequenced from both isolates. The obtained DNA sequences had 99% identity with corresponding gene fragments of previously isolated RDX-degrading Rhodococcus strains. RDX degradation by both strains was prevented by 200 μM of the cytochrome P450 inhibitor metyrapone, suggesting that cytochrome P450 indeed mediates the initial step in RDX degradation. RDX biodegradation activity by the T7 isolate was inhibited in the presence of nitrate or ammonium concentrations above 1.6 and 5.5 mM, respectively (100 mg l−1) while the T9N isolate’s activity was retarded only by ammonium concentrations above 5.5 mM. This study shows that bacteria from the genus Rhodococcus, potentially degrade RDX in the saturated zone as well, following the same aerobic degradation pathway defined for other Rhodococcus species. RDX-degrading activity by the Rhodococcus species isolate T9N may have important implications for the bioremediation of nitrate-rich RDX-contaminated aquifers.  相似文献   

14.
An isolated bacterium, Alcaligenes denitrificans ITRC-4, metabolizes 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) under both aerobic and anaerobic conditions. The aerobic metabolism is inhibited by 38% and 47% in the presence of 1.0 g L−1 of sodium acetate and sodium succinate, respectively, but remains uninhibited in the presence of 1.0 g L−1 of glucose. Also, the metabolism is inhibited completely in the presence of biphenyl vapors, as well as 0.8 g L−1 of 2,2′-bipyridyl. Under anaerobic conditions, DDT is metabolized into 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), which is further enhanced by 50% in the presence of 1.0 g L−1 of glucose. Besides, the bacterium also metabolizes 4-chlorobenzoate, which is accompanied by the release of chloride ions. Received: 13 March 2002 / Accepted: 8 April 2002  相似文献   

15.
A series of batch experiments were conducted to observe the variations of bioavailability of naphthalene in different types of soil with indigenous microorganisms. Solid phase microextraction (SPME) was employed to estimate the bioavailability of naphthalene in the soils. Various soil properties were attained by artificially modifying soil organic matter (SOM) with the addition of bagasse compost and textures with the addition of original silt and clay to determine the correlation between the amount of biodegraded naphthalene after 300 h and the amount of extractable naphthalene by SPME. Experimental results indicated that the biodegradation rate increased from 0.30 (sandy loam) to 0.48 (silty loam) μg g−1 h−1 when soils had more silt/clay. In contrast, the biodegradation rate slightly decreased from 0.30 (1.3% SOM) to 0.20 (5.2% SOM) μg g−1 h−1 when the SOM was high. Distributions of naphthalene in soils after biodegradation were affected by the addition of bagasse compost. It showed that the bioavailability of naphthalene in soils decreased with an increase in SOM. Sequestration as measured by ultrasonic extractability evidently occurred within 4 months in aged soil samples. However, the amounts extracted by sonication after 4 and 16 months of aging did not statistically differ from each other. The SPME measurements correlated well with the amount of biodegraded naphthalene by indigenous microorganisms. Results of this study demonstrate that SPME is a promising method to estimate the bioremediation efficacy of naphthalene-contaminated soils with various properties.  相似文献   

16.
In the present study, the bioremoval of Cr(VI) and the removal of total organic carbon (TOC) were achieved with a system composed by an anaerobic filter and a submerged biofilter with intermittent aeration using a mixed culture of microorganisms originating from contaminated sludge. In the aforementioned biofilters, the concentrations of chromium, carbon, and nitrogen were optimized according to response surface methodology. The initial concentration of Cr(VI) was 137.35 mg l−1, and a bioremoval of 85.23% was attained. The optimal conditions for the removal of TOC were 4 to 8 g l−1 of sodium acetate, >0.8 g l−1 of ammonium chloride and 60 to 100 mg l−1 of Cr(VI). The results revealed that ammonium chloride had the strongest effect on the TOC removal, and 120 mg l−1 of Cr(VI) could be removed after 156 h of operation. Moreover, 100% of the Cr(VI) and the total chromium content of the aerobic reactor output were removed, and TOC removals of 80 and 87% were attained after operating the anaerobic and aerobic reactors for 130 and 142 h, respectively. The concentrations of cells in both reactors remained nearly constant over time. The residence time distribution was obtained to evaluate the flow through the bioreactors.  相似文献   

17.
The assessment of biodegradation activity in contaminated aquifers is critical to demonstrate the performance of bioremediation and natural attenuation and to parameterize models of contaminant plume dynamics. Real time quantitative PCR (qPCR) was used to target the catabolic bssA gene (coding for benzylsuccinate synthase) and a 16S rDNA phylogenetic gene (for total Bacteria) as potential biomarkers to infer on anaerobic toluene degradation rates. A significant correlation (P = 0.0003) was found over a wide range of initial toluene concentrations (1–100 mg/l) between toluene degradation rates and bssA concentrations in anaerobic microcosms prepared with aquifer material from a hydrocarbon contaminated site. In contrast, the correlation between toluene degradation activity and total Bacteria concentrations was not significant (P = 0.1125). This suggests that qPCR targeting of functional genes might offer a simple approach to estimate in situ biodegradation activity, which would enhance site investigation and modeling of natural attenuation at hydrocarbon-contaminated sites.  相似文献   

18.
Industrial wood-based construction materials: chipboard, plain and overlaid plywood, phenolic surface film, laminates and selected synthetic polymers were studied for their biodegradability under aerobic and anaerobic conditions and for the environmental quality of the degradation residue. The yields of carbon dioxide plus methane from the wood-based materials in 6 months under anaerobic conditions at 33°C ranged from ⩽3% to 79% compared to that obtained from starch, and under aerobic conditions from ⩽7% to 55% of that obtained from acetate, measured in 28 days at 25°C. The plywoods were more readily degraded under aerobic and anaerobic conditions. The microbes attacked mainly the S2-layer of the plywoods and started from the S3-layer of the wood cells of chipboard in the compost. Extensive cavities, occupied with microbes, were observed by electron microscopy in the decaying plywoods, chipboard and laminates. The contents of Cu, Cr, Pb, Ni, and Cd of the wood-based construction materials were low, <10 mg kg−1, compared to PVC and to a typical municipal solid waste. Toxicity and the amount of leachable organic halogen from the wood-based construction materials were low, EC50 of 4–8 g L−1 to V. fischeri and <12 μg adsorbable organic halogen (aox) of g−1. The results show that the wood-based construction materials studied were aerobically biodegradable and the plywoods also anaerobically. There was no toxicity towards photobacteria or substances of environmental concern in the biodegradation and incineration residues of the materials tested. Journal of Industrial Microbiology & Biotechnology (2000) 24, 210–218. Received 08 September 1999/ Accepted in revised form 10 December 1999  相似文献   

19.
The dechlorination of carbon tetrachloride (CCl4) by free-living and attached bacteria under anaerobic conditions was studied to examine the relationship between porous media and electron donor. Two batch-type experiments, the free-living and attached bacterial systems, were conducted with and without addition of 0.5-mm glass beads. Glucose and acetate were selected as the primary electron donors because they are easily biodegradable. Direct epifluorescence technology, the DAPI (4′ 6-diamidino-2-phenylindole) method, was used for counting the microbial activities. Adding glass beads could accelerate the dechlorination rate of CCl4. Removals of 44 %–57 % were observed in free-living bacterial system. Whereas a two- to fivefold increase in the CCl4 dechlorination rate was observed in the attached system. Experimental results and thermodynamic calculations indicated that glucose is a better supplementary substrate than acetate for stimulating the dechlorinating capability of microorganisms because of its relatively high available free energy. A higher concentration of substrate provided more reducing power for attached bacteria to initiate the dechlorination reaction. The pseudo-first-order rate constants of CCl4 dechlorination ranged from 0.007 day−1 to 0.017 day−1 and from 0.011 day−1 to 0.0625 day−1 for free-living and attached bacterial systems respectively. Microscopic observation revealed a three- to eightfold difference of microbial number between the free-living and attached bacterial systems. On the basis of the results in this study, we can conclude that the presence of porous media and an electron donor can change the dechlorination capabilities of the microorganisms. This work will be valuable in the design of in situ bioremediation as it discusses the specific area of the medium and supplementation with an electron donor to stimulate the indigenous microflora. Received: 21 June 1996 / Received revision: 2 September 1996 / Accepted: 29 September 1996  相似文献   

20.
Biodegradation of propanol and isopropanol by a mixed microbial consortium   总被引:1,自引:0,他引:1  
The aerobic biodegradation of high concentrations of 1-propanol and 2-propanol (IPA) by a mixed microbial consortium was investigated. Solvent concentrations were one order of magnitude greater than any previously reported in the literature. The consortium utilized these solvents as their sole carbon source to a maximum cell density of 2.4 × 109 cells ml−1. Enrichment experiments with propanol or IPA as carbon sources were carried out in batch culture and maximum specific growth rates (μmax) calculated. At 20 °C, μ max values were calculated to be 0.0305 h−1 and 0.1093 h−1 on 1% (v/v) IPA and 1-propanol, respectively. Growth on propanol and IPA was carried out between temperatures of 10 °C and 45 °C. Temperature shock responses by the microbial consortium at temperatures above 45 °C were demonstrated by considerable cell flocculation. An increase in propanol substrate concentration from 1% (v/v) to 2% (v/v) decreased the μ max from 0.1093 h−1 to 0.0715 h−1. Maximum achievable biodegradation rates of propanol and IPA were 6.11 × 10−3% (v/v) h−1 and 2.72 × 10−3% (v/v) h−1, respectively. Generation of acetone during IPA biodegradation commenced at 264 h and reached a maximum concentration of 0.4% (v/v). The results demonstrate the potential of mixed microbial consortia in the bioremediation of solvent-containing waste streams. Received: 14 December 1999 / Received revision: 3 April 2000 / Accepted: 7 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号