首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate an instance of conflict between mates over the sex ratio of their brood. We construct a kin-selection model for the evolution of the sex ratio assuming local resource competition (LRC) among females. We explore two basic scenarios: (a) the case where parents make simultaneous sex-ratio decisions (the simultaneous allocation model); and (b) the case where parental sex-ratio decisions occur one after the other (the sequential allocation model). In the simultaneous investment model, resolution of the conflict between mates depends on the extent to which relative paternal contribution influences the brood sex ratio. In the sequential allocation model, fathers determine primary sex-ratio through fertilization bias; then mothers modify the paternal sex-ratio decision by adjusting the level of investment of some resource that contributes to offspring survival. Under the sequential model, a compromise is always achieved; however this compromise favours one perspective or the other, depending on the extent to which maternal investment influences offspring survival.  相似文献   

2.
Sex allocation theory predicts that mothers should adjust their sex-specific reproductive investment in relation to the predicted fitness returns from sons versus daughters. Sex allocation theory has proved to be successful in some invertebrate taxa but data on vertebrates often fail to show the predicted shift in sex ratio or sex-specific resource investment. This is likely to be partly explained by simplistic assumptions of vertebrate life-history and mechanistic constraints, but also because the fundamental assumption of sex-specific fitness return on investment is rarely supported by empirical data. In short-lived species, the time of hatching or parturition can have a strong impact on the age and size at maturity. Thus, if selection favors adult sexual-size dimorphism, females can maximize their fitness by adjusting offspring sex over the reproductive season. We show that in mallee dragons, Ctenophorus fordi, date of hatching is positively related to female reproductive output but has little, if any, effect on male reproductive success, suggesting selection for a seasonal shift in offspring sex ratio. We used a combination of field and laboratory data collected over two years to test if female dragons adjust their sex allocation over the season to ensure an adaptive match between time of hatching and offspring sex. Contrary to our predictions, we found no effect of laying date on sex ratio, nor did we find any evidence for within-female between-clutch sex-ratio adjustment. Furthermore, there was no differential resource investment into male and female offspring within or between clutches and sex ratios did not correlate with female condition or any partner traits. Consequently, despite evidence for selection for a seasonal sex-ratio shift, female mallee dragons do not seem to exercise any control over sex determination. The results are discussed in relation to potential constraints on sex-ratio adjustment, alternative selection pressures, and the evolution of temperature-dependent sex determination.  相似文献   

3.
Several aphid species exhibit female-biased sex allocation. Local mate competition (LMC) has been postulated to be the evolutionary factor of the female-biased sex allocation. We estimated individual sex allocation in the eriosomatine aphid Prociphilus oriens and explained the observed pattern of sex allocation based on a hypothesis other than LMC. On the basis of the relationship between maternal body size and brood size, we estimated the cost of producing a female to be 1.85 times the cost of producing a male. The population-wide allocation to males was 22–24 %. Winged mothers exhibited a large variation in the number of male and female embryos they had, including 23–30 % of winged mothers producing only female embryos. There was polymorphism in the sex-ratio expression. Thus, the constant male hypothesis assuming LMC was not supported. Winged mothers that produced an all-female brood contained larger female embryos than did mothers that produced a bisexual brood. Previous studies have indicated that a large sexual female produces a single large egg, which hatches into a first-instar larva containing a larger amount of gonads. Thus, in eriosomatine aphids, maternal investment in daughters directly affects the potential fecundity of granddaughters, whereas investment in sons does not. We propose a hypothesis that higher fitness returns from maternal investment in daughters than in sons may have primarily led to the evolution of highly female-biased sex allocation in P. oriens.  相似文献   

4.
Theory predicts that overall population sex ratios should be around parity. But when individual females can receive higher fitness from offspring of one sex, they may benefit by biasing their brood sex ratios accordingly. In lekking species, higher variance in male reproductive success relative to that of females predicts that male offspring gain disproportionately from favorable rearing conditions. Females should therefore produce male-biased broods when they are in a position to raise higher quality offspring: i.e., in better body condition or when they reproduce earlier in the breeding season. To investigate these hypotheses, we studied brood sex ratios of lance-tailed manakins Chiroxiphia lanceolata . We found that overall sex ratios and mean brood sex ratios were not different from random expectation. Brood sex ratios were not related to laying date or female body condition. However, we detected a quadratic relationship between brood sex ratios and maternal age: both young (1–2 years) and old (8+ years) females produced female-biased brood sex ratios. This relationship was most clear in a year also distinguished by early rainy and breeding seasons. We suggest that breeding inexperience in young females and senescence in older females is the most plausible explanation for these results, and that the relationship between female age and brood sex ratio is mediated by environmental conditions.  相似文献   

5.
Females in a variety of taxa adjust offspring sex ratios to prevailing ecological conditions. However, little is known about whether conditions experienced during a female’s early ontogeny influence the sex ratio of her offspring. We tested for past and present ecological predictors of offspring sex ratios among known-age females that were produced as offspring and bred as adults in a population of house wrens. The body condition of offspring that a female produced and the proportion of her offspring that were male were negatively correlated with the size of the brood in which she herself was reared. The proportion of sons within broods was negatively correlated with maternal hatching date, and varied positively with the quality of a female’s current breeding territory as predicted. However, females producing relatively more sons than daughters were less likely to return to breed in the population the following year. Although correlative, our results suggest that the rearing environment can have enduring effects on later maternal investment and sex allocation. Moreover, the overproduction of sons relative to daughters may increase costs to a female’s residual reproductive value, constraining the extent to which sons might be produced in high-quality breeding conditions. Sex allocation in birds remains a contentious subject, largely because effects on offspring sex ratios are small. Our results suggest that offspring sex ratios are shaped by various processes and trade-offs that act throughout the female life history and ultimately reduce the extent of sex-ratio adjustment relative to classic theoretical predictions.  相似文献   

6.
Sex allocation in the sexually monomorphic fairy martin   总被引:1,自引:0,他引:1  
Offspring sex ratios were examined at the population and family level in the sexually monomorphic, socially monogamous fairy martin Petrochelidon ariel at five colony sites over a 4-year period (1993–1996). The sex of 465 nestlings from 169 broods was determined using sex-specific PCR at the CHD locus. In accordance with predicted sex allocation patterns, population sex ratios at hatching and fledging did not differ from parity in any year and the variance in brood sex ratios did not deviate from the binomial distribution. Further, brood sex ratio did not vary with hatching date during the season, brood number, brood size or colony size. The sex ratio of broods with extra-pair young did not differ from those without, while the sex ratio of broods fathered by males that gained extra-pair fertilizations did not differ from broods fathered by other males. Extra-pair chicks were as likely to be male as female. Neither the total number of feeding visits to the brood nor the relative feeding contribution by the sexes varied significantly with brood sex ratio. Brood sex ratios were also unrelated to paternal size, condition and breeding experience or maternal condition and breeding experience. However, contrary to our prediction, brood sex ratio was negatively correlated with maternal size. Generally, these results were consistent with our expectations that brood sex ratios would not vary with environmental factors or parental characteristics, and would not influence the level of parental provisioning. However, the finding that females with longer tarsi produced an excess of daughters is difficult to reconcile with our current understanding of fairy martin life history and breeding ecology.  相似文献   

7.
In the twig‐nesting carpenter bee, Ceratina calcarata, body size is an important component of maternal quality, smaller mothers producing significantly fewer and smaller offspring than larger mothers. As mothers precisely control the sex and size of each offspring, smaller mothers might compensate by preferentially allocating their investment towards sons. We investigated whether variation in maternal quality leads to variation in sex allocation patterns. At the population level, the numerical sex ratio was 57% male‐biased (1.31 M/F), but the investment between the sexes was balanced (1.02 M/F), because females are 38% larger than males (1.28 F/M). Maternal body size explained both sex allocation pattern and size variation among offspring: larger mothers invested more in individual progeny and produced more female offspring than smaller mothers. Maternal investment in offspring of both sexes decreased throughout the season, probably as a result of increasing maternal wear and age. The exception to this pattern was the curious production of dwarf females in the first two brood cell positions. We suggest that the sex ratio distribution reflects the maternal body size distribution and a constraint on small mothers to produce small broods. This leads to male‐biased allocation by small females, to which large mothers respond by biasing their allocation towards daughters.  相似文献   

8.
Variation of brood sex ratio was studied in a Finnish population of Eurasian Kestrels Falco tinnunculus breeding in an unpredictably variable environment. From those young that survived until 2–4 weeks of age, blood was collected and their sex determined from polymorphic DNA profiles produced by hybridisation with a human minisatellite probe. The sex ratio was male-biased during a year of food (vole) scarcity. Furthermore, in broods without mortality, contrasting seasonal trends in sex ratios emerged. In this subsample, the proportion of males increased with later laying date during years of low and moderate food supply, whereas the opposite was true in a year of relatively high food supply. These trends may indicate circumstances that favour the raising of different sex. The proportion of males in the brood was negatively correlated with body condition of both male and female parents, also reflecting an adaptive condition-dependent sex-ratio adjustment, or alternatively the inability of the parents to meet the requirements of the more energetically expensive female offspring. We discuss the limitations that unpredictable conditions during brood raising can impose on adaptive sex-ratio manipulation, particularly in species with sexual size dimorphism and consequent differences in the cost of raising the two sexes.  相似文献   

9.
A growing number of bird species are known to have fine‐scale genetic structure during the breeding season, with relatives breeding in close vicinity. Such genetic structure often has fitness consequences for parents, and sex ratio theory predicts that females should respond adaptively when they determine offspring sex. We examined whether or not females allocate offspring sex adaptively in response to the local genetic structures as well as other biotic and abiotic factors in a population of the vinous‐throated parrotbill Paradoxornis webbianus, a small passerine with strong flocking habit and various genetic structures among neighbouring males during the breeding season. The average brood sex ratio of hatchlings (secondary sex ratio) did not deviate from parity. In addition, the observed brood sex ratio was independent of the fine‐scale genetic structure and other factors including breeding density, clutch size, laying date, parents’ quality, and the presence of extrapair paternity. Accordingly, we reject the hypothesis of adaptive sex allocation by female parrotbills in association with local genetic structure and other factors. Instead we conclude that despite the plausible benefits of biased sex allocation, this species determines brood sex ratio via random sex allocation with equal probability of male and female offspring.  相似文献   

10.
Wild G  West SA 《The American naturalist》2007,170(5):E112-E128
Tests of sex allocation theory in vertebrates are usually based on verbal arguments. However, the operation of multiple selective forces can complicate verbal arguments, possibly making them misleading. We construct an inclusive fitness model for the evolution of condition-dependent brood sex ratio adjustment in response to two leading explanations for sex ratio evolution in vertebrates: the effect of maternal quality on the fitness of male and female offspring (the Trivers-Willard hypothesis [TWH]) and local resource competition (LRC) between females. We show (1) the population sex ratio can be either unbiased or biased in either direction (toward either males or females); (2) brood sex ratio adjustment can be biased in either direction, with high-quality females biasing reproductive investment toward production of sons (as predicted by the TWH) or production of daughters (opposite to predictions of the TWH); and (3) selection can favor gradual sex ratio adjustment, with both sons and daughters being produced by both high- and low-quality mothers. Despite these complications, clear a priori predictions can be made for how the population sex ratio and the conditional sex ratio adjustment of broods should vary across populations or species, and within populations, across individuals of different quality.  相似文献   

11.
There is evidence of offspring sex ratio adjustment in a range of species, but the potential mechanisms remain largely unknown. Elevated maternal corticosterone (CORT) is associated with factors that can favour brood sex ratio adjustment, such as reduced maternal condition, food availability and partner attractiveness. Therefore, the steroid hormone has been suggested to play a key role in sex ratio manipulation. However, despite correlative and causal evidence CORT is linked to sex ratio manipulation in some avian species, the timing of adjustment varies between studies. Consequently, whether CORT is consistently involved in sex-ratio adjustment, and how the hormone acts as a mechanism for this adjustment remains unclear. Here we measured maternal baseline CORT and body condition in free-living blue tits (Cyanistes caeruleus) over three years and related these factors to brood sex ratio and nestling quality. In addition, a non-invasive technique was employed to experimentally elevate maternal CORT during egg laying, and its effects upon sex ratio and nestling quality were measured. We found that maternal CORT was not correlated with brood sex ratio, but mothers with elevated CORT fledged lighter offspring. Also, experimental elevation of maternal CORT did not influence brood sex ratio or nestling quality. In one year, mothers in superior body condition produced male biased broods, and maternal condition was positively correlated with both nestling mass and growth rate in all years. Unlike previous studies maternal condition was not correlated with maternal CORT. This study provides evidence that maternal condition is linked to brood sex ratio manipulation in blue tits. However, maternal baseline CORT may not be the mechanistic link between the maternal condition and sex ratio adjustment. Overall, this study serves to highlight the complexity of sex ratio adjustment in birds and the difficulties associated with identifying sex biasing mechanisms.  相似文献   

12.
The ultimate explanations for avian brood parasitism have been studied intensively as a model system for coevolution, but little is known about the proximate mechanisms, for example hormonal regulation, underlying brood parasitic behaviour. In this study, we explored seasonal hormone profiles in two brood parasitic Cuculus species breeding in the Republic of Korea. As brood parasites have relatively simple breeding stages without incubation and provisioning, we predicted that during the breeding season individuals would exhibit similar levels of testosterone (T) and stress‐induced corticosterone (CORT), hormones that are known to be closely related to the transition of breeding stages. We also assessed how these hormone profiles were associated with traits such as body size and sex. Overall, male cuckoos showed similarly high T levels throughout the breeding season, as predicted, but individual variation became greater as the season progressed. Individual CORT levels tended to decrease as the season progressed, although the decrease was significant only in Common Cuckoos Cuculus canorus. We also found that male Lesser Cuckoos Cuculus poliocephalus showed a much higher level of T than females, as expected, but this sexual difference was not observed in Common Cuckoos. Our results suggest that the seasonal hormone profiles of avian brood parasites are likely to be similar to typical hormone profiles expected for non‐brood parasites during the breeding season. This may suggest that not only the breeding cycle but also other factors such as social interaction may be affected by hormonal changes. Further studies are needed to fully understand the proximate mechanism of avian brood parasitism.  相似文献   

13.
1. Here we examine how sex ratio variation in house sparrow broods interacts with other demographic traits and parental characteristics to improve the understanding of adaptive significance and demographic effects on variation in sex ratio. 2. The sex ratio in complete broods did not deviate significantly from parity (54.9% males). 3. There was sex-specific seasonal variation in the probability of recruitment. Male nestlings that hatched late in the breeding season had larger probability of surviving than early hatched males. 4. An adaptive adjustment of sex ratio should favour production of an excess of males late in the breeding season. Accordingly, the proportion of male offspring increased throughout the breeding season. 5. A significant nonlinear relationship was present between sex ratio and age of the female. However, there was no relationship between parental phenotype and standardized hatch day that could explain the observed seasonal change in sex ratio. 6. The sex-specific number of offspring recruited by a pair to subsequent generations was closely related to the brood sex ratio. 7. These results indicate an adaptive adjustment of sex ratio to seasonal variation in environmental conditions that affects the offspring fitness of the two sexes differently. Our results also suggest that such a sex ratio variation can strongly influence the demography and structural composition of small passerine populations.  相似文献   

14.
Adaptive sex allocation has frequently been studied in sexually size dimorphic species, but far less is known about patterns of sex allocation in species without pronounced sexual size dimorphism. Parental optimal investment can be predicted under circumstances in which sons and daughters differ in costs and/or fitness returns. In common terns Sterna hirundo, previous studies suggest that sons are the more costly sex to produce and rear. We investigated whether hatching and fledging sex ratio and sex‐specific chick mortality correlated with the ecological environment (laying date, clutch size, hatching order and year quality) and parental traits (condition, arrival date, experience and breeding success), over seven consecutive years. Population‐wide sex ratios and sex‐specific mortality did not differ from parity, but clutch size, mass of the father, maternal breeding experience and to some extent year quality correlated with hatching sex ratio. The proportion of sons tended to increase in productive years and when the father was heavier, suggesting the possibility that females invest more in sons when the environmental and the partner conditions are good. The proportion of daughters increased with clutch size and maternal breeding experience, suggesting a decline in breeding performance or a resources balance solved by producing more of the cheaper sex. No clear patterns of sex‐specific mortality were found, neither global nor related to parental traits. Our results suggest lines for future studies on adaptive sex allocation in sexually nearly monomorphic species, where adjustment of sex ratio related to parental factors and differential allocation between the offspring may also occur.  相似文献   

15.
Studies of sex allocation offer excellent opportunities for examining the constraints and limits on adaptation. A major topic of debate within this field concerns the extent to which the ability of individuals to adaptively manipulate their offspring sex ratio is determined by constraints such as the method of sex determination. We address this problem by comparing the extent of sex-ratio adjustment across taxa with different methods of sex determination, under the common selective scenario of interactions between relatives. These interactions comprise the following: local resource competition (LRC), local mate competition (LMC), and local resource enhancement (LRE). We found that: (1) species with supposedly constraining methods of sex determination showed consistent sex-ratio adjustment in the predicted direction; (2) vertebrates with chromosomal sex determination (CSD) showed less adjustment then haplodiploid invertebrates; (3) invertebrates with possibly constraining sex-determination mechanisms (CSD and pseudo-arrhenotoky) did not show less adjustment then haplodiploid invertebrates; (4) greater sex-ratio adjustment was seen in response to LRC and LMC than LRE; (5) greater sex-ratio adjustment was seen in response to interactions between relatives (LRC, LMC, and LRE) compared to responses to other environmental factors. Our results also illustrate the problem that sex-determination mechanism and selective pressure are confounded across taxa because vertebrates with CSD are influenced primarily by LRE whereas invertebrates are influenced by LRC and LMC. Overall, our analyses suggest that sex-allocation theory needs to consider simultaneously the influence of variable selection pressures and variable constraints when applying general theory to specific cases.  相似文献   

16.
In anticipation of the breeding season male songbirds of the temperate zones undergo gonadal recrudescence in early spring that lead to elevated circulating testosterone (T) levels, positively correlated with an increase in aggressive and song behaviour. However, besides seasonal changes there are also marked fluctuations of T levels and song production within the breeding season. In many species, T levels and singing activity drop after pairing or after the first clutch is laid. Domesticated canaries (Serinus canaria) are multiple‐brooded with an extended breeding season, and males continue to sing after egg‐laying. So far, studies have mainly focused on the seasonality of T levels and song behaviour whereas the pattern of change throughout the breeding period is unknown. Here, we focused on the first and on the last brood of the breeding season. We measured plasma T levels in males at the different breeding stages and assessed song characteristics of males at both times. T levels fluctuated significantly throughout brood 1, being highest during the nest building stage compared with egg‐laying and feeding of young. No such changes occurred during the last brood. Temporal song characteristics changed between brood 1 and brood 3 with song length being the main contributor to explain these changes. Our data suggest that T mainly plays a role in mate attraction and initial nesting site selection but that elevated levels are not necessary for subsequent breeding attempts. Furthermore, temporal song characteristics are maintained independently of T levels, suggesting a threshold effect. Our results demonstrate behavioural and physiological plasticity of domesticated canaries during the breeding season and are consistent with previous findings in wild songbirds.  相似文献   

17.
In cooperatively breeding species, the fitness consequences of producing sons or daughters depend upon the fitness impacts of positive (repayment hypothesis) and negative (local competition hypothesis) social interactions among relatives. In this study, we examine brood sex allocation in relation to the predictions of both the repayment and the local competition hypotheses in the cooperatively breeding long-tailed tit Aegithalos caudatus. At the population level, we found that annual brood sex ratio was negatively related to the number of male survivors across years, as predicted by the local competition hypothesis. At an individual level, in contrast to predictions of the repayment hypothesis, there was no evidence for facultative control of brood sex ratio. However, immigrant females produced a greater proportion of sons than resident females, a result consistent with both hypotheses. We conclude that female long-tailed tits make adaptive decisions about brood sex allocation.  相似文献   

18.
This study investigates the evolution of the sex ratio (parental investment in sons) when breeding adults are supported by help provided by nonbreeding individuals of one sex. The study also assumes that the helping sex remains on its natal site to compete for the opportunity to breed, whereas the nonhelping sex disperses. Two kin-selection models are presented, both of which incorporate the age structure found in many natural populations where such helping occurs. The first model assumes that helpers increase the survival of their parents. The second model assumes that helpers are indiscriminant: a helper chooses to increase the survival of a random pair of adults breeding on its natal patch. In both models, sex ratios are not always biased toward the sex that provides the most help. When helpers do not discriminate (second model), the direction of sex-ratio bias is determined solely by the size of the benefit of helping behavior. When this benefit is small, sex-ratio evolution is primarily influenced by local resource competition and sex ratios are biased toward the nonhelping (dispersive) sex. If the benefit of help is large enough, the effect of local resource competition is reduced and sex-ratio bias favors the helpful sex. When helpers help only their parents, the same qualitative relationship exists between the direction of sex-ratio bias and the benefit of helping. In this case, however, the direction of sex-ratio bias is also influenced by the size of the social group, mortality, and which individual (mother or father) controls the sex ratio. This study also investigates a sex-ratio conflict that exists between mates. Helping behavior of nonbreeders can act to alleviate the disparities between the optimal sex ratio from the perspective of a mother and that from the perspective of a father. This consequence of helping has not been previously recognized.  相似文献   

19.
Sex‐allocation theory predicts that females in good condition should preferentially produce offspring of the sex that benefits the most from an increase in maternal investment. However, it is generally assumed that the condition of the sire has little effect on progeny sex ratio, particularly in species that lack parental care. We used a controlled breeding experiment and molecular paternity analyses to examine the effects of both maternal and paternal condition on progeny sex ratio and progeny fitness in the brown anole (Anolis sagrei), a polygynous lizard that lacks parental care. Contrary to the predictions of sex‐allocation theory, we found no relationship between maternal condition and progeny sex ratio. By contrast, progeny sex ratio shifted dramatically from female‐biased to male‐biased as paternal condition increased. This pattern was driven entirely by an increase in the production of sons as paternal condition improved. Despite strong natural selection favoring large size and high condition in both sons and daughters, we found no evidence that progeny survival was related to paternal condition. Our results emphasize the importance of considering the paternal phenotype in studies of sex allocation and highlight the need for further research into the pathways that link paternal condition to progeny fitness.  相似文献   

20.
The life histories of carnivorous marsupials, or dasyurids, make them useful subjects for studying maternal investment, such as sex ratio and lactational investment. One group of annual breeding dasyurids are male semelparous, strongly sexually dimorphic, produce large litters that weigh two to three times the weight of the mother at weaning and show biases in siring success and sex ratio. Red-tailed phascogales Phascogale calura belong to this group and in captivity they have shown biases in siring success with body weight. The growth rates of young of this species were investigated to determine whether sex-biased maternal investment occurs. No relationship was evident between maternal weight and the sex ratio of young, indicating no sex-ratio adjustment with maternal condition. In contrast, a positive relationship was evident between maternal weight and the weight of offspring at weaning, with weaning weight being correlated with weight at maturity. Dimorphism in weight emerged during suckling, with an average dimorphic ratio of 1.5 achieved by maturity. In contrast, dimorphism in skeletal measures did not emerge until after weaning, with an average dimorphic ratio of 1.14 achieved by maturity. The sex differences in growth during suckling provide support for a male bias in maternal investment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号