首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
The pKa's of the 6-CH groups of 1,3-dimethyluracil, N-methyl-2-pyridone, and N-methyl-4-pyridone were determined through their reactions with bases derived from carbon acids with known pKa and the reactions of their corresponding carbanions with the carbon acids. No correlation between the stability of the carbanions and the rate of decarboxylation of corresponding carboxylic acids was found.  相似文献   

2.
Barley thioredoxin h isozymes 1 (HvTrxh1) and barley thioredoxin h isozymes 2 (HvTrxh2) show distinct spatiotemporal distribution in germinating seeds. Using a novel approach involving measurement of bidirectional electron transfer rates between Escherichia coli thioredoxin, which exhibits redox-dependent fluorescence, and the barley isozymes, reaction kinetics and thermodynamic properties were readily determined. The reaction constants were ∼60% higher for HvTrxh1 than HvTrxh2, while their redox potentials were very similar. The primary nucleophile, CysN, of the active site Trp-CysN-Gly-Pro-CysC motif has an apparent pKa of 7.6 in both isozymes, as found by iodoacetamide titration, but showed ∼70% higher reactivity in HvTrxh1, suggesting significant functional difference between the isozymes.  相似文献   

3.
Sulfate reducers have developed a multifaceted adaptative strategy to survive against oxidative stresses. Along with this oxidative stress response, we recently characterized an elegant reversible disulfide bond-dependent protective mechanism in the pyruvate:ferredoxin oxidoreductase (PFOR) of various Desulfovibrio species. Here, we searched for thiol redox systems involved in this mechanism. Using thiol fluorescent labeling, we show that glutathione is not the major thiol/disulfide balance-controlling compound in four different Desulfovibrio species and that no other plentiful low molecular weight thiol can be detected. Enzymatic analyses of two thioredoxins (Trxs) and three thioredoxin reductases allow us to propose the existence of two independent Trx systems in Desulfovibrio vulgaris Hildenborough (DvH). The TR1/Trx1 system corresponds to the typical bacterial Trx system. We measured a TR1 apparent K(m) value for Trx1 of 8.9 μM. Moreover, our results showed that activity of TR1 was NADPH-dependent. The second system named TR3/Trx3 corresponds to an unconventional Trx system as TR3 used preferentially NADH (K(m) for NADPH, 743 μM; K(m) for NADH, 5.6 μM), and Trx3 was unable to reduce insulin. The K(m) value of TR3 for Trx3 was 1.12 μM. In vitro experiments demonstrated that the TR1/Trx1 system was the only one able to reactivate the oxygen-protected form of Desulfovibrio africanus PFOR. Moreover, ex vivo pulldown assays using the mutant Trx1(C33S) as bait allowed us to capture PFOR from the DvH extract. Altogether, these data demonstrate that PFOR is a new target for Trx1, which is probably involved in the protective switch mechanism of the enzyme.  相似文献   

4.
The side chains of Lys66, Asp66, and Glu66 in staphylococcal nuclease are fully buried and surrounded mainly by hydrophobic matter, except for internal water molecules associated with carboxylic oxygen atoms. These ionizable side chains titrate with pKa values of 5.7, 8.8, and 8.9, respectively. To reproduce these pKa values with continuum electrostatics calculations, we treated the protein with high dielectric constants. We have examined the structural origins of these high apparent dielectric constants by using NMR spectroscopy to characterize the structural response to the ionization of these internal side chains. Substitution of Val66 with Lys66 and Asp66 led to increased conformational fluctuations of the microenvironments surrounding these groups, even under pH conditions where Lys66 and Asp66 are neutral. When Lys66, Asp66, and Glu66 are charged, the proteins remain almost fully folded, but resonances for a few backbone amides adjacent to the internal ionizable residues are broadened. This suggests that the ionization of the internal groups promotes a local increase in dynamics on the intermediate timescale, consistent with either partial unfolding or increased backbone fluctuations of helix 1 near residue 66, or, less likely, with increased fluctuations of the charged side chains at position 66. These experiments confirm that the high apparent dielectric constants reported by internal Lys66, Asp66, and Glu66 reflect localized changes in conformational fluctuations without incurring detectable global structural reorganization. To improve structure-based pKa calculations in proteins, we will need to learn how to treat this coupling between ionization of internal groups and local changes in conformational fluctuations explicitly.  相似文献   

5.
Many proteins and bioactive peptides contain an N-terminal pyroglutamate residue (Pyr1). This residue reduces the susceptibility of the protein to aminopeptidases and often has important functional roles. The antitumor ribonuclease RC-RNase 3 (RNase 3) from oocytes of Rana catesbeiana (bullfrog) is one such protein. We have produced recombinant RNase 3 containing the N-terminal Pyr1 (pRNase 3) and found it to be indistinguishable from the native RNase 3 by mass spectrometry and a variety of other biochemical and immunological criteria. We demonstrated by NMR analysis that the Pyr1 of pRNase 3 forms hydrogen bonds with Lys9 and Ile96 and stabilizes the N-terminal alpha-helix in a rigid conformation. In contrast, the N-terminal alpha-helix becomes flexible and the pKa values of the catalytic residues His10 and His97 altered when Pyr1 formation is blocked by an extra methionine at the N terminus in the recombinant mqRNase 3. Thus, our results provide a mechanistic explanation on the essential role of Pyr1 in maintaining the structural integrity, especially at the N-terminal alpha-helix, and in providing the proper environment for the ionization of His10 and His97 residues for catalysis and cytotoxicity against HeLa cells.  相似文献   

6.
Brazzein is a small, intensely sweet protein. As a probe of the functional properties of its solvent-exposed loop, two residues (Arg-Ile) were inserted between Leu18 and Ala19 of brazzein. Psychophysical testing demonstrated that this mutant is totally tasteless. NMR chemical shift mapping of differences between this mutant and brazzein indicated that residues affected by the insertion are localized to the mutated loop, the region of the single alpha-helix, and around the Cys16-Cys37 disulfide bond. Residues unaffected by this mutation included those near the C-terminus and in the loop connecting the alpha-helix and the second beta-strand. In particular, several residues of brazzein previously shown to be essential for its sweetness (His31, Arg33, Glu41, Arg43, Asp50, and Tyr54) exhibited negligible chemical shift changes. Moreover, the pH dependence of the chemical shifts of His31, Glu41, Asp50, and Tyr54 were unaltered by the insertion. The insertion led to large chemical shift and pKa perturbation of Glu36, a residue shown previously to be important for brazzein's sweetness. These results serve to refine the known sweetness determinants of brazzein and lend further support to the idea that the protein interacts with a sweet-taste receptor through a multi-site interaction mechanism, as has been postulated for brazzein and other sweet proteins (monellin and thaumatin).  相似文献   

7.
The specific substrates, mechanisms, and structures of the bacterial O-methyltransferases (OMTs) are not as well characterized as those of other OMTs. Recent studies have suggested that bacterial OMTs catalyze regiospecific reactions that might be used to produce novel compounds. In this study, we investigated the structural and functional features of an OMT from Bacillus cereus (BcOMT2). This enzyme catalyzes the O-methylation of flavonoids in vitro in an S-adenosylmethionine-dependent and regiospecific manner. We solved the crystal structures of the BcOMT2 apoenzyme and the BcOMT2-S-adenosylhomocysteine (SAH) co-complex at resolutions of 1.8 and 1.2 Å, respectively. These structures reveal that the overall structure of dimeric BcOMT2 is similar to that of the canonical OMT but that BcOMT2 also has a unique N-terminal helical region that is responsible for dimerization. The binding of SAH causes both local and remote conformational changes in the dimer interface that stabilize the dimerization of BcOMT2. SAH binding also causes ordering of residues Glu171 to Gly186, which are disordered in the apoenzyme structure and are known determinants of substrate specificity, and thus contributes to formation of the substrate binding pocket. Our structural analysis indicated a resemblance between the active site of BcOMT2 and that of metal-dependent OMTs. Using mutational analysis, we confirmed that BcOMT2 is a Mg2+-dependent OMT. These results provide structural and functional insights into the dimerization mechanism and substrate specificity of BcOMT2.  相似文献   

8.
Aspergillus fumigatus is a filamentous fungus that can cause severe respiratory disease in immunocompromised individuals. A putative sialidase from A. fumigatus was recently cloned and shown to be relatively poor in cleaving N-acetylneuraminic acid (Neu5Ac) in comparison with bacterial sialidases. Here we present the first crystal structure of a fungal sialidase. When the apo structure was compared with bacterial sialidase structures, the active site of the Aspergillus enzyme suggested that Neu5Ac would be a poor substrate because of a smaller pocket that normally accommodates the acetamido group of Neu5Ac in sialidases. A sialic acid with a hydroxyl in place of an acetamido group is 2-keto-3-deoxynononic acid (KDN). We show that KDN is the preferred substrate for the A. fumigatus sialidase and that A. fumigatus can utilize KDN as a sole carbon source. A 1.45-Å resolution crystal structure of the enzyme in complex with KDN reveals KDN in the active site in a boat conformation and nearby a second binding site occupied by KDN in a chair conformation, suggesting that polyKDN may be a natural substrate. The enzyme is not inhibited by the sialidase transition state analog 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (Neu5Ac2en) but is inhibited by the related 2,3-didehydro-2,3-dideoxy-d-glycero-d-galacto-nonulosonic acid that we show bound to the enzyme in a 1.84-Å resolution crystal structure. Using a fluorinated KDN substrate, we present a 1.5-Å resolution structure of a covalently bound catalytic intermediate. The A. fumigatus sialidase is therefore a KDNase with a similar catalytic mechanism to Neu5Ac exosialidases, and this study represents the first structure of a KDNase.  相似文献   

9.
The structures of rice BGlu1 β-glucosidase, a plant β-glucosidase active in hydrolyzing cell wall-derived oligosaccharides, and its covalent intermediate with 2-deoxy-2-fluoroglucoside have been solved at 2.2 Å and 1.55 Å resolution, respectively. The structures were similar to the known structures of other glycosyl hydrolase family 1 (GH1) β-glucosidases, but showed several differences in the loops around the active site, which lead to an open active site with a narrow slot at the bottom, compatible with the hydrolysis of long β-1,4-linked oligosaccharides. Though this active site structure is somewhat similar to that of the Paenibacillus polymyxa β-glucosidase B, which hydrolyzes similar oligosaccharides, molecular docking studies indicate that the residues interacting with the substrate beyond the conserved -1 site are completely different, reflecting the independent evolution of plant and microbial GH1 exo-β-glucanase/β-glucosidases. The complex with the 2-fluoroglucoside included a glycerol molecule, which appears to be in a position to make a nucleophilic attack on the anomeric carbon in a transglycosylation reaction. The coordination of the hydroxyl groups suggests that sugars are positioned as acceptors for transglycosylation by their interactions with E176, the catalytic acid/base, and Y131, which is conserved in barley BGQ60/β-II β-glucosidase, that has oligosaccharide hydrolysis and transglycosylation activity similar to rice BGlu1. As the rice and barley enzymes have different preferences for cellobiose and cellotriose, residues that appeared to interact with docked oligosaccharides were mutated to those of the barley enzyme to see if the relative activities of rice BGlu1 toward these substrates could be changed to those of BGQ60. Although no single residue appeared to be responsible for these differences, I179, N190 and N245 did appear to interact with the substrates.  相似文献   

10.
Structure-based calculations of pKa values and electrostatic free energies of proteins assume that electrostatic effects in the unfolded state are negligible. In light of experimental evidence showing that this assumption is invalid for many proteins, and with increasing awareness that the unfolded state is more structured and compact than previously thought, a detailed examination of electrostatic effects in unfolded proteins is warranted. Here we address this issue with structure-based calculations of electrostatic interactions in unfolded staphylococcal nuclease. The approach involves the generation of ensembles of structures representing the unfolded state, and calculation of Coulomb energies to Boltzmann weight the unfolded state ensembles. Four different structural models of the unfolded state were tested. Experimental proton binding data measured with a variant of nuclease that is unfolded under native conditions were used to establish the validity of the calculations. These calculations suggest that weak Coulomb interactions are an unavoidable property of unfolded proteins. At neutral pH, the interactions are too weak to organize the unfolded state; however, at extreme pH values, where the protein has a significant net charge, the combined action of a large number of weak repulsive interactions can lead to the expansion of the unfolded state. The calculated pKa values of ionizable groups in the unfolded state are similar but not identical to the values in small peptides in water. These studies suggest that the accuracy of structure-based calculations of electrostatic contributions to stability cannot be improved unless electrostatic effects in the unfolded state are calculated explicitly.  相似文献   

11.
12.
Post-translational modification of protein serines/threonines with N-acetylglucosamine (O-GlcNAc) is dynamic, inducible and abundant, regulating many cellular processes by interfering with protein phosphorylation. O-GlcNAcylation is regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase, both encoded by single, essential, genes in metazoan genomes. It is not understood how OGT recognises its sugar nucleotide donor and performs O-GlcNAc transfer onto proteins/peptides, and how the enzyme recognises specific cellular protein substrates. Here, we show, by X-ray crystallography and mutagenesis, that OGT adopts the (metal-independent) GT-B fold and binds a UDP-GlcNAc analogue at the bottom of a highly conserved putative peptide-binding groove, covered by a mobile loop. Strikingly, the tetratricopeptide repeats (TPRs) tightly interact with the active site to form a continuous 120 Å putative interaction surface, whereas the previously predicted phosphatidylinositide-binding site locates to the opposite end of the catalytic domain. On the basis of the structure, we identify truncation/point mutants of the TPRs that have differential effects on activity towards proteins/peptides, giving first insights into how OGT may recognise its substrates.  相似文献   

13.
Quinone oxidoreductase (QOR EC1.6.5.5) catalyzes the reduction of quinone to hydroxyquinone using NADPH as a cofactor. Here we present the crystal structure of the ζ-crystallin-like QOR Zta1 from Saccharomycescerevisiae in apo-form at 2.00 Å and complexed with NADPH at 1.59 Å resolution. Zta1 forms a homodimer, with each subunit containing a catalytic and a cofactor-binding domain. Upon NADPH binding to the interdomain cleft, the two domains shift towards each other, producing a better fit for NADPH, and tightening substrate binding. Computational simulation combined with site-directed mutagenesis and enzymatic activity analysis defined a potential quinone-binding site that determines the stringent substrate specificity. Moreover, multiple-sequence alignment and kinetics assays implied that a single-residue change from Arg in lower organisms to Gly in vertebrates possibly resulted in elevation of enzymatic activity of ζ-crystallin-like QORs throughout evolution.  相似文献   

14.
Anopheles gambiae mosquitoes that transmit Plasmodium falciparum malaria use a series of olfactory cues present in human sweat to locate their hosts for a blood meal. Recognition of these odor cues occurs through the interplay of odorant receptors and odorant-binding proteins (OBPs) that bind to odorant molecules and transport and present them to the receptors. Recent studies have implicated potential heterodimeric interactions between two OBPs, OBP1 and OBP4, as important for perception of indole by the mosquito (Biessmann, H., Andronopoulou, E., Biessmann, M. R., Douris, V., Dimitratos, S. D., Eliopoulos, E., Guerin, P. M., Iatrou, K., Justice, R. W., Kröber, T., Marinotti, O., Tsitoura, P., Woods, D. F., and Walter, M. F. (2010) PLoS ONE 5, e9471; Qiao, H., He, X., Schymura, D., Ban, L., Field, L., Dani, F. R., Michelucci, E., Caputo, B., della Torre, A., Iatrou, K., Zhou, J. J., Krieger, J., and Pelosi, P. (2011) Cell. Mol. Life Sci. 68, 1799–1813). Here we present the 2.0 Å crystal structure of the OBP4-indole complex, which adopts a classical odorant-binding protein fold, with indole bound at one end of a central hydrophobic cavity. Solution-based NMR studies reveal that OBP4 exists in a molten globule state and binding of indole induces a dramatic conformational shift to a well ordered structure, and this leads to the formation of the binding site for OBP1. Analysis of the OBP4-OBP1 interaction reveals a network of contacts between residues in the OBP1 binding site and the core of the protein and suggests how the interaction of the two proteins can alter the binding affinity for ligands. These studies provide evidence that conformational ordering plays a key role in regulating heteromeric interactions between OBPs.  相似文献   

15.
Electrostatics and solvation energies are important for defining protein stability, structural specificity, and molecular recognition. Because these energies are difficult to compute quickly and accurately, they are often ignored or modeled very crudely in computational protein design. To address this problem, we have developed a simple, fast, and accurate approximation for calculating Born radii in the context of protein design calculations. When these approximate Born radii are used with the generalized Born continuum dielectric model, energies calculated by the 10(6)-fold slower finite difference Poisson-Boltzmann model are faithfully reproduced. A similar approach can be used for estimating solvent-accessible surface areas (SASAs). As an independent test, we show that these approximations can be used to accurately predict the experimentally determined pK(a)s of >200 ionizable groups from 15 proteins.  相似文献   

16.
Deprotonation of D-mannitol was studied in aqueous basic solutions by means of potentiometry and (13)C NMR spectroscopy. Two-step dissociation in the pH range from 12 to 13.8 was shown, and successive dissociation constants K(a1) and K(a2) were determined. In a solution with ionic strength I = 1.0 M (NaOH + NaNO(3)) pK(a1) = 13.1 +/- 0.1 and pK(a2) = 13.8 +/- 0.2. With increasing ionic strength from 0.75 to 3.0 M, both pK(a1) and pK(a2) values decrease. Deprotonation-induced chemical shifts in pH-variable (13)C NMR spectra show that the OH-groups next to internal carbon atoms C-3 and C-4 dissociate to a greater extent compared to OH-groups next to external carbon atoms C-1 and C-6.  相似文献   

17.
In the microRNA (miRNA) pathway, Dicer processes precursors to mature miRNAs. For efficient processing, double-stranded RNA-binding proteins support Dicer proteins. In flies, Loquacious (Loqs) interacts with Dicer1 (dmDcr1) to facilitate miRNA processing. Here, we have solved the structure of the third double-stranded RNA-binding domain (dsRBD) of Loqs and define specific structural elements that interact with dmDcr1. In addition, we show that the linker preceding dsRBD3 contributes significantly to dmDcr1 binding. Furthermore, our structural work demonstrates that the third dsRBD of Loqs forms homodimers. Mutations in the dimerization interface abrogate dmDcr1 interaction. Loqs, however, binds to dmDcr1 as a monomer using the identified dimerization surface, which suggests that Loqs might form dimers under conditions where dmDcr1 is absent or not accessible. Since critical sequence elements are conserved, we suggest that dimerization might be a general feature of dsRBD proteins in gene silencing.  相似文献   

18.
We describe in molecular detail how disruption of an intermonomer salt bridge (Arg337-Asp352) leads to partial destabilization of the p53 tetramerization domain and a dramatically increased propensity to form amyloid fibrils. At pH 4.0 and 37 degrees C, a p53 tetramerization domain mutant (p53tet-R337H), associated with adrenocortical carcinoma in children, readily formed amyloid fibrils, while the wild-type (p53tet-wt) did not. We characterized these proteins by equilibrium denaturation, 13C(alpha) secondary chemical shifts, (1H)-15N heteronuclear NOEs, and H/D exchange. Although p53tet-R337H was thermodynamically less stable, NMR data indicated that the two proteins had similar secondary structure and molecular dynamics. NMR derived pK(a) values indicated that at low pH the R337H mutation partially disrupted an intermonomer salt bridge. Backbone H/D exchange results showed that for at least a small population of p53tet-R337H molecules disruption of this salt bridge resulted in partial destabilization of the protein. It is proposed that this decrease in p53tet-R337H stability resulted in an increased propensity to form amyloid fibrils.  相似文献   

19.
Menyhárd DK  Keserü GM 《FEBS letters》2005,579(24):5392-5398
pK(a) values of ionizable residues were calculated for the crystal structures describing the pH and NO binding dependant conformations of nitrophorin 4, a pH sensitive NO carrier heme protein. Comparison of resultant H-bonding patterns allowed the identification of the amino acids that take part in signaling pH change. We carried out MD simulations to show that the protonation state of Asp30, buried in the closed conformation, is crucial for maintaining the tight packed conformation of the closed form of the complex - presenting a model for the functional decrease of NO binding affinity of nitrophorins at physiological pH.  相似文献   

20.
Streptococcus pneumoniae expresses on its surface adhesive pili, involved in bacterial attachment to epithelial cells and virulence. The pneumococcal pilus is composed of three proteins, RrgA, RrgB, and RrgC, each stabilized by intramolecular isopeptide bonds and covalently polymerized by means of intermolecular isopeptide bonds to form an extended fiber. RrgB is the pilus scaffold subunit and is protective in vivo in mouse models of sepsis and pneumonia, thus representing a potential vaccine candidate. The crystal structure of a major RrgB C-terminal portion featured an organization into three independently folded protein domains (D2-D4), whereas the N-terminal D1 domain (D1) remained unsolved. We have tested the four single recombinant RrgB domains in active and passive immunization studies and show that D1 is the most effective, providing a level of protection comparable with that of the full-length protein. To elucidate the structural features of D1, we solved the solution structure of the recombinant domain by NMR spectroscopy. The spectra analysis revealed that D1 has many flexible regions, does not contain any intramolecular isopeptide bond, and shares with the other domains an Ig-like fold. In addition, we demonstrated, by site-directed mutagenesis and complementation in S. pneumoniae, that the D1 domain contains the Lys residue (Lys-183) involved in the formation of the intermolecular isopeptide bonds and pilus polymerization. Finally, we present a model of the RrgB protein architecture along with the mapping of two surface-exposed linear epitopes recognized by protective antisera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号