首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several cationic porphyrins are known to bind to DNA by intercalative and outside binding modes. This study identifies the cis and trans isomers of bis(N-methyl-4-phridiniumyl)diphenyl porphyrin as DNA intercalators based on evidence from a DNA topoisomerase I assay. Moreover, both isomers are shown to be potent photosensitizers of DNA, inducing multiple S1 nuclease sensitive breaks in the phosphodiester backbone. Porphyrin-induced photodamage in DNA was also shown to be quantitatively dependent upon ionic strength and to inhibit the action of restriction endonucleases. The results indicate that these porphyrins can be useful probes of DNA structure and have potential as DNA-targeted photosensitizers.  相似文献   

2.
In this work we investigated the outside binding mode between a cationic porphyrin and a nucleotide pair of DNA, adenine-thymine and guanine-cytosine, in a supramolecular assembly. We used two structural models (semi-extended, extended) that differ in the size of porphyrin, two kinds of theoretical methods: a three layer ONIOM (B3LYP/6-31G(d)/PM3/UFF), and DFT B3LYP/6-31G(d,p), and three cationic porphyrins. ONIOM method was first tested on the semi-extended model that was calculated in four environments: gas phase, solution phase using an explicit solvent model (H2O), in the presence of a sodium cation (Na+) and in both (H2O + Na+). From interaction energy results, we found that the affinity of the cationic substituent by the adenine nucleotide is favored upon the thymine nucleotide. The extended model that considers the whole porphyrin was applied in the gas phase to the four nucleotides. All the cationic porphyrins showed affinity by the nucleotides in the order adenine > guanine > thymine > cytosine. The interaction energy values for outside binding showed a strong porphyrin-nucleotide interaction (≈-90 kcal?mol-1), that slightly varies between the nucleotides suggesting that this kind of cationic porphyrin has a little selectivity for some of them. We also found that the effect of the nature of the cationic substituent (chain length) in the porphyrin on the outside binding is small (≈2–13 kcal?mol-1). Coherence between the results showed that ONIOM is a useful tool to get a reasonable molecular geometry to be used as a starting point in calculations of density functional theory.
Figure
A three-layer ONIOM model for the outside binding of cationic porphyrins and nucleotide pair DNA  相似文献   

3.
The beta-substituted cationic porphyrins (7, 8 and 10) have been synthesized and their interactions with plasmid DNA investigated. We found that substituents at the beta-position of porphyrins (7 and 8) have apparently affected their interactions with DNA compared with non-beta-substituted porphyrins (10).  相似文献   

4.
X W Hui  N Gresh    B Pullman 《Nucleic acids research》1990,18(5):1109-1114
A theoretical investigation is performed of the complexes of a tetracationic porphyrin, tetra-(4-N-methylpyridyl)-porphyrin, (T4MPyP), with the hexanucleotides d(CGCGCG)2 and d(TATATA)2, considering the possibility of both the intercalative and the groove binding interactions. These computations demonstrate that T4MPyP manifests a significant preference for intercalation in its complex with d(CGCGCG)2 but for non intercalative binding in the minor groove in its complex with d(TATATA)2. Such a dual binding behaviour of T4MPyP as a function of the sequence to which it is attached is fully consistent with available experimental data. It demonstrates that intercalation and groove binding may be viewed as two potential wells on a continuous energy surface. In agreement with experiment, the computations indicate that in the here considered case the deepest well is associated with intercalation.  相似文献   

5.
Many aromatic ligands, including tetra-(N-methyl-4-pyridyl)porphyrin (TMPyP4), have been reported to bind and stabilize quadruplex structure of telomeric DNA. We synthesized novel quadruplex-interacting porphyrins with cationic pyridinium and trimethylammonium arms at para- or meta-position of all phenyl groups of tetratolyl porphyrin. An antiparallel quadruplex structure was found to be stabilized more greatly by the meta-isomers than by the para-isomers and well-studied TMPyP4, as revealed by the increase in melting temperature of the quadruplex. One mole equivalent of the isomers was sufficient to stabilize the quadruplex. From the results of absorption, induced circular dichroism, and fluorescence resonance energy transfer spectroscopic methods, the unique site for the porphyrin binding is suggested to be the external guanine tetrad or groove of the quadruplex. The cationic side arms played a key role in the stabilization of the quadruplex structure.  相似文献   

6.
Cationic porphyrin-based compounds capable of interacting with DNA are currently under extensive investigation as prospective anticancer and anti-infective drugs. One of the approaches to enhancing the DNA-binding affinity of these ligands is chemical modification of functional groups of the porphyrin macrocycle. We analyzed the interaction with DNA of novel derivatives containing carboxymethyl and ethoxycarbonylmethyl substituents at quaternary nitrogen atoms of pyridinium groups at the periphery of the porphyrin macrocycle. The parameters of binding of 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium)porphyrin (P1) and 5,10,15,20-tetrakis(N-ethoxycarbonylmethyl-4-pyridinium)porphyrin (P2) to double-stranded DNA sequences of different nucleotide content were determined using optical spectroscopy. The association constant of P1 interaction with calf thymus DNA (K?=?3.4?×?10(6)?M(-1)) was greater than that of P2 (K?=?2.8?×?10(5)?M(-1)). Preferential binding of P1 to GC- rather than AT-rich oligonucleotides was detected. In contrast, P2 showed no preference for particular nucleotide content. Modes of binding of P1 and P2 to GC and AT duplexes were verified using the induced circular dichroism spectra. Molecular modeling confirmed an intercalative mode of interaction of P1 and P2 with CpG islands. The carboxyl groups of the peripheral substituent in P1 determine the specific interactions with GC-rich DNA regions, whereas ethoxycarbonylmethyl substituents disfavor binding to DNA. This study contributes to the understanding of the impact of peripheral substituents on the DNA-binding affinity of cationic porphyrins, which is important for the design of DNA-targeting drugs.  相似文献   

7.
Abstract

The present paper is an overview of studying of DNA-porphyrin interactions using viscometry in combination with the spectroscopic methods. It was shown, that when porphyrins interact with DNA as an outside binder, the interaction mode and intensity does not depend on metal center, peripheral substituent’s and their positions on pyridylic ring. In case of planar porphyrins, the binding type is mainly determined by type of peripheral substituent’s and their position on the pyridylic ring. Currently, viscometry is widely used to study the interaction of porphyrins with DNA as an adjunct to other methods. Due to high accuracy and maximum sensitivity to changes in the size and shape of macromolecules, it is recommended to use viscometry as the cogent method for studying the interaction of small molecules with DNA, especially if intercalation is expected using other methods if necessary to confirm the results obtained. Abbreviations DNA deoxyribonucleic acid

H2TAllPyP4 meso-tetra-(4N-allylpyridyl) porphyrin

H2TAllPyP3 meso-tetra-(3N-allylpyridyl) porphyrin

H2THOEtPyP4 meso-tetra-(4N-hydroxyethylpyridyl) porphyrin

H2THOEtPyP3 meso-tetra-(3N-hydroxyethylpyridyl) porphyrin

UV/VIS spectrophotometry ultraviolet-visible spectrophotometry

CD spectroscopy circular dichroism spectroscopy

Communicated by Ramaswamy H. Sarma  相似文献   

8.
9.
Interactions of meso-tetra(4-N-methylpyridyl)porphyrin [TMpyP(4)], meso-tetra(2-N-methylpyridyl)porphyrin [TMpyP(2)], and meso-tetra(para-N-trimethylanilinium)porphyrin (TMAP) with several native and synthetic DNAs were studied by a variety of physical techniques: nmr (31P and 1H), absorption spectroscopy, viscosity, and flow dichroism (FD). Of the three porphyrins studied, only the interaction of TMpyP(4) with poly [d(G-C)2] was fully consistent with intercalation. In particular, a large increase in viscosity, a downfield 31P-nmr signal (ca. -1 ppm), and upfield imino proton signals (11 to 12 ppm range) were observed. Comparison of the effects of TMpyP(4) on DNAs of different GC contents revealed larger changes in solution viscosity with increased GC content. However, the characteristic changes in 31P- and 1H-nmr spectra were not observed. The viscosity increases observed in studies with poly[d(A-C)(G-T)] and C. Perf. DNA were much lower than with poly[d(G-C)2], M. Lys. DNA, and calf thymus DNA. Thus, GC sequence and content are clearly important. The principal change in the 31P-nmr signal of native DNA is the appearance of a very broad shoulder centered at ca. -2.0 ppm, which is larger in M. Lys. DNA than in C. Perf. DNA. FD studies indicate highly ordered TMpyP(4) cations arranged perpendicular to the DNA axis of calf thymus DNA. Together, these results suggest the major effects of TMpyP(4) on DNA properties are due to strong GC-binding interactions that influence DNA structure. The data are consistent with combined intercalative and outside binding interactions of TMpyP(4) with GC regions of DNA. In contrast, similar studies with TMAP suggest that it influences AT regions of DNA by an outside binding mode. On the other hand, TMpyP(2) effects on DNA properties are consistent with nonselective outside binding.  相似文献   

10.
Fourier transform infrared spectroscopy was used to characterize the interaction of the cationic lipids 1,2-dioleoyl-3-trimethylammonium-propane and dioctadecyldimethylammonium bromide with plasmid DNA. The effect of incorporating the neutral colipids cholesterol and dioleoylphosphatidylethanolamine on this interaction was also examined. Additionally, dynamic and phase analysis light scattering were used to monitor the size and zeta potential of the resulting complexes under conditions similar to the Fourier transform infrared measurements. Results suggest that upon interaction of cationic lipids with DNA, the DNA remains in the B form. Distinct changes in the frequency of several infrared bands arising from the DNA bases, however, suggest perturbation of their hydration upon interaction with cationic lipids. A direct interaction of the lipid ammonium headgroup with and dehydration of the DNA phosphate is observed when DNA is complexed with these lipids. Changes in the apolar regions of the lipid bilayer are minimal, whereas the interfacial regions of the membrane show changes in hydration or molecular packing. Incorporation of helper lipids into the cationic membranes results in increased conformational disorder of the apolar region and further dehydration of the interfacial region. Changes in the hydration of the DNA bases were also observed as the molar ratio of helper lipid in the membranes was increased.  相似文献   

11.
Comparative kinetics of porphyrin uptake and release by HeLa cells, incubated with equivalent concentrations of either hematoporphyrin (Hp) in aqueous solution or Hp and its dimethylester (HpDME) bound to unilamellar liposomes, show that liposomal porphyrins are bound at a higher rate and in considerably larger amounts. Moreover, the release of cell-bound porphyrins into the medium is remarkably reduced and slowered after cell loading with liposome-bound porphyrins. The presence of 1% bovine or human serum albumin (but not serum globulins) in the medium has no effect on uptake and release of liposome-bound porphyrins by HeLa cells, whereas it remarkably decreases the uptake of aqueous Hp. Parallel studies of cell photodamages under known concentrations of cell-bound porphyrin unequivocally demonstrate that the photodynamic effect is strictly related to the porphyrin load. As a consequence a dramatic increase of cell-photosensitizing efficiency is obtained by binding Hp (and even more HpDME) with liposomes. Electron microscopy investigations on cell damages caused by loading with liposome-bound porphyrins and subsequent illumination show that the plasmatic membrane is one important cell site of porphyrin interaction and photodynamic effect.  相似文献   

12.
Intensive reports allowed the conclusion that molecules with extended aromatic surfaces always do good jobs in the DNA interactions. Inspired by the previous successful researches, herein, we designed a series of cationic porphyrins with expanded planar substituents, and evaluated their binding behaviors to G-quadruplex DNA using the combination of surface-enhanced raman, circular dichroism, absorption spectroscopy and fluorescence resonance energy transfer melting assays. Asymmetrical tetracationic porphyrin with one phenyl-4-N-methyl-4-pyridyl group and three N-methyl-4-pyridyl groups exhibit the best G4-DNA binding affinities among all the designed compounds, suggesting that the bulk of the substituents should be matched to the width of the grooves they putatively lie in. Theoretical calculations applying the density functional theory have been carried out and explain the binding properties of these porphyrins reasonably. Meanwhile, these porphyrins were proved to be potential photochemotherapeutic agents since they have photocytotoxic activities against both myeloma cell (Ag8.653) and gliomas cell (U251) lines.  相似文献   

13.
14.
DNA interaction and nucleotide sequence cleavage of copper-streptonigrin   总被引:2,自引:0,他引:2  
The copper-accelerated DNA binding and cleavage of streptonigrin have been investigated by 1H-NMR, ESR spectrometry and nucleotide sequence analysis. In the DNA breakage by the streptonigrin-Cu(II)-NADPH system, the somewhat preferred cleavage sites were several cytosine bases adjacent to purine bases such as GCGG(5'----3'), ACGC(5'----3') and GGCG(5'----3') sequences. The proton chemical shifts for the streptonigrin-Cu(I)-poly(dA-dT) complex demonstrated the interaction between the pyridine ring of the drug and the purine bases of the nucleic acid. Indeed, the temperature profile of adenine H-2 proton clearly showed the Tm to shift from 70 degrees C in the binary streptonigrin-poly(dA-dT) system to 75 degrees C in the ternary streptonigrin-Cu(I)-poly(dA-dT) system. The interaction of the streptonigrin-Cu(II) complex with DNA also induced the apparent change of ESR parameters. The tricyclic phenanthidium ring system including the copper chelate ring appears to significantly contribute to the present DNA interaction and cleavage of copper-streptonigrin.  相似文献   

15.
Two novel cationic porphyrins bearing five-membered rings at the meso-positions, meso-tetrakis(1,3-dimethylimidazolium-2-yl)porphyrin (H2TDMImP) and meso-tetrakis(1,2-dimethylpyrazolium-4-yl)porphyrin (H2TDMPzP), have been synthesized. These two compounds interact with calf thymus DNA (CTDNA) in different binding modes from that of mesotetrakis(N-methylpyridinium-4-yl)porphyrin (H2TMPyP). H2TDMImP outside binds to the minor groove of CTDNA while H2TDMPzP intercalates into CTDNA. These two novel cationic porphyrins strongly bind to CTDNA even at high ionic strength and the binding constant of H2TDMPzP to CTDNA is comparable to that of H2TMPyP. The binding of H2TDMImP to CTDNA is enthalpically driven. The favorable free energy changes in binding of H2TDMPzP to CTDNA come from the large negative enthalpy changes accompanied by small positive entropy changes.  相似文献   

16.
The differential binding of a number of water-soluble cationic porphyrins to a branched DNA molecule is reported. Tetrakis(4-N-methylpyridiniumyl)porphine (H2TMpyP-4) interacts near the branch point with an immobile DNA junction formed from four 16-mer strands. Its Cu(II) and Ni(II) derivatives show stronger preferential binding in the neighborhood of the branch point. Axially liganded derivatives, Zn, Co, and Mn, also interact near this branch point, but in a different way. We use the reagents methidiumpropyl-EDTA.Fe(II) [MPE.Fe(II)] and bis(o-phenanthroline)copper(I) [(OP)2Cu(I)] to cleave complexes of DNA duplex controls and the junction with these porphyrins. The resulting cleavage patterns are consistent with previous evidence that the branch point provides a strong site for intercalative binding agents, which is not available in unbranched duplexes of identical sequence. The preferential scission by (OP)2Cu(I) in the presence of Ni and Cu porphyrins near the branch point exceeds that seen for any agents we have studied. This hyperreactivity is not seen in the case of porphyrins with axial ligands, ZnTMpyP-4, CoTMpyP-4, and MnTMpyP-4, although these also interact near the branch point. The Zn derivative tends to protect sites close to the branch point from cutting, while the Co and Mn porphyrins moderately enhance cleavage of sites in this region.  相似文献   

17.
Cationic liposomes have been suggested as possible agents for nonviral gene transfer. The interaction of plasmid DNA (pDNA) with dispersions of stable unilamellar cationic liposomes based on the binary lipid system 1,2-dimyristoyl-3-trimethyl-ammonium-propane (DMTAP):1,2-dioleoyl-3-trimethyl-ammonium-propane (DOTAP) has been studied by using isothermal titration calorimetry (ITC), high-precision differential scanning calorimetry (DSC), dynamic light scattering (DLS), and circular dichroism (CD). Systematic calorimetric and DLS exploration of the DMTAP:DOTAP binary system reveals that single-bilayer liposomes are stable at the 4:1 molar ratio, exhibiting the main lipid-phase transition temperature at ~25.3°C, and a total enthalpy change δH = 8.5 ± 0.4 kcal/mol. The interaction of pDNA with unilamellar DMTAP:DOTAP vesicles was investigated by ITC experiments, which clearly distinguished endothermic binding between the phosphate and the ammonium groups from exothermic processes, driven by slow kinetics, corresponding to interliposomal, DNA-triggered aggregation that leads to the formation of large multilamellar liposome/pDNA assemblies. Lipid-added-to-pDNA and pDNA-added-to-lipid experiments have been carried out in order to systematically explore the interaction mechanisms. Complex ITC profiles are revealed, which may be linked to packing rearrangements of the pDNA molecules bound at the outer liposomal surface, possibly due to binding to more than one liposome or due to p-DNA-enhanced heterogeneity in the local lipid concentration. DNA-mediated aggregation effects are detected at high [ammonium]/[phosphate] molar ratios in the case of lipid-added-to-pDNA interactions and at relatively low [phosphate]/[ammonium] molar ratios in the case of pDNA-added-to-lipid.  相似文献   

18.
The interaction between DNA and different types of amino acid-based cationic surfactants was investigated. Particular attention was directed to determine the extent of influence of surfactant head-group geometry toward tuning the interaction behavior of these surfactants with DNA. An overview is obtained by gel retardation assay, isothermal titration calorimetry, fluorescence spectroscopy, and circular dichroism at different mole ratios of surfactant/DNA; also, cell viability was assessed. The studies show that the surfactants with more complex/bulkier hydrophobic head group interact more strongly with DNA but exclude ethidium bromide less efficiently; thus, the accessibility of DNA to small molecules is preserved to a certain extent. The presence of more hydrophobic groups surrounding the positive amino charge also gave rise to a significantly lower cytotoxicity. The surfactant self-assembly pattern is quite different without and with DNA, illustrating the roles of electrostatic and steric effects in determining the effective shape of a surfactant molecule.  相似文献   

19.
Thirty-three porphyrins or metalloporphyrins corresponding to the general formula [meso-[N-methyl-4(or 3 or 2)-pyridiniumyl]n(aryl)4-nporphyrin]M (M = H2, CuII, or ClFeIII), with n = 2-4, have been synthesized and characterized by UV-visible and 1H NMR spectroscopy and mass spectrometry. These porphyrins differ not only in the number (2-4) and position of their cationic charges but also in the steric requirements to reach even temporarily a completely planar geometry. In particular, they contain 0, 1, 2, 3, or 4 meso-aryl substituents not able to rotate. Interaction of these porphyrins or metalloporphyrins with calf thymus DNA has been studied and their apparent affinity binding constants have been determined by use of a competition method with ethidium bromide which was applicable not only for all the free base porphyrins but also for their copper(II) or iron(III) complexes. Whatever their mode of binding may be, their apparent affinity binding constants were relatively high (Kapp between 1.2 x 10(7) and 5 x 10(4) M-1 under our conditions), and a linear decrease of log Kapp with the number of porphyrin charges was observed. Studies of porphyrin-DNA interactions by UV and fluorescence spectroscopy, viscosimetry, and fluorescence energy transfer experiments showed that not only the tetracationic meso-tetrakis[N-methyl-4(or 3)-pyridiniumyl]porphyrins, which both involved four freely rotating meso-aryl groups, but also the corresponding tri- and dicationic porphyrins were able to intercalate into calf thymus DNA. Moreover, the cis dicationic meso-bis(N-methyl-2-pyridiniumyl)diphenylporphyrin, which involved only two freely rotating meso-aryl groups in a cis position, was also able to intercalate. The other meso-(N-methyl-2-pyridiniumyl)n(phenyl)4-nporphyrins, which involved either zero, one, or two trans freely rotating meso-aryl groups, could not intercalate into DNA. These results show that only half of the porphyrin ring is necessary for intercalation to occur.  相似文献   

20.
Interaction of dipyrandium with DNA and its dependence on the base sequence was studied using circular dichroism. It was found that calf thymus DNA and polynucleotide duplexes with alternating purine-pyrimidine sequences containing GC basepairs underwent similar alterations in the chiroptical properties upon binding of dipyrandium. The alterations suggest that these DNAs have similar B-type structures which may kink at the dipyrandium binding sites. On the other hand, poly(dA-dt)·poly(dA-dT) and especially poly(dA-dU)·poly(dA-dU) exhibit some features of A-type structure. Poly(dA-dT)·poly(dA-dT) changes its chiroptical properties little when complexed with dipyrandium, as if it contained some type of kinks as equilibrium structural elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号