首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the regulation of AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor channels by serotonin signaling in pyramidal neurons of prefrontal cortex (PFC). Application of serotonin reduced the amplitude of AMPA-evoked currents, an effect mimicked by 5-HT(1A) receptor agonists and blocked by 5-HT(1A) antagonists, indicating the mediation by 5-HT(1A) receptors. The serotonergic modulation of AMPA receptor currents was blocked by protein kinase A (PKA) activators and occluded by PKA inhibitors. Inhibiting the catalytic activity of protein phosphatase 1 (PP1) also eliminated the effect of serotonin on AMPA currents. Furthermore, the serotonergic modulation of AMPA currents was occluded by application of the Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibitors and blocked by intracellular injection of calmodulin or recombinant CaMKII. Application of serotonin or 5-HT(1A) agonists to PFC slices reduced CaMKII activity and the phosphorylation of AMPA receptor subunit GluR1 at the CaMKII site in a PP1-dependent manner. We concluded that serotonin, by activating 5-HT(1A) receptors, suppress glutamatergic signaling through the inhibition of CaMKII, which is achieved by the inhibition of PKA and ensuing activation of PP1. This modulation demonstrates the critical role of CaMKII in serotonergic regulation of PFC neuronal activity, which may explain the neuropsychiatric behavioral phenotypes seen in CaMKII knockout mice.  相似文献   

2.
NMDA receptors (NMDARs) activation in the hippocampus and insular cortex is necessary for spatial memory formation. Recent studies suggest that localization of NMDARs to lipid rafts enhance their signalization, since the kinases that phosphorylate its subunits are present in larger proportion in lipid raft membrane microdomains. We sought to determine the possibility that NMDAR translocation to synaptic lipid rafts occurs during plasticity processes such as memory formation. Our results show that water maze training induces a rapid recruitment of NMDAR subunits (NR1, NR2A, NR2B) and PSD-95 to synaptic lipid rafts and decrease in the post-synaptic density plus an increase of NR2B phosphorylation at tyrosine 1472 in the rat insular cortex. In the hippocampus, spatial training induces selective translocation of NR1 and NR2A subunits to lipid rafts. These results suggest that NMDARs translocate from the soluble fraction of post-synaptic membrane (non-raft PSD) to synaptic lipid raft during spatial memory formation. The recruitment of NMDA receptors and other proteins to lipid rafts could be an important mechanism for increasing the efficiency of synaptic transmission during synaptic plasticity process.  相似文献   

3.
The N-methyl-D-aspartate receptor (NMDA-R) has been inter alia implicated in synaptic plasticity, brain development and emotional processes. The NMDA-R is a multiprotein complex composed of NR1, NR2 and/or NR3 subunits. We generated NR2C-2B mutant mice in which an insertion of NR2B cDNA into the gene locus of the NR2C gene replaced NR2C by NR2B expression throughout the brain. This NR2C-2B mutant was used to examine whether an NMDA-R subunit exchange in juvenile mice would affect emotional behaviors and acetylcholine (ACh), dopamine (DA) and serotonin (5-HT) content in the frontal cortex (FC) and brain structures, which are part of the brain defense system, such as the periaqueductal grey matter (PAG). Juvenile, 1-month-old NR2C-2B mice showed increased open arm avoidance in the elevated plus-maze and increased fear-induced immobility. In terms of brain neurochemistry, NR2C-2B mice showed an increase in 5-HT levels in the FC at the age of 2 months. A correlational analysis revealed that mice with low open arms avoidance had high levels of ACh in the PAG but reduced 5-HT levels in the FC. Animals which showed high levels of fear-induced immobility also had high levels of 5-HT in the FC. These results suggest that the replacement of subunit NR2C by NR2B in juvenile mice increases anxiety- and fear-related behaviors possibly due to changes in FC-5-HT and PAG-ACh levels.  相似文献   

4.
The N-methyl-D-aspartate receptor (NMDA-R) and brain spectrin, a protein that links membrane proteins to the actin cytoskeleton, are major components of post-synaptic densities (PSDs). Since the activity of the NMDA-R channel is dependent on the integrity of actin and leads to calpain-mediated spectrin breakdown, we have investigated whether the actin-binding spectrin may interact directly with NMDA-Rs. Spectrin is reported here to interact selectively in vitro with the C-terminal cytoplasmic domains of the NR1a, NR2A and NR2B subunits of the NMDA-R but not with that of the AMPA receptor GluR1. Spectrin binds at NR2B sites distinct from those of alpha-actinin-2 and members of the PSD95/SAP90 family. The spectrin-NR2B interactions are antagonized by Ca2+ and fyn-mediated NR2B phosphorylation, but not by Ca2+/calmodulin (CaM) or by Ca2+/CaM-dependent protein kinase II-mediated NR2B phosphorylation. The spectrin-NR1 interactions are unaffected by Ca2+ but inhibited by CaM and by protein kinase A- and C-mediated phosphorylations of NR1. Finally, in rat synaptosomes, both spectrin and NR2B are loosened from membranes upon addition of physiological concentrations of calcium ions. The highly regulated linkage of the NMDA-R to spectrin may underlie the morphological changes that occur in neuronal dendrites concurrently with synaptic activity and plasticity.  相似文献   

5.
Ca2+/calmodulin-dependent protein kinase II (CaMKII), a multifunctional, widely distributed enzyme, is enriched in post-synaptic densities (PSDs). Here, we demonstrate that CaMKII binds to a discrete C-terminal region of the NR2A subunit of NMDA receptors and promotes the phosphorylation of a Ser residue of this NMDA receptor subunit. Glutathione S-transferase (GST)-NR2A(1349-1464) binds native CaMKII from solubilised hippocampal PSDs in 'pull-out' and overlay experiments and this binding is competed by recombinant alphaCaMKII(1-315). The longer GST-NR2A(1244-1464), although containing the CaMKII phosphosite Ser-1289, binds the kinase with a lower efficacy. CaMKII association to NR2A(1349-1464) is positively modulated by kinase autophosphorylation in the presence of Ca2+/calmodulin. These data provide direct evidence for a mechanism modulating the synaptic strength.  相似文献   

6.
Stimulation of hippocampal 5-HT(1A) receptors impairs memory retention. The highly selective 5-HT(1A) antagonist, WAY-100635, prevents the cognitive deficits induced not only by 5-HT(1A) stimulation but also by cholinergic or NMDA receptor blockade. On this basis, the effects of WAY-100635 on molecular events associated with memory storage were explored. In rat hippocampus, WAY-100635 produced a rapid increase in phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and in Ca(2+)-independent CaMKII and protein kinase A (PKA) enzyme activity. This increase was followed a few hours later by an enhanced membrane expression of AMPA receptor subunits, especially of the GluR1 subunit phosphorylated at the CaMKII site, pGluR1(Ser831). The same qualitative effects were found with the weaker 5-HT(1A) antagonist NAN-190. The effects of both antagonists were no longer apparent in rats with a previous 5-HT depletion induced by the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA), suggesting that 5-HT(1A) receptor blockade removes the tonic inhibition of 5-HT through 5-HT(1A) receptor stimulation on excitatory hippocampal neurons, with the consequent increase in PKA activity. In addition, administration of WAY-100635 potentiated the learning-specific increase in the hippocampus of phospho-CaMKII, Ca(2+)-independent CaMKII activity, as well as the phosphorylation of either the CaMKII or the PKA site on the AMPA receptor GluR1 subunit. This study suggests that blockade of hippocampal 5-HT(1A) receptors favours molecular events critically involved in memory formation, and provides an in vivo molecular basis for the proposed utility of 5-HT(1A) receptor antagonists in the treatment of cognitive disorders.  相似文献   

7.
NMDA receptors play essential roles in the physiology and pathophysiology of the striatum, a brain nucleus involved in motor control and reward-motivated behaviors. NMDA receptors are composed of NR1 and NR2A–D subunits. Functional properties of NMDA receptors are determined by the type of NR2 subunit they contain. In this study, we have examined the involvement of NR2B and NR2A in the modulatory effect of NMDA on glutamatergic and dopaminergic synaptic transmission in the striatum. We found that bath application of NMDA decreased the amplitude of the field excitatory post-synaptic potential/population spike (fEPSP/PS) measured in corticostriatal mouse brain slices. This depression was not affected by the NR2B-selective antagonists Ifenprodil and Ro 25-6981, but was abolished by the NR2A antagonist NVP-AAM077. Activation of corticostriatal neurons by NMDA did not contribute to synaptic depression because similar results were obtained in decorticated striatal slices. Synaptic depression was not dependent on GABA release because the GABAA receptor antagonist bicuculline did not affect NMDA-induced decrease of the fEPSP/PS. NMDA also depressed evoked-dopamine release through NR2A- but not NR2B-containing NMDA receptors. Our results identify an important role for NR2A-containing NMDA receptors intrinsic to the striatum in regulating glutamatergic synaptic transmission and evoked-dopamine release.  相似文献   

8.
Abnormal serotonin-glutamate interaction in prefrontal cortex (PFC) is implicated in the pathophysiology of many mental disorders, including schizophrenia and depression. However, the mechanisms by which this interaction occurs remain unclear. Our previous study has shown that activation of 5-HT(1A) receptors inhibits N-methyl-D-aspartate (NMDA) receptor (NMDAR) currents in PFC pyramidal neurons by disrupting microtubule-based transport of NMDARs. Here we found that activation of 5-HT(2A/C) receptors significantly attenuated the effect of 5-HT(1A) on NMDAR currents and microtubule depolymerization. The counteractive effect of 5-HT(2A/C) on 5-HT(1A) regulation of synaptic NMDAR response was also observed in PFC pyramidal neurons from intact animals treated with various 5-HT-related drugs. Moreover, 5-HT(2A/C) stimulation triggered the activation of extracellular signal-regulated kinase (ERK) in dendritic processes. Inhibition of the beta-arrestin/Src/dynamin signaling blocked 5-HT(2A/C) activation of ERK and the counteractive effect of 5-HT(2A/C) on 5-HT(1A) regulation of NMDAR currents. Immunocytochemical studies showed that 5-HT(2A/C) treatment blocked the inhibitory effect of 5-HT(1A) on surface NR2B clusters on dendrites, which was prevented by cellular knockdown of beta-arrestins. Taken together, our study suggests that serotonin, via 5-HT(1A) and 5-HT(2A/C) receptor activation, regulates NMDAR functions in PFC neurons in a counteractive manner. 5-HT(2A/C), by activating ERK via the beta-arrestin-dependent pathway, opposes the 5-HT(1A) disruption of microtubule stability and NMDAR transport. These findings provide a framework for understanding the complex interactions between serotonin and NMDARs in PFC, which could be important for cognitive and emotional control in which both systems are highly involved.  相似文献   

9.
Ischemia results in increased phosphorylation of NMDA receptors. To investigate the possible role of lipid rafts in this increase, lipid rafts and post-synaptic densities (PSDs) were isolated by the extraction of rat brain synaptosomes with Triton X-100 followed by sucrose density gradient centrifugation. Lipid rafts accounted for the majority of PSD-95, whereas SAP102 was predominantly located in PSDs. Between 50 and 60% of NMDA receptors were associated with lipid rafts. Greater than 85-90% of Src and Fyn were present in lipid rafts, whereas Pyk2 was mainly associated with PSDs. Lipid rafts and PSDs were isolated from animals subjected to 15 min of global ischemia followed by 6 h of recovery. Ischemia did not affect the yield, density, flotillin-1 or cholesterol content of lipid rafts. Following ischemia, the phosphorylation of NR1 by protein kinase C and tyrosine phosphorylation of NR2A and NR2B was increased in both lipid rafts and PSDs, with a greater increase in tyrosine phosphorylation occurring in the raft fraction. Following ischemia, NR1, NR2A and NR2B levels were elevated in PSDs and reduced in lipid rafts. The findings are consistent with a model involving close interaction between lipid rafts and PSDs and a role for lipid rafts in ischemia-induced signaling pathways.  相似文献   

10.
In animal models of diabetes mellitus, such as the streptozotocin-diabetic rat (STZ-rat), spatial learning impairments develop in parallel with a reduced expression of long-term potentiation (LTP) and enhanced expression of long-term depression (LTD) in the hippocampus. This study examined the time course of the effects of STZ-diabetes and insulin treatment on the hippocampal post-synaptic glutamate N-methyl-D-aspartate (NMDA) receptor complex and other key proteins regulating hippocampal synaptic transmission in the post-synaptic density (PSD) fraction. In addition, the functional properties of the NMDA-receptor complex were examined. One month of STZ-diabetes did not affect the NMDA receptor complex. In contrast, 4 months after induction of diabetes NR2B subunit immunoreactivity, CaMKII and Tyr-dependent phosphorylation of the NR2A/B subunits of the NMDA receptor were reduced and alphaCaMKII autophosphorylation and its association to the NMDA receptor complex were impaired in STZ-rats compared with age-matched controls. Likewise, NMDA currents in hippocampal pyramidal neurones measured by intracellular recording were reduced in STZ-rats. Insulin treatment prevented the reduction in kinase activities, NR2B expression levels, CaMKII-NMDA receptor association and NMDA currents. These findings strengthen the hypothesis that altered post-synaptic glutamatergic transmission is related to deficits in learning and plasticity in this animal model.  相似文献   

11.
Long-term adaptation resulting in a 'tonic-like' state can be induced in phasic motor neurons of the crayfish, Procambarus clarkii, by daily low-frequency stimulation [Lnenicka, G.A., Atwood, H.L., 1985b. Long-term facilitation and long-term adaptation at synapses of a crayfish phasic motoneuron. J. Neurobiol. 16, 97-110]. To test the hypothesis that motor neurons undergoing adaptation show increased responses to the neuromodulator serotonin (5-HT), phasic motor neurons innervating the deep abdominal extensor muscles of crayfish were stimulated at 2.5 Hz, 2 h/day, for 7 days. One day after cessation of conditioning, contralateral control and conditioned motor neurons of the same segment were stimulated at 1 Hz and the induced excitatory post-synaptic potentials (EPSPs) were recorded from DEL(1) muscle fibers innervated by each motor neuron type. Recordings were made in saline without and with 100 nM 5-HT. EPSP amplitudes were increased by 5-HT exposure in all cases. Conditioned muscles exposed to 5-HT showed a 2-fold higher percentage of increase in EPSP amplitude than did control muscles. Thus, the conditioned motor neurons behaved like intrinsically tonic motoneurons in their response to 5-HT. While these results show that long-term adaptation (LTA) extends to 5-HT neuromodulation, no phenotype switch could be detected in the postsynaptic muscle. Protein isoform profiles, including the myosin heavy chains, do not change after 1 week of conditioning their innervating motor neurons.  相似文献   

12.
5-HT(4) receptor agonists facilitate synaptic transmission in the enteric nervous system, and these drugs are used to treat constipation. In the present study, we investigated the effects of the 5-HT(4) receptor agonist, renzapride, on rundown and recovery of fast excitatory postsynaptic potentials (fEPSPs) during and after trains of stimulation and on transmitter release from individual myenteric neuronal varicosities. Intracellular electrophysiological methods were used to record fEPSPs from neurons in longitudinal muscle myenteric plexus preparations of guinea pig ileum in vitro. During trains of supramaximal electrical stimulation (10 Hz, 2 s), fEPSP amplitude declined (time constant = 0.6 +/- 0.1 s) from 17 +/- 2 mV to 0.7 +/- 0.3 mV. Renzapride (0.1 microM) did not change the time constant for fEPSP rundown, but it decreased the time constant for recovery of fEPSP amplitude after the stimulus train from 7 +/- 2 s to 1.6 +/- 0.2 s (P < 0.05). 5-HT (0.1 microM) also increased fEPSPs and facilitated recovery from rundown. The adenylate cyclase activator, forskolin (1 muM), mimicked the actions of renzapride and 5-HT, whereas H-89, a protein kinase A (PKA) inhibitor, blocked the effects of renzapride. We used nicotinic acetylcholine receptor containing outside-out patches obtained from myenteric neurons maintained in primary culture to detect acetylcholine release from single varicosities. Renzapride (0.1 microM) increased release probability twofold. We conclude that 5-HT(4) receptors activate the adenylyl cyclase-PKA pathway to increase acetylcholine release from single varicosities and to accelerate recovery from synaptic rundown. These responses may contribute to the prokinetic actions of 5-HT(4) receptor agonists.  相似文献   

13.
The mechanisms involved in the neuroprotective effect of serotonin 5-HT1A receptor agonists on brain damage induced by ischemia remain to be fully elucidated. Given that serotonergic drugs may regulate N-methyl-D-aspartate (NMDA) receptor function, which is implicated in events leading to ischemia-induced neuronal cell death, this study sought to determine the effects of the selective 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), on the levels of NMDA receptor NR1 subunit in gerbil hippocampus after transient global cerebral ischemia. Pretreatment with 8-OH-DPAT (1 mg/kg) prevented the neuronal loss in CA1 subfield 72 h after ischemia. NMDA receptor NR1 levels in whole hippocampus were not affected 24 h after ischemia, but the levels of the subunit phosphorylated at the protein kinase A (PKA) site, pNR1(Ser897), were significantly increased, and this increase was prevented by the same 8-OH-DPAT dose, a probable consequence of the increased phosphatase 1 (PP1) enzyme activity found in ischemic gerbils pretreated with the 5-HT1A receptor agonist. The results suggest that NR1 subunit phosphorylation plays a role in the neuroprotective effect of 8-OH-DPAT on cell damage induced by global cerebral ischemia in the gerbil hippocampus and support the potential interest of 5-HT1A receptor activation in the search for neuroprotective strategies.  相似文献   

14.
Li Y  Zhang X  Liu H  Cao Z  Chen S  Cao B  Liu J 《Journal of neurochemistry》2012,121(4):662-671
The NR2B subunit of NMDA receptor in the anterior cingulate cortex (ACC) is up-regulated in viscerally hypersensitive (VH) rats induced by colonic anaphylaxis. It plays a critical role in modulation of ACC sensitization and visceral pain responses. Given the key role of calcium/calmodulin-dependent protein kinase II (CaMKII) in synaptic plasticity and behavior learning and memory, we hypothesize that phosphorylation of CaMKII binding to NR2B mediates visceral pain in VH states. We performed in vivo electroporation of CaMKII siRNA produced inhibition of colorectal distension-induced visceromotor response in the VH rats. The NR2B, CaMKII and P-CaMKII-Thr2?? protein levels were increased in 180%, 220% and 304% fold in the post-synaptic density (PSD) fraction in VH rats separately. Western blotting following co-immunoprecipitation showed that P-CaMKII-Thr2?? bound to NR2B in the PSD, which was increased to 267% of control in VH rats. Administration of CaMKII antagonist Antennapedia-CaMKIINtide suppressed visceromotor response in VH rats in parallel with decrease of NR2B levels and reduction of the NR2B-P-CaMKII-Thr2?? protein complex in PSD. In conclusion, CaMKII is a critical signaling molecule in the ACC glutamatergic synaptic transmission and phosphorylation of CaMKII at Thr286, which binds to NR2B subunit at post-synaptic site, modulates visceral pain in viscerally hypersensitive state.  相似文献   

15.
16.
Serotonin (5-HT) type 3 receptor (5-HT(3)-R) is a ligand-gated ion channel found primarily in the central and peripheral nervous system. We report expression and functional characterization of 5-HT(3)-R in pulmonary neuroepithelial body (NEB) cells. Using nonisotopic in situ hybridization, we demonstrate expression of 5-HT(3)-R mRNA in NEB cells in the lungs of different mammals (hamster, rabbit, mouse, and human). Dual immunocytochemistry (for 5-HT and 5-HT(3)-R) and confocal microscopy localized 5-HT(3)-R on NEB cell plasma membrane from rabbit. The electrophysiological characteristics of 5-HT(3)-R in NEB cells were studied in fresh slices of neonatal hamster lung using the whole cell patch-clamp technique. Application of the 5-HT (5-150 microM) and 5-HT(3)-R agonist 2-methyl-5-HT (5-150 microM) induced inward currents in a concentration-dependent manner. The 5-HT-induced current was blocked (76.5 +/- 5.9%) by the specific 5-HT(3)-R antagonist ICS-205-930 (50 microM), whereas katanserin and p-4-iodo-N-(2-[4-(methoxyphenyl)-1-piperazinyl]ethyl)-N-2-pyridinylbenzamide had minimal effects. Forskolin had no effect on desensitization and amplitude of the 5-HT-induced current. The reduction of Ca(2+) and Mg(2+) in the extracellular solution enhanced the amplitude of the 5-HT-induced current because of slower desensitization. Our studies suggest that 5-HT(3)-R in NEB cells may function as an autoreceptor and may potentially be involved in modulation of hypoxia signaling.  相似文献   

17.
Interactions between dopamine (DA) and glutamate systems in the prefrontal cortex (PFC) are important in addiction and other psychiatric disorders. Here, we examined DA receptor regulation of NMDA receptor surface expression in postnatal rat PFC neuronal cultures. Immunocytochemical analysis demonstrated that surface expression (synaptic and non-synaptic) of NR1 and NR2B on PFC pyramidal neurons was increased by the D1 receptor agonist SKF 81297 (1 microM, 5 min). Activation of protein kinase A (PKA) did not alter NR1 distribution, indicating that PKA does not mediate the effect of D1 receptor stimulation. However, the tyrosine kinase inhibitor genistein (50 microM, 30 min) completely blocked the effect of SKF 81297 on NR1 and NR2B surface expression. Protein cross-linking studies confirmed that SKF 81297 (1 microM, 5 min) increased NR1 and NR2B surface expression, and further showed that NR2A surface expression was not affected. Genistein blocked the effect of SKF 81297 on NR1 and NR2B. Surface-expressed immunoreactivity detected with a phospho-specific antibody to tyrosine 1472 of NR2B also increased after D1 agonist treatment. Our results show that tyrosine phosphorylation plays an important role in the trafficking of NR2B-containing NMDA receptors in PFC neurons and the regulation of their trafficking by DA receptors.  相似文献   

18.
Barria A  Malinow R 《Neuron》2005,48(2):289-301
Calcium entry through postsynaptic NMDA-Rs and subsequent activation of CaMKII trigger synaptic plasticity in many brain regions. Active CaMKII can bind to NMDA-Rs, but the physiological role of this interaction is not well understood. Here, we test if association between active CaMKII and synaptic NMDA-Rs is required for synaptic plasticity. Switching synaptic NR2B-containing NMDA-Rs that bind CaMKII with high affinity with those containing NR2A, a subunit with low affinity for CaMKII, dramatically reduces LTP. Expression of NR2A with mutations that increase association to active CaMKII recovers LTP. Finally, driving into synapses NR2B with mutations that reduce association to active CaMKII prevents LTP. Spontaneous activity-driven potentiation shows similar results. We conclude that association between active CaMKII and NR2B is required for different forms of synaptic enhancement. The switch from NR2B to NR2A content in synaptic NMDA-Rs normally observed in many brain regions may contribute to reduced plasticity by controlling the binding of active CaMKII.  相似文献   

19.
The NMDA receptor (NMDA-R) is a key element in neural transmission and mediating a vast variety of physiological and pathological processes in the nervous system. It is well-known that phosphorylation is required for functioning of the NMDA-R, and we therefore decided to study this post-translational modification in subunits NR1 and NR2A-D. Immunoprecipitation with an antibody against NR1 was carried out from rat hippocampi and SDS-PAGEs were run. Bands were punched, destained, and digested with trypsin and chymotrypsin and peptides were identified by nano-LC-ESI-MS/MS using an ion trap (HCT). Proteins were identified using specific software. Phosphorylations were verified by phosphatase treatment and reanalysis by mass spectrometry. The NMDA-R subunits NR1 and 2A-D were identified. On NR2A, a novel phosphorylation site was observed at S511, and on NR2B, four novel phosphorylation sites were revealed at S886, S917, S1303, and S1323 by mass spectrometry and verified by phosphatase treatment with mass spectrometrical reanalysis. A series of NMDA-R phosphorylations have been reported and these serve different functions as receptor activation, localization, and protein-protein interactions. Herein, findings of novel phosphorylation sites are extending knowledge on chemical characterization of the NMDA-R and warrant studying function of site-specific receptor phosphorylation in health and disease.  相似文献   

20.
Autophagy is an important process in the pathogenesis of cardiovascular diseases; however, the proximal triggers for mitochondrial autophagy were unknown. The N-methyl-d-aspartate receptor 1 (NMDA-R1) is a receptor for homocysteine (Hcy) and plays a key role in cardiac dysfunction. Cardiac-specific deletion of NMDA-R1 has been shown to ameliorate Hcy-induced myocyte contractility. Hcy activates mitochondrial matrix metalloproteinase-9 (mtMMP-9) and induces translocation of connexin-43 (Cxn-43) to the mitochondria (mtCxn-43). We sought to show cardiac-specific deletion of NMDA-R1 mitigates Hcy-induced mtCxn-43 translocation, mtMMP-9-mediated mtCxn-43 degradation, leading to mitophagy, in part, by decreasing mitochondrial permeability (MPT). Cardiac-specific knockout (KO) of NAMDA-R1 was generated using the cre/lox approach. The myocyte mitochondria were isolated from wild type (WT), WT + Hcy (1.8?g of DL-Hcy/L in the drinking water for 6 weeks), NMDA-R1 KO + Hcy, and NR1fl/fl/Cre (NR1fl/fl) genetic control mice. Mitochondrial respiratory capacity and MPT were measured by fluorescence-dye methods. The mitochondrial superoxide and peroxinitrite levels were detected by confocal microscopy using Mito-SOX and dihydrorhodamine-123. The mtMMP-9 activity and expression were detected by zymography and RT-PCR analyses. The mtCxn-43 translocation was detected by confocal microscopy. The degradation of mtCxn-43 and LC3-I/II (a marker of autophagy) were detected by Western blot. These results suggested that Hcy enhanced intramitochondrial nitrosative stress in myocytes. There was a robust increase in mtMMP-9 activity. An increase in translocation and degradation of mtCxn-43 was also noted. These increases led to mitophagy. The effects were ameliorated by cardiac-specific deletion of NMDA-R1. We concluded that HHcy increased mitochondrial nitrosative stress, thereby activating mtMMP-9 and inciting the degradation of mtCxn-43. This led to mitophagy, in part, by activating NMDA-R1. The findings of this study will lead to therapeutic ramifications for mitigating cardiovascular diseases by inhibiting the mitochondrial mitophagy and NMDA-R1 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号