首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Quantum chemical calculations were performed to investigate the stability of the ternary complexes BeH2···XMH3···NH3 (X?=?F, Cl, and Br; M?=?C, Si, and Ge) and the corresponding binary complexes at the atomic level. Our results reveal that the stability of the XMH3···BeH2 complexes is mainly due to both a strong beryllium bond and a weak tetrel–hydride interaction, while the XMH3···NH3 complexes are stabilized by a tetrel bond. The beryllium bond with a halogen atom as the electron donor has many features in common with a beryllium bond with an O or N atom as the electron donor, although they do exhibit some different characteristics. The stability of the XMH3···NH3 complex is dominated by the electrostatic interaction, while the orbital interaction also makes an important contribution. Interestingly, as the identities of the X and M atoms are varied, the strength of the tetrel bond fluctuates in an irregular manner, which can explained by changes in electrostatic potentials and orbital interactions. In the ternary systems, both the beryllium bond and the tetrel bond are enhanced, which is mainly ascribed to increased electrostatic potentials on the corresponding atoms and charge transfer. In particular, when compared to the strengths of the tetrel and beryllium bonds in the binary systems, in the ternary systems the tetrel bond is enhanced to a greater degree than the beryllium bond.
Graphical Abstract A tetrel bond can be strengthened greatly by a beryllium bond
  相似文献   

2.
The structure and electronic properties of the complexes formed by the interaction of imidazole and pyrazole with different BeXH(BeX2) (X = H, Me, F, Cl) derivatives have been investigated via B3LYP/6?311+G(3df,2p)//B3LYP/6?31+G(d,p) calculations. The formation of these azole:BeXH(BeX2) complexes is accompanied by a dramatic enhancement of the intrinsic acidity of the azole, as the deprotonated azole is much more stable after the aforementioned interaction. Most importantly, the increase in acidity is so large that the azole:BeXH or azole:BeX2 complexes behave as NH acids, which are stronger than typical oxyacids such as phosphoric acid and oxalic acid. Interestingly, the increase in acidity can be tuned through appropriate selection of the substituents attached to the Be atom, permitting us to modulate the electron-accepting ability of the BeXH or BeX2 molecule.
Figure
The association of pyrazole and imidazole with BeX2 derivatives dramatically enhances the acidity of the azole, so the complex imidazole:BeCl2 becomes a NH acid that is stronger than oxalic acid in the gas phase  相似文献   

3.
C R Cantor  W W Chin 《Biopolymers》1968,6(12):1745-1752
The circular dichroism of a number of 1:2 complexes between oligoadenylic acid and polyuridylic acid has been measured. The structure of these complexes, as evidenced by their optical properties, is independent of the chain length of the oligonucleotide throughout all ranges of chain lengths from adenosine to high molecular weight polyadenylic acid. A similar structure was found for the complex (Ap)5A:2(Up)5U.  相似文献   

4.
A statistical analysis of strong and weak hydrogen bonds in the minor groove of DNA was carried out for a set of 70 drug-DNA complexes. The terms ‘strong’ and ‘weak’ pertain to the inherent strengths and weakness of the donor and acceptor fragments rather than to any energy considerations. The dataset was extracted from the protein data bank (PDB). The analysis was performed with an in-house software, hydrogen bond analysis tool (HBAT). In addition to strong hydrogen bonds such as O—H⋯O and N—H⋯O, the ubiquitous presence of weak hydrogen bonds such as C—H⋯O is implicated in molecular recognition. On an average, there are 1.4 weak hydrogen bonds for every strong hydrogen bond. For both categories of interaction, the N(3) of purine and the O(2) of pyrimidine are favoured acceptors. Donor multifurcation is common with the donors generally present in the drug molecules, and shared by hydrogen bond acceptors in the minor groove. Bifurcation and trifurcation are most commonly observed. The metrics for strong hydrogen bonds are consistent with established trends. The geometries are variable for weak hydrogen bonds. A database of recognition geometries for 26 literature amidinium-based inhibitors of Human African Trypanosomes (HAT) was generated with a docking study using seven inhibitors which occur in published crystal structures included in the list of 70 complexes mentioned above, and 19 inhibitors for which the drug-DNA complex crystal structures are unknown. The virtual geometries so generated correlate well with published activities for these 26 inhibitors, justifying our assumption that strong and weak hydrogen bonds are optimized in the active site.  相似文献   

5.
Panigrahi SK 《Amino acids》2008,34(4):617-633
Strong and weak hydrogen bonds between protein and ligand are analyzed in a group of 233 X-ray crystal structures of the kinase family. These kinases are from both eukaryotic and prokaryotic organisms. The dataset comprises of 44 sub-families, out of which 35 are of human origin and the rest belong to other organisms. Interaction analysis was carried out in the active sites, defined here as a sphere of 10 A radius around the ligand. A majority of the interactions are observed between the main chain of the protein and the ligand atoms. As a donor, the ligand frequently interacts with amino acid residues like Leu, Glu and His. As an acceptor, the ligand interacts often with Gly, and Leu. Strong hydrogen bonds N-H...O, O-H...O, N-H...N and weak bonds C-H...O, C-H...N are common between the protein and ligand. The hydrogen bond donor capacity of Gly in N-H...O and C-H...O interactions is noteworthy. Similarly, the acceptor capacity of main chain Glu is ubiquitous in several kinase sub-families. Hydrogen bonds between protein and ligand form characteristic hydrogen bond patterns (supramolecular synthons). These synthon patterns are unique to each sub-family. The synthon locations are conserved across sub-families due to a higher percentage of conserved sequences in the active sites. The nature of active site water molecules was studied through a novel classification scheme, based on the extent of exposure of water molecules. Water which is least exposed usually participates in hydrogen bond formation with the ligand. These findings will help structural biologists, crystallographers and medicinal chemists to design better kinase inhibitors.  相似文献   

6.
The relative influence of physical and chemical bonds to overall gel properties are explored in gelatin gels. Physical, chemical, chemical-physical, and physical-chemical gels are obtained by cooling the protein solution and/or by transglutaminase reaction. Each type of network is characterized by rheology and polarimetry. It is shown that the overall properties as well as the dynamics inside the gels are dependent upon the order of formation and on the relative amount of triple helices and covalent bonds. Enzyme hydrolysis of covalent gels is slower than that of physical gels, as confirmed by the kinetics of helix release and degradation. A scheme is proposed to explain the results at both the physicochemical and the molecular levels.  相似文献   

7.
Incubation of the MoFe protein (Kp1) and Fe protein (Kp2), the component proteins of Klebsiella pneumoniae nitrogenase, with BeF(3)(-) and MgADP resulted in a progressive inhibition of nitrogenase activity. We have shown that at high Kp2 to Kp1 molar ratios this inhibition is due to the formation of an inactive complex with a stoichiometry corresponding to Kp1.{Kp2.(MgADP.BeFx)2}2. At lower Kp2:Kp1 ratios, an equilibrium between this 2:1 complex, the partially active 1:1 Kp1.Kp2.(MgADP. BeFx)2 complex, and active nitrogenase components was demonstrated. The inhibition was reversible since incubation of the 1:1 complex in the absence of MgADP and beryllium resulted in complete restoration of activity over 30 h. Under pseudo-first-order conditions with regard to nitrogenase components and MgADP, the kinetics of the rate of inhibition with increasing concentrations of BeF(3)(-) showed a square dependence on [BeF(3)(-)], consistent with the binding of two Be atoms by Kp2 in the complex. Analytical fplc gel filtration profiles of Kp1.Kp2 incubation mixtures at equilibrium resolved the 2:1 complex and the 1:1 complex from free Kp1. Deconvolution of the equilibrium profiles gave concentrations of the components allowing constants for their formation of 2.1 x 10(6) and 5.6 x 10(5) M(-1) to be calculated for the 1:1 and 2:1 complexes, respectively. When the active site concentration of the different species was taken into account, values for the two constants were the same, indicating the two binding sites for Kp2 are the same for Kp1 with one or both sites unoccupied. The value for K(1) we obtain from this study is comparable with the value derived from pre-steady-state studies of nitrogenase. Analysis of the elution profile obtained on gel filtration of a 1:1 ratio incubation mixture containing 20 microM nitrogenase components showed 97% of the Kp2 present initially to be complexed. These data provide the first unequivocal demonstration that Fe protein preparations which may contain up to 50% of a species of Fe protein defective in electron transfer is nevertheless fully competent in complex formation with MoFe protein.  相似文献   

8.
Sarkhel S  Desiraju GR 《Proteins》2004,54(2):247-259
The characteristics of N-H...O, O-H...O, and C-H...O hydrogen bonds are examined in a group of 28 high-resolution crystal structures of protein-ligand complexes from the Protein Data Bank and compared with interactions found in small-molecule crystal structures from the Cambridge Structural Database. It is found that both strong and weak hydrogen bonds are involved in ligand binding. Because of the prevalence of multifurcation, the restrictive geometrical criteria set up for hydrogen bonds in small-molecule crystal structures may need to be relaxed in macromolecular structures. For example, there are definite deviations from linearity for the hydrogen bonds in protein-ligand complexes. The formation of C-H...O hydrogen bonds is influenced by the activation of the C(alpha)-H atoms and by the flexibility of the side-chain atoms. In contrast to small-molecule structures, anticooperative geometries are common in the macromolecular structures studied here, and there is a gradual lengthening as the extent of furcation increases. C-H...O bonds formed by Gly, Phe, and Tyr residues are noteworthy. The numbers of hydrogen bond donors and acceptors agree with Lipinski's "rule of five" that predicts drug-like properties. Hydrogen bonds formed by water are also seen to be relevant in ligand binding. Ligand C-H...O(w) interactions are abundant when compared to N-H...O(w) and O-H...O(w). This suggests that ligands prefer to use their stronger hydrogen bond capabilities for use with the protein residues, leaving the weaker interactions to bind with water. In summary, the interplay between strong and weak interactions in ligand binding possibly leads to a satisfactory enthalpy-entropy balance. The implications of these results to crystallographic refinement and molecular dynamics software are discussed.  相似文献   

9.
Quantum chemical calculations have been per-formed for the complexes of formamidine (FA) and hypohalous acid (HOX, X = F, Cl, Br, I) to study their structures, properties, and competition of hydrogen bonds with halogen bonds. Two types of complexes are formed mainly through a hydrogen bond and a halogen bond, respectively, and the cyclic structure is more stable. For the F, Cl, and Br complexes, the hydrogen-bonded one is more stable than the halogen-bonded one, while the halogen-bonded structure is favorable for the I complexes. The associated H-O and X-O bonds are elongated and exhibit a red shift, whereas the distant ones are contracted and display a blue shift. The strength of hydrogen and halogen bonds is affected by F and Li substitutents and it was found that the latter tends to smooth differences in the strength of both types of interactions. The structures, properties, and interaction nature in these complexes have been understood with natural bond orbital (NBO) and atoms in molecules (AIM) theories.  相似文献   

10.
Xie J  Qin M  Cao Y  Wang W 《Proteins》2011,79(8):2505-2516
Recently, it was reported that ultraviolet (UV) illumination could trigger the unfolding of proteins by disrupting the buried disulfide bonds. However, the consequence of such unfolding has not been adequately evaluated. Here, we report that unfolded chicken egg white lysozyme (CEWL) triggered by UV illumination can form uniform globular aggregates as confirmed by dynamic light scattering, atomic force microscopy, and transmission electron microscopy. The assembling process of such aggregates was also monitored by several other methods, such as circular dichroism, fluorescence spectroscopy, mass spectrometry based on chymotrypsin digestion, ANS-binding assay, Ellman essay, and SDS-PAGE. Our finding is that due to the dissociation of the native disulfide bonds by UV illumination, CEWL undergoes drastic conformational changes resulting in the exposure of some hydrophobic residues and free thiols. Subsequently, these partially unfolded molecules self-assemble into small granules driven by intermolecular hydrophobic interaction. With longer UV illumination or longer incubation time, these granules can further self-assemble into larger globular aggregates. The combined effects from both the hydrophobic interaction and the formation of intermolecular disulfide bonds dominate this process. Additionally, similar aggregation behavior can also be found in other three typical disulfide-bonded proteins, that is, α-lactalbumin, RNase A, and bovine serum albumin. Thus, we propose that such aggregation behavior might be a general mechanism for some disulfide-bonded proteins under UV irradiation.  相似文献   

11.
12.
A decapeptide Boc-L-Ala-(Delta Delta Phe)(4)-L-Ala-(Delta Delta Phe)3-Gly-OMe (Peptide I) was synthesized to study the preferred screw sense of consecutive alpha,beta-dehydrophenylalanine (Delta Delta Phe) residues. Crystallographic and CD studies suggest that, despite the presence of two L-Ala residues in the sequence, the decapeptide does not have a preferred screw sense. The peptide crystallizes with two conformers per asymmetric unit, one of them a slightly distorted right-handed 3(10)-helix (X) and the other a left-handed 3(10)-helix (Y) with X and Y being antiparallel to each other. An unanticipated and interesting observation is that in the solid state, the two shape-complement molecules self-assemble and interact with an extensive network of C-H...O hydrogen bonds and pi-pi interactions, directed laterally to the helix axis with amazing regularity. Here, we present an atomic resolution picture of the weak interaction mediated mutual recognition of two secondary structural elements and its possible implication in understanding the specific folding of the hydrophobic core of globular proteins and exploitation in future work on de novo design.  相似文献   

13.
Pyruvate dehydrogenase (PDH), branched-chain 2-oxo acid dehydrogenase (BCDH) and 2-oxoglutarate dehydrogenase (OGDH) are multienzyme complexes that play crucial roles in several common metabolic pathways. These enzymes belong to a family of 2-oxo acid dehydrogenase complexes that contain multiple copies of three different components (E1, E2 and E3). For the Thermus thermophilus enzymes, depending on its substrate specificity (pyruvate, branched-chain 2-oxo acid or 2-oxoglutarate), each complex has distinctive E1 (E1p, E1b or E1o) and E2 (E2p, E2b or E2o) components and one of the two possible E3 components (E3b and E3o). (The suffixes, p, b and o identify their respective enzymes, PDH, BCDH and OGDH.) Our biochemical characterization demonstrates that only three specific E3*E2 complexes can form (E3b*E2p, E3b*E2b and E3o*E2o). X-ray analyses of complexes formed between the E3 components and the peripheral subunit-binding domains (PSBDs), derived from the corresponding E2-binding partners, reveal that E3b interacts with E2p and E2b in essentially the same manner as observed for Geobacillus stearothermophilus E3*E2p, whereas E3o interacts with E2o in a novel fashion. The buried intermolecular surfaces of the E3b*PSBDp/b and E3o*PSBDo complexes differ in size, shape and charge distribution and thus, these differences presumably confer the binding specificities for the complexes.  相似文献   

14.
Macromolecular Gd(III) complexes may find useful application as contrast agents for magnetic resonance angiography (MRA). Herein two novel systems are reported, namely Gd(DO3ASQ)3-lys16 and Gd(DO3ASQ)30-orn114. Their syntheses are based on the ability of the squaric acid moiety to act as a linker between the DO3A (1,4,7, 10-tetraazacyclododecane-1,4,7-triacetic acid) chelate moiety and the polyamino acidic chain. Moreover, the squaric acid participates in the coordination cage of the Gd(III) ion. The investigation of 1H and 17O NMR relaxation processes of solvent water nuclei allowed a detailed characterization of the systems under study. Gd(DO3ASQ)30-orn114 displays a remarkable ability to enhance the water proton relaxation rate of its solutions, and it may be considered as potential contrast agent for MRA applications.  相似文献   

15.
Fridh V  Rittinger K 《PloS one》2012,7(3):e34375
Caspase recruitment domains (CARDs) are homotypic protein interaction modules that link the stimulus-dependent assembly of large signaling platforms such as inflammasomes to the activation of downstream effectors that often include caspases and kinases and thereby play an important role in the regulation of inflammatory and apoptotic signaling pathways. NOD2 belongs to the NOD-like (NLR) family of intracellular pattern recognition receptors (PRR) and induces activation of the NF-κB pathway in response to the recognition of bacterial components. This process requires the specific recognition of the CARD of the protein kinase RIP2 by the tandem CARDs of NOD2. Here we demonstrate that the tandem CARDs of NOD2 are engaged in an intramolecular interaction that is important for the structural stability of this region. Using a combination of ITC and pull-down experiments we identify distinct surface areas that are involved in the intramolecular tandem CARD interaction and the interaction with the downstream effector RIP2. Our findings indicate that while CARDa of NOD2 might be the primary binding partner of RIP2 the two CARDs of NOD2 do not act independently of one another but may cooperate to from a binding surface that is distinct from that of single CARDs.  相似文献   

16.
Raman spectroscopy has recently been applied ex vivo and in vivo to address various biomedical issues such as the early detection of cancers, monitoring of the effect of various agents on the skin, determination of atherosclerotic plaque composition, and rapid identification of pathogenic microorganisms. This leap in the number of applications and the number of groups active in this field has been facilitated by several technological advancements in lasers, CCD detectors, and fiber-optic probes. However, most of the studies are still at the proof of concept stage. We present a discussion on the status of the field today, as well as the problems and issues that still need to be resolved to bring this technology to hospital settings (i.e., the medical laboratory, surgical suites, or clinics). Taken from the viewpoint of clinicians and medical analysts, the potential of Raman spectroscopic techniques as new tools for biomedical applications is discussed and a path is proposed for the clinical implementation of these techniques.  相似文献   

17.
Hydrogen bonding networks proximal to metal centers are emerging as a viable means for controlling secondary coordination spheres. This has led to the regulation of reactivity and isolation of complexes with new structural motifs. We have used the tridenate ligand bis[(N′-tert-butylureido)-N-ethyl]-N-methylaminato ([H21]2−) that contains two hydrogen bond donors to examine the oxidation of the FeII-acetate complex, [FeIIH212-OAc)] with dioxygen, amine N-oxides, and xylyl azide. A complex with FeIII-O-FeIII core results from the oxidation with dioxygen and amine N-oxides, in which the oxo ligand is involved in hydrogen bonding to the [H21]2− ligand. A distinctly different hydrogen bonding network was found in FeIII dimer isolated from the reaction with the xylyl azide: a rare FeIII-N(R)-FeIII core was observed that does not have hydrogen bonds to the bridging nitrogen atom. The intramolecular H-bond networks within these dimers appear to adjust to the presence of the bridging species and rearrange to its size and electron density.  相似文献   

18.
Stereochemical aspects of the formation of double bonds in abscisic acid   总被引:2,自引:1,他引:1  
The stereochemistry of the hydrogen elimination that occurs during the formation of the Delta(4)- and Delta(2)'-double bonds of abscisic acid has been determined from the (14)C/(3)H ratios in abscisic acid biosynthesized by avocado fruit from [2-(14)C,(2R)-2-(3)H(1)]-, [2-(14)C,(2S)-2-(3)H(1)]- and [2-(14)C,(5S)-5-(3)H(1)]-mevalonate. Setting the (14)C/(3)H ratio at 3:3 for [2-(14)C,(2R)-2-(3)H(1)]mevalonate, the corresponding ratio in derived methyl abscisate was 3:2.28; the analogous ratio for methyl abscisate from [2-(14)C,(2S)-2-(3)H(1)]mevalonate was 3:1.63. Removal of the 3'-hydrogen atom of abscisic acid by base-catalysed exchange altered the ratios to 3:1.55 and 3:1.44 respectively. It was concluded that this 3'-hydrogen atom is derived from the pro-2R-hydrogen atom of mevalonate. Removal of the 4-hydrogen atom from methyl abscisate by formation of a derivative, a lactone, lacking this hydrogen atom changed the ratio to 3:1.04 for material derived from [2-(14)C,(2R)-2-(3)H(1)]-mevalonate and to 3:1.05 for [2-(14)C,(2S)-2-(3)H(1)]mevalonate, showing that this hydrogen atom also is derived from the pro-2R-hydrogen atom of mevalonate. These ratios of the lactones are consistent with their retaining one (3)H atom at the 6'-methyl position of abscisic acid from the [(2R)-2-(3)H(1)]- and [(2S)-2-(3)H(1)]-mevalonate. The presence of some label at positions 3' and 4 when [(2S)-2-(3)H(1)]mevalonate was the precursor is attributed to the action of isopentenyl pyrophosphate isomerase. The hydrogen atom at C-5 of abscisic acid is derived from the pro-5S-hydrogen atom of mevalonate.  相似文献   

19.
20.
Rapid changes in species composition, also known as ecotones, can result from various causes including rapid changes in environmental conditions, or physiological thresholds. The possibility that ecotones arise from ecological niche construction by ecosystem engineers has received little attention. In this study, we investigate how the diversity of ecosystem engineers, and their interactions, can give rise to ecotones. We build a spatially explicit dynamical model that couples a multispecies community and its abiotic environment. We use numerical simulations and analytical techniques to determine the biotic and abiotic conditions under which ecotone emergence is expected to occur, and the role of biodiversity therein. We show that the diversity of ecosystem engineers can lead to indirect interactions through the modification of their shared environment. These interactions, which can be either competitive or mutualistic, can lead to the emergence of discrete communities in space, separated by sharp ecotones where a high species turnover is observed. Considering biodiversity is thus critical when studying the influence of species–environment interactions on the emergence of ecotones. This is especially true for the wide range of species that have small to moderate effects on their environment. Our work highlights new mechanisms by which biodiversity loss could cause significant changes in spatial community patterns in changing environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号