首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Central nervous system myelination requires the synthesis of large amounts of myelin basic protein (MBP) at the axon-glia contact site. MBP messenger RNA (mRNA) is transported in RNA granules to oligodendroglial processes in a translationally silenced state. This process is regulated by the trans-acting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 binding to the cis-acting A2 response element (A2RE). Release of this repression of MBP mRNA translation is thus essential for myelination. Mice deficient in the Src family tyrosine kinase Fyn are hypomyelinated and contain reduced levels of MBP. Here, we identify hnRNP A2 as a target of activated Fyn in oligodendrocytes. We show that active Fyn phosphorylates hnRNP A2 and stimulates translation of an MBP A2RE-containing reporter construct. Neuronal adhesion molecule L1 binding to oligodendrocytes results in Fyn activation, which leads to an increase in hnRNP A2 phosphorylation. These results suggest that Fyn kinase activation results in the localized translation of MBP mRNA at sites of axon-glia contact and myelin deposition.  相似文献   

2.
3.
Heterogeneous ribonucleoproteins (hnRNPs) have key roles in RNA biogenesis, including pre-mRNP assembly, transport and cytoplasmic localization. Here we show by biochemical fractionation of nuclear extracts and protein-protein interaction assays that the A/B-type hnRNP CBF-A is in a multiprotein complex with hnRNP A2 and A3 and hnRNP U. Using RNA affinity chromatography and gel retardation assays, CBF-A was found to bind directly to RNA trafficking sequences in the 3'-UTR of the myelin basic protein (MBP) mRNA. In primary oligodendrocytes, astrocytes, neurons, and mouse forebrain sections, CBF-A revealed a characteristic granular cytoplasmic distribution. In mouse forebrain CBF-A-positive granules were preferentially found in regions with loosely bundled myelin fibers. In cultured oligodendrocytes, CBF-A was found to be specifically associated with endogenous MBP mRNA and CBF-A gene silencing resulted in the retention of MBP granules in the cell body. Finally, immunoelectron microscopy in differentiating oligodendrocytes showed that CBF-A is located in cytoplasmic granules that are often associated with the cytoskeleton. The results suggest that CBF-A is a novel transacting factor required for cytoplasmic mRNA transport and localization.  相似文献   

4.
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a trans-acting RNA-binding protein that mediates trafficking of RNAs containing the cis-acting A2 response element (A2RE). Previous work has shown that A2RE RNAs are transported to myelin in oligodendrocytes and to dendrites in neurons. hnRNP E1 is an RNA-binding protein that regulates translation of specific mRNAs. Here, we show by yeast two-hybrid analysis, in vivo and in vitro coimmunoprecipitation, in vitro cross-linking, and fluorescence correlation spectroscopy that hnRNP E1 binds to hnRNP A2 and is recruited to A2RE RNA in an hnRNP A2-dependent manner. hnRNP E1 is colocalized with hnRNP A2 and A2RE mRNA in granules in dendrites of oligodendrocytes. Overexpression of hnRNP E1 or microinjection of exogenous hnRNP E1 in neural cells inhibits translation of A2RE mRNA, but not of non-A2RE RNA. Excess hnRNP E1 added to an in vitro translation system reduces translation efficiency of A2RE mRNA, but not of nonA2RE RNA, in an hnRNP A2-dependent manner. These results are consistent with a model where hnRNP E1 recruited to A2RE RNA granules by binding to hnRNP A2 inhibits translation of A2RE RNA during granule transport.  相似文献   

5.
Myelin basic protein (MBP) mRNA is localized to myelin produced by oligodendrocytes of the central nervous system. MBP mRNA microinjected into oligodendrocytes in primary culture is assembled into granules in the perikaryon, transported along the processes, and localized to the myelin compartment. In this work, microinjection of various deleted and chimeric RNAs was used to delineate regions in MBP mRNA that are required for transport and localization in oligodendrocytes. The results indicate that transport requires a 21-nucleotide sequence, termed the RNA transport signal (RTS), in the 3′ UTR of MBP mRNA. Homologous sequences are present in several other localized mRNAs, suggesting that the RTS represents a general transport signal in a variety of different cell types. Insertion of the RTS from MBP mRNA into nontransported mRNAs, causes the RNA to be transported to the oligodendrocyte processes. Localization of mRNA to the myelin compartment requires an additional element, termed the RNA localization region (RLR), contained between nucleotide 1,130 and 1,473 in the 3′ UTR of MBP mRNA. Computer analysis predicts that this region contains a stable secondary structure. If the coding region of the mRNA is deleted, the RLR is no longer required for localization, and the region between nucleotide 667 and 953, containing the RTS, is sufficient for both RNA transport and localization. Thus, localization of coding RNA is RLR dependent, and localization of noncoding RNA is RLR independent, suggesting that they are localized by different pathways.  相似文献   

6.
7.
Cytoplasmic transport and localization of mRNA has been reported for a range of oocytes and somatic cells. The heterogeneous nuclear ribonucleoprotein (hnRNP) A2 response element (A2RE) is a 21-nucleotide segment of the myelin basic protein mRNA that is necessary and sufficient for cytoplasmic transport of this message in oligodendrocytes. The predominant A2RE-binding protein in rat brain has previously been identified as hnRNP A2. Here we report that an 11-nucleotide subsegment of the A2RE (A2RE11) was as effective as the full-length A2RE in binding hnRNP A2 and mediating transport of heterologous RNA in oligodendrocytes. Point mutations of the A2RE11 that eliminated binding to hnRNP A2 also markedly reduced the ability of these oligoribonucleotides to support RNA transport. Oligodendrocytes treated with antisense oligonucleotides directed against the translation start site of hnRNP A2 had reduced levels of this protein and disrupted transport of microinjected myelin basic protein RNA. Several A2RE-like sequences from localized neuronal RNAs also bound hnRNP A2 and promoted RNA transport in oligodendrocytes. These data demonstrate the specificity of A2RE recognition by hnRNP A2, provide direct evidence for the involvement of hnRNP A2 in cytoplasmic RNA transport, and suggest that this protein may interact with a wide variety of localized messages that possess A2RE-like sequences.  相似文献   

8.
HnRNP A2 is an RNA trafficking protein that binds to a specific cis -acting RNA trafficking element (A2RE) in myelin basic protein RNA and other transported RNAs. A2RE/hnRNPA2 determinants mediate several different steps in RNA trafficking including granule assembly, transport to the plus ends of microtubules and translational activation. A yeast two hybrid screen designed to identify proteins that interact with hnRNP A2 selected a clone corresponding to the carboxyl terminal portion of TOG (tumor overexpressed gene), a microtubule-associated protein that regulates microtubule dynamics. Co-immunostaining of oligodendrocytes with antibody to hnRNPA2 and TOG revealed extensive colocalization of TOG with hnRNP A2 granules in the dendrites. A small population of hnRNP A2 granules lacked TOG and some regions of TOG staining lacked hnRNP A2. In oligodendrocytes injected with fluorescent A2RE RNA and stained for TOG, granules containing fluorescent RNA colocalized with TOG. Co-injection of anti-TOG antibody with fluorescent A2RE RNA decreased colocalization with TOG and increased transport of the injected RNA. These observations suggest that molecular interaction between hnRNP A2 and TOG serves to anchor A2RE mRNAs/hnRNPA2 granules at plus ends of microtubules.
Acknowledgements:   Supported by NIH NS19943 (EB) and NS15190 (JHC), and NMSS RG2843 (EB).  相似文献   

9.
HnRNP A2 is an RNA trafficking protein that binds to a specific cis‐acting RNA trafficking element (A2RE) in myelin basic protein RNA and other transported RNAs. A2RE/hnRNPA2 determinants mediate several different steps in RNA trafficking including granule assembly, transport to the plus ends of microtubules and translational activation. A yeast two hybrid screen designed to identify proteins that interact with hnRNP A2 selected a clone corresponding to the carboxyl terminal portion of TOG (tumor overexpressed gene), a microtubule‐associated protein that regulates microtubule dynamics. Co‐immunostaining of oligodendrocytes with antibody to hnRNPA2 and TOG revealed extensive colocalization of TOG with hnRNP A2 granules in the dendrites. A small population of hnRNP A2 granules lacked TOG and some regions of TOG staining lacked hnRNP A2. In oligodendrocytes injected with fluorescent A2RE RNA and stained for TOG, granules containing fluorescent RNA colocalized with TOG. Co‐injection of anti‐TOG antibody with fluorescent A2RE RNA decreased colocalization with TOG and increased transport of the injected RNA. These observations suggest that molecular interaction between hnRNP A2 and TOG serves to anchor A2RE mRNAs/hnRNPA2 granules at plus ends of microtubules. Acknowledgements: Supported by NIH NS19943 (EB) and NS15190 (JHC), and NMSS RG2843 (EB).  相似文献   

10.
Zhang Y  Lu Z  Ku L  Chen Y  Wang H  Feng Y 《The EMBO journal》2003,22(8):1801-1810
The selective RNA-binding protein QKI is essential for myelination in the central nervous system (CNS). QKI belongs to the family of signal transduction activators of RNA (STARs), characteristic of binding RNA and signaling molecules, therefore is postulated to regulate RNA homeostasis in response to developmental signals. Here we report that QKI acts downstream of the Src family protein tyrosine kinases (Src-PTKs) during CNS myelination. QKI selectively interacted with the mRNA encoding the myelin basic protein (MBP). Such interaction stabilized MBP mRNA and was required for the rapid accumulation of MBP mRNA during active myelinogenesis. We found that the interaction between QKI and MBP mRNA was negatively regulated by Src-PTK-dependent phosphorylation of QKI. During early myelin development, tyrosine phosphorylation of QKI in the developing myelin drastically declined, presumably leading to enhanced interactions between QKI and MBP mRNA, which was associated with the rapid accumulation of MBP mRNA and accelerated myelin production. Therefore, developmental regulation of Src-PTK-dependent tyrosine phosphorylation of QKI suggests a novel mechanism for accelerating CNS myelinogenesis via regulating mRNA metabolism.  相似文献   

11.
The 21 nucleotide RNA trafficking signal (RTS), originally identified in myelin basic protein mRNA, but also found in a variety of other localized RNAs, is necessary and sufficient for transport of RNA along microtubules in oligodendrocytes. The RTS binds specifically to the RNA binding protein, hnRNP A2. Together, the RTS and hnRNP A2 comprise cis/trans determinants for several steps in the RNA trafficking pathway. Here we show that insertion of the RTS into green fluorescent protein (GFP) RNA enhances translation without affecting stability of microinjected RNA. In dicistronic RNA, the RTS enhances cap-dependent translation without affecting internal ribosome entry site (IRES)-dependent translation. The translation enhancer function of the RTS is position, copy number, and cell type independent, hnRNP A2 dependent, and saturable with increasing amounts of injected RNA. This represents one of the first specific translation enhancer elements identified in a mammalian system.  相似文献   

12.
In neurons, many different RNAs are targeted to dendrites where local expression of the encoded proteins mediates synaptic plasticity during learning and memory. It is not known whether each RNA follows a separate trafficking pathway or whether multiple RNAs are targeted to dendrites by the same pathway. Here, we show that RNAs encoding alpha calcium calmodulin-dependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein are coassembled into the same RNA granules and targeted to dendrites by the same cis/trans-determinants (heterogeneous nuclear ribonucleoprotein [hnRNP] A2 response element and hnRNP A2) that mediate dendritic targeting of myelin basic protein RNA by the A2 pathway in oligodendrocytes. Multiplexed dendritic targeting of different RNAs by the same pathway represents a new organizing principle for coordinating gene expression at the synapse.  相似文献   

13.
Dramatic changes in morphology and myelin protein expression take place during the differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes. Fyn tyrosine kinase was reported to play a central role in the differentiation process. Molecules that could induce Fyn signaling have not been studied. Such molecules are promising therapeutic targets in demyelinating diseases. We provide evidence that the common gamma chain of immunoglobulin Fc receptors (FcRgamma) is expressed in OPCs and has a role in triggering Fyn signaling. FcRgamma cross-linking by immunoglobulin G on OPCs promotes the activation of Fyn signaling and induces rapid morphological differentiation with upregulation of myelin basic protein (MBP) expression levels. Mice deficient in FcRgamma are hypomyelinated, and a significant reduction in MBP content is evident. Our findings indicate that the FcRgamma-Fyn-MBP cascade is pivotal during the differentiation of OPCs into myelinating oligodendrocytes, revealing an unexpected involvement of immunological molecules.  相似文献   

14.
Heterogeneous ribonucleoprotein (hnRNP) A2 is a trans-acting factor that mediates intracellular trafficking of specific RNAs containing the A2 response element. HnRNP A2 is localized in the nucleus and also in granules in the perikaryon and processes in oligodendrocytes. The distribution of the cytoplasmic pool of hnRNP A2 is microtubule-dependent. HnRNP A2 is composed of two sequential RNA binding domains (RBDI and RBDII), a glycine-rich domain, and a nuclear import domain (M9). In order to analyze the roles of individual domains in determining the intracellular distribution of hnRNP A2, chimeric mRNAs encoding various domains fused with green fluorescent protein (GFP) were injected into oligodendrocytes, and the subcellular distribution of the GFP hybrid proteins was analyzed by fluorescence microscopy. Chimeric GFP proteins containing the M9 domain were localized to the nucleus. In the absence of the M9 domain, proteins containing the RBDII domain were preferentially concentrated in the distal processes of the cells. Localization of RBDII-containing proteins in the periphery was dependent on the presence of intact microtubules. These data suggest that the RBDII domain of hnRNP A2 targets hnRNP A2 to the periphery of the cell in a microtubule-dependent manner.  相似文献   

15.
16.
Myelin basic proteins (MBP) are major constituents of the myelin sheath in the central nervous system (CNS) and the peripheral nervous system (PNS). In the CNS Mbp translation occurs locally at the axon-glial contact site in a neuronal activity-dependent manner. Recently we identified the small non-coding RNA 715 (sncRNA715) as a key inhibitor of Mbp translation during transport in oligodendrocytes. Mbp mRNA localization in Schwann cells has been observed, but has not been investigated in much detail. Here we could confirm translational repression of Mbp mRNA in Schwann cells. We show that sncRNA715 is expressed and its levels correlate inversely with MBP in cultured Schwann cells and in the sciatic nerve in vivo. Furthermore we could reduce MBP protein levels in cultured Schwann cells by increasing the levels of the inhibitory sncRNA715. Our findings suggest similarities in sncRNA715-mediated translational repression of Mbp mRNA in oligodendrocytes and Schwann cells.  相似文献   

17.
RNA trafficking signals in human immunodeficiency virus type 1   总被引:1,自引:0,他引:1       下载免费PDF全文
Intracellular trafficking of retroviral RNAs is a potential mechanism to target viral gene expression to specific regions of infected cells. Here we show that the human immunodeficiency virus type 1 (HIV-1) genome contains two sequences similar to the hnRNP A2 response element (A2RE), a cis-acting RNA trafficking sequence that binds to the trans-acting trafficking factor, hnRNP A2, and mediates a specific RNA trafficking pathway characterized extensively in oligodendrocytes. The two HIV-1 sequences, designated A2RE-1, within the major homology region of the gag gene, and A2RE-2, in a region of overlap between the vpr and tat genes, both bind to hnRNP A2 in vitro and are necessary and sufficient for RNA transport in oligodendrocytes in vivo. A single base change (A8G) in either sequence reduces hnRNP A2 binding and, in the case of A2RE-2, inhibits RNA transport. A2RE-mediated RNA transport is microtubule and hnRNP A2 dependent. Differentially labelled gag and vpr RNAs, containing A2RE-1 and A2RE-2, respectively, coassemble into the same RNA trafficking granules and are cotransported to the periphery of the cell. tat RNA, although it contains A2RE-2, is not transported as efficiently as vpr RNA. An A2RE/hnRNP A2-mediated trafficking pathway for HIV RNA is proposed, and the role of RNA trafficking in targeting HIV gene expression is discussed.  相似文献   

18.
Myelin-associated glycoprotein (MAG) is a major component of myelin in the vertebrate central nervous system. MAG is present in the periaxonal region of the myelin structure, where it interacts with neuronal proteins to inhibit axon outgrowth and protect neurons from degeneration. Two alternatively spliced isoforms of Mag mRNA have been identified. The mRNA encoding the shorter isoform, known as S-MAG, contains a termination codon in exon 12, while the mRNA encoding the longer isoform, known as L-MAG, skips exon 12 and produces a protein with a longer C-terminal region. L-MAG is required in the central nervous system. How inclusion of Mag exon 12 is regulated is not clear. In a previous study, we showed that heteronuclear ribonucleoprotein A1 (hnRNP A1) contributes to Mag exon 12 skipping. Here, we show that hnRNP A1 interacts with an element that overlaps the 5′ splice site of Mag exon 12. The element has a reduced ability to interact with the U1 snRNP compared with a mutant that improves the splice site consensus. An evolutionarily conserved secondary structure is present surrounding the element. The structure modulates interaction with both hnRNP A1 and U1. Analysis of splice isoforms produced from a series of reporter constructs demonstrates that the hnRNP A1-binding site and the secondary structure both contribute to exclusion of Mag exon 12.  相似文献   

19.
Trafficking of mRNA molecules from the nucleus to distal processes in neural cells is mediated by heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 trans‐acting factors. Although hnRNP A2/B1 is alternatively spliced to generate four isoforms, most functional studies have not distinguished between these isoforms. Here, we show, using isoform‐specific antibodies and isoform‐specific green fluorescent protein (GFP)‐fusion expression constructs, that A2b is the predominant cytoplasmic isoform in neural cells, suggesting that it may play a key role in mRNA trafficking. The differential subcellular distribution patterns of the individual isoforms are determined by the presence or absence of alternative exons that also affect their dynamic behavior in different cellular compartments, as measured by fluorescence correlation spectroscopy. Expression of A2b is also differentially regulated with age, species and cellular development. Furthermore, coinjection of isoform‐specific antibodies and labeled RNA into live oligodendrocytes shows that the assembly of RNA granules is impaired by blockade of A2b function. These findings suggest that neural cells modulate mRNA trafficking by regulating alternative splicing of hnRNP A2/B1 and controlling expression levels of A2b, which may be the predominant mediator of cytoplasmic‐trafficking functions. These findings highlight the importance of considering isoform‐specific functions for alternatively spliced proteins.  相似文献   

20.
In the central nervous system, myelination of axons occurs when oligodendrocyte progenitors undergo terminal differentiation and initiate process formation and axonal ensheathment. Although it is hypothesized that neuron-oligodendrocyte contact initiates this process, the molecular signals are not known. Here we find that Fyn tyrosine kinase activity is upregulated very early during oligodendrocyte progenitor cell differentiation. Concomitant with this increase is the appearance of several tyrosine phosphorylated proteins present only in differentiated cells. The increased tyrosine kinase activity is specific to Fyn, as other Src family members are not active in oligodendrocytes. To investigate the function of Fyn activation on differentiation, we used Src family tyrosine kinase inhibitors, PP1 and PP2, in cultures of differentiating oligodendrocyte progenitors. Treatment of progenitors with these compounds prevented activation of Fyn and reduced process extension and myelin membrane formation. This inhibition was reversible and not observed with related inactive analogues. A similar effect was observed when a dominant negative Fyn was introduced in progenitor cells. These findings strongly suggest that activation of Fyn is an essential signaling component for the morphological differentiation of oligodendrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号