首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular and morphological evidence unite the hemichordates and echinoderms as the Ambulacraria, but their earliest history remains almost entirely conjectural. This is on account of the morphological disparity of the ambulacrarians and a paucity of obvious stem-groups. We describe here a new taxon Herpetogaster collinsi gen. et sp. nov. from the Burgess Shale (Middle Cambrian) Lagerstätte. This soft-bodied vermiform animal has a pair of elongate dendritic oral tentacles, a flexible stolon with an attachment disc, and a re-curved trunk with at least 13 segments that is directed dextrally. A differentiated but un-looped gut is enclosed in a sac suspended by mesenteries. It consists of a short pharynx, a conspicuous lenticular stomach, followed by a narrow intestine sub-equal in length. This new taxon, together with the Lower Cambrian Phlogites and more intriguingly the hitherto enigmatic discoidal eldoniids (Cambrian-Devonian), form a distinctive clade (herein the cambroernids). Although one hypothesis of their relationships would look to the lophotrochozoans (specifically the entoprocts), we suggest that the evidence is more consistent with their being primitive deuterostomes, with specific comparisons being made to the pterobranch hemichordates and pre-radial echinoderms. On this basis some of the earliest ambulacrarians are interpreted as soft-bodied animals with a muscular stalk, and possessing prominent tentacles.  相似文献   

2.
The presence of distinct fusellar structure is taken as evidence to include a number of fossils from the Middle Cambrian to the Lower Ordovician of North America and Europe with the Pterobranchia. The dome of the pterobranchs and the prosicula of the planktic graptolites are contrasted and evidence is given for the re‐assignment of a number of well known dendroid graptolites to the pterobranchs. A non‐destructive method is described to reveal fusellar development of delicate hemichordate exoskeletons from shales. Rhabdotubus robustus n. sp. from the Czech Republic and ? Cephalodiscus sp. from the Wheeler Shale of North America are described as new Middle Cambrian pterobranchs.  相似文献   

3.
Hemichordates are known as fossils from at least the earliest mid-Cambrian Period (ca. 510 Ma) and are well represented in the fossil record by the graptolithinid pterobranchs ("graptolites"), which include the most abundantly preserved component of Paleozoic macroplankton. However, records of the soft tissues of fossil hemichordates are exceedingly rare and lack clear anatomical details. Galeaplumosus abilus gen. et sp. nov. from the lower Cambrian of China, an exceptionally preserved fossil with soft parts, represents by far the best-preserved, the earliest, and the largest hemichordate zooid from the fossil record; it provides new insight into the evolution of the group. The fossil is assigned to the pterobranch hemichordates on the basis of its morphological similarity to extant representatives. It has a zooidal tube (coenecium) with banding throughout comparable to that in the extant pterobranchs and a zooid with paired annulated arms bearing paired rows of annulated tentacles; it also displays a putative contractile stalk. G. abilus demonstrates stasis in pterobranch morphology, mode of coenecium construction, and probable feeding mechanism over 525 million years.  相似文献   

4.
Rhabdotubus johanssoni n.gen., n.sp., is described from the early Middle Cambrian Eccaparadoxides pinus Zone of Närke, southern Sweden. The colonies encrusted shells of inarticulate brachiopods, and occasionally trilobites, on otherwise soft substrates. The tubarium consists of repent and erect tubes. The former branch irregularly and produce a thecorhiza-like structure; the latter are erect and mostly isolated, up to 10 mm in length and widening gradually to about 1 mm width. Both repent and erect tubes are composed of fusellar bands, mostly irregularly arranged. Branching of repent tubes takes place through resorption or perforation of fusellar tissue in the parent tube. Branching of erect tubes occurs sporadically. There is no thecal dimorphism. No sclerotized stolon is present. Rhabdotubus is interpreted as the earnest known rhabdopleurid (Class Pterobranchia, Phylum Hemichordata). In general habitus it is similar to sessile graptolites of the Order Tuboidea. These similarities may well have phylogenetic significance, but further knowledge of the Tuboidea and other sessile orders of the Graptolithina is required to clarify the early evolution of graptolites.  相似文献   

5.
A phylogenetic analysis of morphological data from modern pterobranch hemichordates (Cephalodiscus, Rhabdopleura) and representatives of each of the major graptolite orders reveals that Rhabdopleura nests among the benthic, encrusting graptolite taxa as it shares all of the synapomorphies that unite the graptolites. Therefore, rhabdopleurids can be regarded as extant members of the Subclass Graptolithina (Class Pterobranchia). Combined with the results of previous molecular phylogenetic studies of extant deuterostomes, these results also suggest that the Graptolithina is a sister taxon to the Subclass Cephalodiscida. The Graptolithina, as an important component of Early–Middle Palaeozoic biotas, provide data critical to our understanding of early deuterostome phylogeny. This result allows one to infer the zooid morphology, mechanics of colony growth and palaeobiology of fossil graptolites in direct relation to the living members of the clade. The Subdivision Graptoloida (nom. transl.), which are all planktic graptolites, is well supported in this analysis. In addition, we recognize the clade Eugraptolithina (nov.). This clade comprises the Graptoloida and all of the other common and well‐known graptolites of the distinctive Palaeozoic fauna. Most of the graptolites traditionally regarded as tuboids and dendroids appear to be paraphyletic groups within the Eugraptolithina; however, Epigraptus is probably not a member of this clade. The Eugraptolithina appear to be derived from an encrusting, Rhabdopleura‐like species, but the available information is insufficient to resolve the phylogeny of basal graptolites. The phylogenetic position of Mastigograptus and the status of the Dithecoidea and Mastigograptida also remain unresolved. □ Biodiversity, Cambrian, Hemichordata, Deuterostomia, Ordovician.  相似文献   

6.
Exceptionally preserved ‘Burgess Shale‐type’ fossil assemblages from the Cambrian of Laurentia, South China and Australia record a diverse array of non‐biomineralizing organisms. During this time, the palaeocontinent Baltica was geographically isolated from these regions, and is conspicuously lacking in terms of comparable accessible early Cambrian Lagerstätten. Here we report a diverse assemblage of small carbonaceous fossils (SCFs) from the early Cambrian (Stage 4) File Haidar Formation of southeast Sweden and surrounding areas of the Baltoscandian Basin, including exceptionally preserved remains of Burgess Shale‐type metazoans and other organisms. Recovered SCFs include taxonomically resolvable ecdysozoan elements (priapulid and palaeoscolecid worms), lophotrochozoan elements (annelid chaetae and wiwaxiid sclerites), as well as ‘protoconodonts’, denticulate feeding structures, and a background of filamentous and spheroidal microbes. The annelids, wiwaxiids and priapulids are the first recorded from the Cambrian of Baltica. The File Haidar SCF assemblage is broadly comparable to those recovered from Cambrian basins in Laurentia and South China, though differences at lower taxonomic levels point to possible environmental or palaeogeographical controls on taxon ranges. These data reveal a fundamentally expanded picture of early Cambrian diversity on Baltica, and provide key insights into high‐latitude Cambrian faunas and patterns of SCF preservation. We establish three new taxa based on large populations of distinctive SCFs: Baltiscalida njorda gen. et sp. nov. (a priapulid), Baltichaeta jormunganda gen. et sp. nov. (an annelid) and Baltinema rana gen. et sp. nov. (a filamentous problematicum).  相似文献   

7.
The stem‐group priapulid Ottoia Walcott, 1911, is the most abundant worm in the mid‐Cambrian Burgess Shale, but has not been unambiguously demonstrated elsewhere. High‐resolution electron and optical microscopy of macroscopic Burgess Shale specimens reveals the detailed anatomy of its robust hooks, spines and pharyngeal teeth, establishing the presence of two species: Ottoia prolifica Walcott, 1911, and Ottoia tricuspida sp. nov. Direct comparison of these sclerotized elements with a suite of shale‐hosted mid‐to‐late Cambrian microfossils extends the range of ottoiid priapulids throughout the middle to upper Cambrian strata of the Western Canada Sedimentary Basin. Ottoiid priapulids represented an important component of Cambrian ecosystems: they occur in a range of lithologies and thrived in shallow water as well as in the deep‐water setting of the Burgess Shale. A wider survey of Burgess Shale macrofossils reveals specific characters that diagnose priapulid sclerites more generally, establishing the affinity of a wide range of Small Carbonaceous Fossils and demonstrating the prominent role of priapulids in Cambrian seas.  相似文献   

8.
Abstract: The lower Cambrian Emu Bay Shale on Kangaroo Island, South Australia, contains the only known Cambrian Burgess Shale‐type biota in Australia. Two new lamellipedian arthropods, Emucaris fava gen. et sp. nov. and Kangacaris zhangi gen. et sp. nov., from the Emu Bay Shale Lagerstätte are described as monotypic genera that are resolved cladistically as a monophyletic group that is sister to Naraoiidae + Liwiidae and classified within the Nektaspida as a new family Emucarididae. Shared derived characters of Emucarididae involve a bipartite, elongate hypostome and elongation of the pygidium relative to the cephalic shield and very short thorax. A monophyletic Liwiidae is composed of Liwia and the Ordovician Tariccoia + Soomaspis but excludes Buenaspis, and even the membership of Buenaspis in Nektaspida is contradicted amongst the shortest cladograms. New morphological interpretations favour affinities of Kwanyinaspis with Conciliterga rather than with Aglaspidida, and Phytophilaspis with Petalopleura.  相似文献   

9.
A new shell-bearing organism with preserved soft tissue, Armilimax pauljamisoni n. gen. n. sp., is reported from the middle Cambrian (Miaolingian: Wuliuan) Miners Hollow locality of the Spence Shale of northern Utah. The described organism is known from a single articulated specimen and preserves a prominent shell, a slug-like body, as well as a U-shaped digestive tract. Its overall appearance is similar to halkieriids, but it does not preserve sclerites. The possible affinities of the new taxon and potential reasons for the presence of a U-shaped gut are discussed. Armilimax pauljamisoni is the first shell-bearing animal of its kind from the Great Basin and extends the diversity of body plans in the Spence Shale Fossil-Lagerstätte.  相似文献   

10.
Abstract: Abundant material from a new quarry excavated in the lower Cambrian Emu Bay Shale (Kangaroo Island, South Australia) and, particularly, the preservation of soft‐bodied features previously unknown from this Burgess Shale‐type locality, permit the revision of two bivalved arthropod taxa described in the late 1970s, Isoxys communis and Tuzoia australis. The collections have also produced fossils belonging to two new species: Isoxys glaessneri and Tuzoia sp. Among the soft parts preserved in these taxa are stalked eyes, digestive structures and cephalic and trunk appendages, rivalling in quality and quantity those described from better‐known Lagerstätten, notably the lower Cambrian Chengjiang fauna of China and the middle Cambrian Burgess Shale of Canada.  相似文献   

11.
寒武系腕足动物属种多样性高、个体数量丰富、形态差异明显、地理分布广泛,具有辅助寒武系三叶虫生物地层划分和对比的潜力.华北板块寒武系苗岭统沉积和化石记录发育良好,是中国苗岭统的经典研究区之一.前人己针对华北寒武系苗岭统乌溜阶腕足动物的系统古生物学开展了一系列基础工作,但这些相关研究主要集中于辽宁地区,目前对华北其他地区苗...  相似文献   

12.
Over the past 25 years, new techniques, new discoveries, and new ideas have profoundly impacted our understanding of deuterostome interrelationships and, ultimately, deuterostome evolution. During the late 1980s and early 1990s morphological cladistic analyses made predictions about both taxonomic history and homology, predictions that would be tested independent of the morphological characters themselves with the advent of molecular systematics, the rise of evolutionary developmental biology, and continued exploration of the fossil record. Thanks to these three areas of inquiry, we have gone from scenarios where animals like mobile enteropneust hemichordates and chordates were derived from sessile filter-feeding animals like modern lophophorates, echinoderms, and pterobranch hemichordates, to a new perspective where hemichordates are recognized as the nearest living relative of the echinoderms, and that vagile gill-bearing animals like Cambrian vetulicolians are seen—at least by some—as close to the deuterostome last common ancestor, with both sessility and filter-feeding convergent features of deuterostomes (e.g., echinoderm) and non-deuterostomes (e.g., lophophorates) alike. Although much of the backbone of the new deuterostome phylogeny is supported by multiple independent data sets, as are statements of homology of several different morphological characters, in particular the homology of gill slits across Deuterostomia, nonetheless, the next quarter century of study on this remarkable group of animals promises to be as equally illuminating and exciting as the past quarter century.  相似文献   

13.
Palaeoscolecid worms are a ubiquitous group of Early Palaeozoic ecdysozoans that are curiously lacking in the archetypal Cambrian Lagerstätten, the Burgess Shale. Here I describe Scathascolex minor gen. et sp. nov, the first unequivocal palaeoscolecid from this site. Scathascolex is armoured with simple Hadimopanella‐like plates, but lacks smaller platelets, pointing to a close affinity with the Palaeoscolecida sensu stricto. Neither preservational nor environmental factors account for the scarcity of palaeoscolecids in the Burgess Shale, which presumably represents an ecological phenomenon.  相似文献   

14.
Lin, J.‐P., Ivantsov, A.Y. & Briggs, D.E.G. 2011: The cuticle of the enigmatic arthropod Phytophilaspis and biomineralization in Cambrian arthropods. Lethaia, Vol. 44, pp. 344–349. Many non‐trilobite arthropods occur in Cambrian Burgess Shale‐type (BST) biotas, but most of these are preserved in fine‐grained siliciclastics. Only one important occurrence of Cambrian non‐trilobite arthropods, the Sinsk biota (lower Sinsk Formation, Botomian) from the Siberian Platform, has been discovered in carbonates. The chemical compositions of samples of the enigmatic arthropod Phytophilaspis pergamena Ivantsov, 1999 and the co‐occurring trilobite Jakutus primigenius Ivantsov in Ponomarenko, 2005 from this deposit were analysed. The cuticle of P. pergamena is composed of mainly calcium phosphate and differs from the cuticle of J. primigenius, which contains only calcium carbonate. Phosphatized cuticles are rare among large Cambrian arthropods, except for aglaspidids and a few trilobites. Based on recent phylogenetic studies, phosphatization of arthropod cuticle is likely to have evolved several times. □arthropod cuticle, Burgess Shale‐type preservation, fossil‐diagenesis, phosphatization.  相似文献   

15.
The marine planktonic diatom Coenobiodiscus muriformis has been reinvestigated using light microscopy and scanning and transmission electron microscopy; as a result it is proposed, to transfer the species to the genus Planktoniella. The structure and formation of colonies are discussed and compared with data from an earlier study. Further details of valve and girdle baud structure have been ascertained and the exact form of the central and peripheral tubes has been described. The relationship of the present taxon to Thalassiosira and Coscinodiscus is discussed.  相似文献   

16.
Garson, D.E., Gaines, R.R., Droser, M.L., Liddell, W.D. & Sappenfield, A. 2011: Dynamic palaeoredox and exceptional preservation in the Cambrian Spence Shale of Utah. Lethaia, Vol. 45, pp. 164–177. Burgess Shale‐type faunas provide a unique glimpse into the diversification of metazoan life during the Cambrian. Although anoxia has long been thought to be a pre‐requisite for this particular type of soft‐bodied preservation, the palaeoenvironmental conditions that regulated extraordinary preservation have not been fully constrained. In particular, the necessity of bottom water anoxia, long considered a pre‐requisite, has been the subject of recent debate. In this study, we apply a micro‐stratigraphical, ichnological approach to determine bottom water oxygen conditions under, which Burgess Shale‐type biotas were preserved in the Middle Cambrian Spence Shale of Utah. Mudstones of the Spence Shale are characterized by fine scale (mm‐cm) alternation between laminated and bioturbated intervals, suggesting high‐frequency fluctuations in bottom water oxygenation. Whilst background oxygen levels were not high enough to support continuous infaunal activity, brief intervals of improved bottom water oxygen conditions punctuate the succession. A diverse skeletonized benthic fauna, including various polymerid trilobites, hyolithids, brachiopods and ctenocystoids suggests that complex dysoxic benthic community was established during times when bottom water oxygen conditions were permissive. Burgess Shale‐type preservation within the Spence Shale is largely confined to non‐bioturbated horizons, suggesting that benthic anoxia prevailed in intervals, where these fossils were preserved. However, some soft‐bodied fossils are found within weakly to moderately bioturbated intervals (Ichnofabric Index 2 and 3). This suggests that Burgess Shale‐type preservation is strongly favoured by bottom water anoxia, but may not require it in all cases. □Anoxia, Burgess Shale, Burgess Shale type‐preservation, Langston Formation, Spence Shale Member, Utah.  相似文献   

17.
The morphology of two new bivalved arthropods, Loricicaris spinocaudatus gen. et sp. nov. and Nereocaris briggsi sp. nov. from the middle Cambrian (Series 3, Stage 5) Burgess Shale Formation (Collins Quarry locality on Mount Stephen, Yoho National Park, British Columbia, Canada), is described. The material was originally assigned to the genus Branchiocaris, but exhibits distinctive character combinations meriting its assignment to other taxa. Loricicaris spinocaudatus possesses an elongate and spinose abdomen comparable to the contemporaneous Perspicaris and Canadaspis, as well as chelate second head appendages and subtriangular exopods, comparable to Branchiocaris. Nereocaris briggsi possesses a laterally compressed carapace, elongate and delicate appendages and a medial eye located between a pair of lateral eyes on a rhomboidal eye stalk. Although undoubtedly congeneric with Nereocaris exilis from a slightly younger horizon of the Burgess Shale Formation, N. briggsi differs in overall proportions and segment number, warranting assignment to a new species. The newly described taxa were coded into an extensive cladistic analysis of 755 characters, and 312 extinct and extant panarthropods, including a variety of Cambrian bivalved arthropods from both the Burgess Shale and the Chengjiang Lagerstätten. Cambrian bivalved arthropods consistently resolved as a paraphyletic assemblage at the base of Arthropoda. Important innovations in arthropod history such as the specialization of the deutocerebral head appendages and a shift from a nekton‐benthic deposit feeding habit to a benthic scavenging/predatory habit, the symplesiomorphic feeding condition of Euarthropoda (crown‐group arthropods), were found to have occurred among basal bivalved arthropods.  相似文献   

18.
Pettersson Stolk, S., Holmer, L. E. and Caron, J ‐B. 2010. First record of the brachiopod Lingulella waptaensis with pedicle from the Middle Cambrian Burgess Shale. —Acta Zoologica (Stockholm) 91 : 150–162 The organophosphatic shells of linguloid brachiopods are a common component of normal Cambrian–Ordovician shelly assemblages. Preservation of linguloid soft‐part anatomy, however, is extremely rare, and restricted to a few species in Lower Cambrian Konservat Lagerstätten. Such remarkable occurrences provide unique insights into the biology and ecology of early linguloids that are not available from the study of shells alone. Based on its shells, Lingulella waptaensis Walcott, was originally described in 1924 from the Middle Cambrian Burgess Shale but despite the widespread occurrence of soft‐part preservation associated with fossils from the same levels, no preserved soft parts have been reported. Lingulella waptaensis is restudied herein based on 396 specimens collected by Royal Ontario Museum field parties from the Greater Phyllopod Bed (Walcott Quarry Shale Member, British Columbia). The new specimens, including three with exceptional preservation of the pedicle, were collected in situ in discrete obrution beds. Census counts show that L. waptaensis is rare but recurrent in the Greater Phyllopod Bed, suggesting that this species might have been generalist. The wrinkled pedicle protruded posteriorly between the valves, was composed of a central coelomic space, and was slender and flexible enough to be tightly folded, suggesting a thin chitinous cuticle and underlying muscular layers. The nearly circular shell and the long, slender and highly flexible pedicle suggest that L. waptaensis lived epifaunally, probably attached to the substrate. Vertical cross‐sections of the shells show that L. waptaensis possessed a virgose secondary layer, which has previously only been known from Devonian to Recent members of the Family Lingulidae.  相似文献   

19.
One of the earliest steps in embryonic development is the establishment of the future body axes. Morphological and molecular data place the Ambulacraria (echinoderms and hemichordates) within the Deuterostomia and as the sister taxon to chordates. Extensive work over the last decades in echinoid (sea urchins) echinoderms has led to the characterization of gene regulatory networks underlying germ layer specification and axis formation during embryogenesis. However, with the exception of recent studies from a direct developing hemichordate (Saccoglossus kowalevskii), very little is known about the molecular mechanism underlying early hemichordate development. Unlike echinoids, indirect developing hemichordates retain the larval body axes and major larval tissues after metamorphosis into the adult worm. In order to gain insight into dorso-ventral (D/V) patterning, we used nickel chloride (NiCl2), a potent ventralizing agent on echinoderm embryos, on the indirect developing enteropneust hemichordate, Ptychodera flava. Our present study shows that NiCl2 disrupts the D/V axis and induces formation of a circumferential mouth when treated before the onset of gastrulation. Molecular analysis, using newly isolated tissue-specific markers, shows that the ventral ectoderm is expanded at expense of dorsal ectoderm in treated embryos, but has little effect on germ layer or anterior–posterior markers. The resulting ventralized phenotype, the effective dose, and the NiCl2 sensitive response period of Ptychodera flava, is very similar to the effects of nickel on embryonic development described in larval echinoderms. These strong similarities allow one to speculate that a NiCl2 sensitive pathway involved in dorso-ventral patterning may be shared between echinoderms, hemichordates and a putative ambulacrarian ancestor. Furthermore, nickel treatments ventralize the direct developing hemichordate, S. kowalevskii indicating that a common pathway patterns both larval and adult body plans of the ambulacrarian ancestor and provides insight in to the origin of the chordate body plan.  相似文献   

20.
A new bivalved arthropod is described from the Lower Cambrian (?Upper Atdabanian) Buen Formation of North Greenland. Pauloterminus spinodorsalis gen. et sp. nov. possesses a bivalved carapace that covers the head, which has a single pair of antennae, and anteriormost thorax. No mouthparts are visible. The five‐segmented abdomen was limbless and terminated in a telson plus a pair of large, lobate uropods. A suite of at least six biramous thoracic limbs are present: the short endopods are made up of small, serial podomeres, while the exopods are lobate and may have functioned as gills as well as in swimming. Partially infilled guts are occasionally visible, suggesting that this animal may have been a sediment feeder. It is compared to other Cambrian bivalved arthropods, especially the waptiids Chuandianella ovata from the Lower Cambrian Chengjiang fauna (China) and Waptia fieldensis from the Middle Cambrian Burgess Shale (British Columbia). Of these three animals, the Greenland and Chinese taxa appear to be the most closely related. P. spinodorsalis possesses many typical arthropod features, but it also demonstrates more primitive characters that are more reminiscent of the lobopodians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号