首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
We have recently discovered that the insulin-like growth factor receptor I (IGF-IR) is up-regulated in human invasive bladder cancer and promotes migration and invasion of transformed urothelial cells. The proteoglycan decorin, a key component of the tumor stroma, can positively regulate the IGF-IR system in normal cells. However, there are no available data on the role of decorin in modulating IGF-IR activity in transformed cells or in tumor models. Here we show that the expression of decorin inversely correlated with IGF-IR expression in low and high grade bladder cancers (n = 20 each). Decorin bound with high affinity IGF-IR and IGF-I at distinct sites and negatively regulated IGF-IR activity in urothelial cancer cells. Nanomolar concentrations of decorin promoted down-regulation of IRS-1, one of the critical proteins of the IGF-IR pathway, and attenuated IGF-I-dependent activation of Akt and MAPK. This led to decorin-evoked inhibition of migration and invasion upon IGF-I stimulation. Notably, decorin did not cause down-regulation of the IGF-IR in bladder, breast, and squamous carcinoma cells. This indicates that decorin action on the IGF-IR differs from its known activity on other receptor tyrosine kinases such as the EGF receptor and Met. Our results provide a novel mechanism for decorin in negatively modulating both IGF-I and its receptor. Thus, decorin loss may contribute to increased IGF-IR activity in the progression of bladder cancer and perhaps other forms of cancer where IGF-IR plays a role.  相似文献   

4.
5.
6.
7.
《MABS-AUSTIN》2013,5(5):475-480
The insulin-like growth factors (IGFs) signaling system has been shown to play important roles in neoplasia. The IGF receptor type 1 (IGF-IR) is overexpressed in many types of solid and hematopoietic malignancies, and there is substantial experimental and clinical evidence that targeting IGF-IR is a promising therapeutic strategy against cancer. It has been previously reported that a mouse monoclonal antibody (mAb), 4G11, blocked IGF-I binding to IGF-IR and downregulated the IGF-IR in MCF-7 cells. We cloned this antibody, constructed a human-mouse chimeric antibody, designated m590, and characterized it. The chimeric IgG1 m590 bound to cell-associated IGF-IR on NWT c43 stably transfected cells and MCF-7 breast cancer cells as efficiently as the parental murine antibody. Using purified IGF-IR extracellular domains, we found that both the chimeric m590 and the parental 4G11 antibodies bind to conformational epitopes on IGF-IR. Neither of these antibodies bound to the insulin receptor (IR) ectodomain. Furthermore, IgG1 m590 blocked the binding of IGF-I and IGF-II to IGF-IR, and inhibited both IGF-I and IGF-II induced phosphorylation of IGF-IR in MCF-7 cells. These results suggest that m590 could be an useful antibody in diagnosis and treatment of cancer, as well as a research tool.  相似文献   

8.
Insulin-like growth factor (IGF) system plays important roles in carcinogenesis and maintenance of the malignant phenotype. Signaling through the IGF-I receptor (IGF-IR) has been shown to stimulate the growth and motility of a wide range of cancer cells. γ-Synuclein (SNCG) is primarily expressed in peripheral neurons but also overexpressed in various cancer cells. Overexpression of SNCG correlates with tumor progression. In the present study we demonstrated a reciprocal regulation of IGF-I signaling and SNCG expression. IGF-I induced SNCG expression in various cancer cells. IGF-IR knockdown or IGF-IR inhibitor repressed SNCG expression. Both phosphatidylinositol 3-kinase and mitogen-activated protein kinase were involved in IGF-I induction of SNCG expression. Interestingly, SNCG knockdown led to proteasomal degradation of IGF-IR, thereby decreasing the steady-state levels of IGF-IR. Silencing of SNCG resulted in a decrease in ligand-induced phosphorylation of IGF-IR and its downstream signaling components, including insulin receptor substrate (IRS), Akt, and ERK1/2. Strikingly, SNCG physically interacted with IGF-IR and IRS-2. Silencing of IRS-2 impaired the interaction between SNCG and IGF-IR. Finally, SNCG knockdown suppressed IGF-I-induced cell proliferation and migration. These data reveal that SNCG and IGF-IR are mutually regulated by each other. SNCG blockade may suppress IGF-I-induced cell proliferation and migration. Conversely, IGF-IR inhibitors may be of utility in suppressing the aberrant expression of SNCG in cancer cells and thereby block its pro-tumor effects.  相似文献   

9.
The insulin-like growth factors (IGFs) signaling system has been shown to play important roles in neoplasia. The IGF receptor type 1 (IGF-IR) is overexpressed in many types of solid and hematopoietic malignancies, and there is substantial experimental and clinical evidence that targeting IGF-IR is a promising therapeutic strategy against cancer. It has been previously reported that a mouse monoclonal antibody (mAb), 4G11, blocked IGF-I binding to IGF-IR and downregulated the IGF-IR in MCF-7 cells. We cloned this antibody, constructed a human-mouse chimeric antibody, designated m590, and characterized it. The chimeric IgG1 m590 bound to cell-associated IGF-IR on NWT c43 stably transfected cells and MCF-7 breast cancer cells as efficiently as the parental murine antibody. Using purified IGF-IR extracellular domains, we found that both the chimeric m590 and the parental 4G11 antibodies bind to conformational epitopes on IGF-IR. Neither of these antibodies bound to the insulin receptor (IR) ectodomain. Furthermore, IgG1 m590 blocked the binding of IGF-I and IGF-II to IGF-IR, and inhibited both IGF-I and IGF-II induced phosphorylation of IGF-IR in MCF-7 cells. These results suggest that m590 could be an useful antibody in diagnosis and treatment of cancer, as well as a research tool.  相似文献   

10.
There is increasing awareness that estrogens may affect cell functions through the integration with a network of signaling pathways. The IGF system is a phylogenetically highly conserved axis that includes the insulin receptor (IR) and the insulin-like growth factor I receptor (IGF-IR) pathways, which are of crucial importance in the regulation of metabolism and cell growth in relationship to nutrient availability. Numerous studies nowadays document that estrogens cooperate with IGF system at multiple levels both in physiology and in disease. Several studies have focused on this bidirectional cross-talk in central nervous system, in mammary gland development and in cancer. Notably, cancer cells show frequent deregulation of the IGF system with overexpression of IR and/or IGF-IR and their ligands as well as frequent upregulation of the classical estrogen receptor (ER)α and the novel ER named GPER. Recent studies have, therefore, unraveled further mechanisms of cross-talk involving membrane initiated estrogen actions and the IGF system in cancer, that converge in the stimulation of pro-tumoral effects. These studies offer hope for new strategies aimed at the treatment of estrogen related cancers in order to prevent an estrogen-independent and more aggressive tumor progression.  相似文献   

11.
Continuous stimulation of cells with insulin-like growth factors (IGFs) in G(1) phase is a well established requirement for IGF-induced cell proliferation; however, the molecular components of this prolonged signaling pathway that is essential for cell cycle progression from G(1) to S phase are unclear. IGF-I activates IGF-I receptor (IGF-IR) tyrosine kinase, followed by phosphorylation of substrates such as insulin receptor substrates (IRS) leading to binding of signaling molecules containing SH2 domains, including phosphatidylinositol 3-kinase (PI3K) to IRS and activation of the downstream signaling pathways. In this study, we found prolonged (>9 h) association of PI3K with IGF-IR induced by IGF-I stimulation. PI3K activity was present in this complex in thyrocytes and fibroblasts, although tyrosine phosphorylation of IRS was not yet evident after 9 h of IGF-I stimulation. IGF-I withdrawal in mid-G(1) phase impaired the association of PI3K with IGF-IR and suppressed DNA synthesis the same as when PI3K inhibitor was added. Furthermore, we demonstrated that Tyr(1316)-X-X-Met of IGF-IR functioned as a PI3K binding sequence when this tyrosine is phosphorylated. We then analyzed IGF signaling and proliferation of IGF-IR(-/-) fibroblasts expressing exogenous mutant IGF-IR in which Tyr(1316) was substituted with Phe (Y1316F). In these cells, IGF-I stimulation induced tyrosine phosphorylation of IGF-IR and IRS-1/2, but mutated IGF-IR failed to bind PI3K and to induce maximal phosphorylation of GSK3β and cell proliferation in response to IGF-I. Based on these results, we concluded that PI3K activity bound to IGF-IR, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation.  相似文献   

12.
13.
The insulin-like growth factor I (IGF-I) has been implicated in breast cancer development acting through insulin-like growth factor I receptor (IGF-IR), but also through estrogen receptor (ER). The effect of IGF on proteoglycan (PG) synthesis by two human breast cancer epithelial cell lines, the ER-positive MCF-7 and the ER-negative BT-20, was studied alone and in combination with genistein. Both cell lines synthesise hyaluronan (HA), matrix secreted and cell membrane-associated galactosaminoglycan containing proteoglycans (GalAGPGs) and heparan sulphate proteoglycans (HSPGs) in variable amounts. IGF-I affects the synthesis of PGs by BT-20 cells by decreasing the amounts of HA and secreted GalAGPGs and HSPGs and upregulates the expression of cell membrane-associated GalAGPGs and HSPGs. IGF-I exerts this effect on BT-20 cells acting mainly through receptors with protein tyrosine kinase activity (PTK). In contrast, IGF-I stimulates the synthesis of secreted GalAGPGs and HSPGs by MCF-7 cells, exhibiting only a slight suppression on synthesis of cell-associated GalAGPGs and HSPGs. The regulatory effect of IGF-I on PGs distribution in MCF-7 cells is mediated through a mix of pathways, which involves both receptors with PTK activity and PTK-independent signalling. It is suggested that the effects of IGF-I on the synthesis and distribution of PGs by epithelial breast cancer cells also depend on the presence or the absence of ER. The result of the IGF-I action is the balanced biosynthesis between the matrix and cell-associated PGs in both cell lines, approaching a common biosynthetic phenotype.  相似文献   

14.
The detection of IGF-IR signaling in animal models has important implications for determining the role of this receptor in normal physiology and tumor growth. While many reports have correlated changes in plasma IGF-I levels in vivo with biological responses, few have shown that altered IGF-I levels can directly affect signaling within normal or tumor tissue. Here, we present new data that shows how the intravenous (IV) injection of IGF-I can be used to directly examine IGF signaling at the tissue level. Tail-vein IV injection of IGF-I into mice resulted in a rapid and dose-dependent activation of the IGF-I receptor and downstream phosphorylation of Akt and ERK1/2 in liver, kidney, and mammary gland. Similarly, IV IGF-I rapidly stimulated signaling in HT-29 colorectal and in MCF-7 breast cancer xenografts. This study shows how IV IGF injection can be used to examine the signaling mechanisms used by IGF-IR, in both normal mammary tissue and during tumor growth, and may provide a model for the characterization of IGF inhibitors.  相似文献   

15.
16.
Ubiquitination has been implicated in negatively regulating insulin-like growth factor I receptor (IGF-IR) activity. Because of the relative stability of IGF-IR in the presence of ligand stimulation, IGF-IR ubiquitination sites have yet to be mapped and characterized, thus preventing a direct demonstration of how the receptor ubiquitination contributes to downstream molecular cascades. We took advantage of an anti-IGF-IR antibody (h10H5) that induces more efficient receptor down-regulation to show that IGF-IR is promptly and robustly ubiquitinated. The ubiquitination sites were mapped to the two lysine residues in the IGF-IR activation loop (Lys-1138 and Lys-1141) and consisted of polyubiquitin chains formed through both Lys-48 and Lys-29 linkages. Mutation of these ubiquitinated lysine residues resulted in decreased h10H5-induced IGF-IR internalization and down-regulation as well as a reduced cellular response to h10H5 treatment. We have therefore demonstrated that IGF-IR ubiquitination contributes critically to the down-regulating and antiproliferative activity of h10H5. This finding is physiologically relevant because insulin-like growth factor I appears to mediate ubiquitination of the same major sites as h10H5 (albeit to a lesser extent), and ubiquitination is facilitated by pre-existing phosphorylation of the receptor in both cases. Furthermore, identification of a breast cancer cell line with a defect in IGF-IR ubiquitination suggests that this could be an important tumor resistance mechanism to evade down-regulation-mediated negative regulation of IGF-IR activity in cancer.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号