首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, structural information about bacteriorhodopsin has grown substantially with the publication of several crystal structures. However, precise measurements of the chromophore conformation in the various photocycle states are still lacking. This information is critical because twists about the chromophore backbone chain can influence the Schiff base nitrogen position, orientation, and proton affinity. Here, we focus on the C14-C15 bond, using solid-state nuclear magnetic resonance spectroscopy to measure the H-C14-C15-H dihedral angle. In the resting state (bR(568)), we obtain an angle of 164 +/- 4 degrees, indicating a 16 degrees distortion from a planar all-trans chromophore. The dihedral angle is found to decrease to 147 +/- 10 degrees in the early M intermediate (M(o)) and to 150 +/- 4 degrees in the late M intermediate (M(n)). These results demonstrate changes in the chromophore conformation undetected by recent X-ray diffraction studies.  相似文献   

2.
Solid-state 13C magic-angle spinning NMR spectroscopy has been employed to study the conformation of the 11-cis-retinylidene Schiff base chromophore in bovine rhodopsin. Spectra were obtained from lyophilized samples of bovine rhodopsin selectively 13C-labeled at position C-5 or C-12 of the retinyl moiety, and reconstituted in the fully saturated branched-chain phospholipid diphytanoyl glycerophosphocholine. Comparison of the NMR parameters for carbon C-5 presented in this paper with those published for retinyl Schiff base model compounds and bacteriorhodopsin by Harbison and coworkers [Harbison et al. (1985) Biochemistry 24, 6955-6962], indicate that in bovine rhodopsin the C-6-C-7 single bond has the unperturbed cis conformation. This is in contrast to the 6-S-trans conformation found in bacteriorhodopsin. The NMR parameters for bovine [12-13C]rhodopsin present evidence for the presence of a negative charge interacting with the retinyl moiety near C-12, in agreement with the model for the opsin shift presented by Honig and Nakanishi and coworkers [Kakitani et al. (1985) Photochem. Photobiol. 41, 471-479].  相似文献   

3.
Rotational resonance solid state nuclear magnetic resonance has been used to determine the relative orientation of the beta-ionone ring and the polyene chain of the chromophore 11-Z-retinylidene of rhodopsin in rod outer segment membranes from bovine retina. The bleached protein was regenerated with either 11-Z-[8,18-(13)C(2)]retinal or 11-Z-[8,16/17(13)C(2)]retinal, the latter having only one (13)C label at either of the chemically equivalent positions 16 and 17. Observation of (13)C selectively enriched in the ring methyl groups, C16/17, revealed alternative conformational states for the ring. Minor spectral components comprised around 26% of the chromophore. The major conformation (approximately 74%) has the chemical shift resolution required for measuring internuclear distances to (13)C in the retinal chain (C8) separately from each of these methyl groups. The resulting distance constraints, C8 to C16 and C17 (4.05 +/- 0.25 A) and from C8 to C18 (2.95 +/- 0.15 A), show that the major portion of retinylidene in rhodopsin has a twisted 6-s-cis conformation. The more precise distance measurement made here between C8 and C18 (2.95 A) predicts that the chain is twisted out-of-plane with respect to the ring by a modest amount (C5-C6-C7-C8 torsion angle = -28 +/- 7 degrees ).  相似文献   

4.
(R, S)-Methionine was transformed into C(alpha)-hydroxymethyl methionine by a route involving C(alpha)-hydroxymethylation of 2-phenyl-4-methylthioethyl-5-oxo-4,5-dihydro-1,3-oxazole. The absolute configuration of (-)-C(alpha)-hydroxymethyl methionine was elucidated to be (S) by chemical correlation with (S) (-)-C(alpha)-ethyl serine. Absolute structure determination (by single crystal X-ray diffraction) on N(alpha)-benzoyl-C(alpha)-hydroxymethyl methionine confirmed the (R)-configuration for the (+)-enantiomer. In addition, the X-ray diffraction analysis showed that the C(alpha,alpha)-disubstituted glycyl residue adopts the fully extended (C5) conformation.  相似文献   

5.
Phytochromes are photoreceptors with a bilin chromophore in which light triggers the conversion between the red-absorbing form Pr and the far-red-absorbing form Pfr. Agrobacterium tumefaciens has two phytochromes, Agp1 and Agp2, with antagonistic properties: in darkness, Agp1 converts slowly from Pfr to Pr, whereas Agp2 converts slowly from Pr to Pfr. In a previous study, we have assembled Agp1 with synthetic locked chromophores 15Za, 15Zs, 15Ea, and 15Es in which the C15=C16 double bond is fixed in either the E or Z configuration and the C14-C15 single bond is fixed in either the syn (s) or anti (a) conformation. In the present study, the locked chromophores 5Za and 5Zs were used for assembly with Agp1; in these chromophores, the C4=C5 double bond is fixed in the Z configuration, and the C5-C6 single bond is fixed in either the syn or anti conformation. All locked chromophores were also assembled with Agp2. The data showed that in both phytochromes the Pr chromophore adopts a C4=C5 Z C5-C6 syn C15=C16 Z C14-C15 anti stereochemistry and that in the Pfr chromophore the C15=C16 double bond has isomerized to the E configuration, whereas the C14-C15 single bond remains in the anti conformation. Photoconversion shifted the absorption maxima of the 5Zs adducts to shorter wavelengths, whereas the 5Za adducts were shifted to longer wavelengths. Thus, the C5-C6 single bond of the Pfr chromophore is rather in an anti conformation, supporting the previous suggestion that during photoconversion of phytochromes, a rotation around the ring A-B connecting single bond occurs.  相似文献   

6.
Two-dimensional NMR spectroscopic and computational methods were employed for the structure determination of an 18-residue peptide with the amino acid sequence of the C-terminal retroviral-type (r.t.) zinc finger domain from the nucleocapsid protein (NCP) of HIV-1 [Zn(HIV1-F2)]. Unlike results obtained for the first retroviral-type zinc finger peptide, Zn(HIV1-F1), [Summers et al. (1990) Biochemistry 29, 329], broad signals indicative of conformational lability were observed in the 1H NMR spectrum of Zn-(HIV1-F2) at 25 degrees C. The NMR signals narrowed upon cooling to -2 degrees C, enabling complete 1H NMR signal assignment via standard two-dimensional (2D) NMR methods. Distance restraints obtained from qualitative analysis of 2D nuclear Overhauser effect (NOESY) data were used to generate 30 distance geometry (DG) structures with penalties (penalty = sum of the squared differences between interatomic distances defined in the restraints file and in the DG structures) in the range 0.02-0.03 A2. All structures were qualitatively consistent with the experimental NOESY spectrum based on comparisons with 2D NOESY back-calculated spectra. Superposition of the backbone atoms (C, C alpha, N) for residues C(1)-C(14) gave pairwise RMSD values in the range 0.16-0.75 A. The folding of Zn(HIV1-F2) is very similar to that observed for Zn(HIV1-F1). Small differences observed between the two finger domains are localized to residues between His(9) and Cys(14), with residues M(11)-C(14) forming a 3(10) helical corner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The chromophore conformations of the red and far red light induced product states "Pfr" and "Pr" of the N-terminal photoreceptor domain Cph1-N515 from Synechocystis 6803 have been investigated by NMR spectroscopy, using specific 13C isotope substitutions in the chromophore. 13C-NMR spectroscopy in the Pfr and Pr states indicated reversible chemical shift differences predominantly of the C(4) carbon in ring A of the phycocyanobilin chromophore, in contrast to differences of C15 and C5, which were much less pronounced. Ab initio calculations of the isotropic shielding and optical transition energies identify a region for C4-C5-C6-N2 dihedral angle changes where deshielding of C4 is correlated with red-shifted absorption. These could occur during thermal reactions on microsecond and millisecond timescales after excitation of Pr which are associated with red-shifted absorption. A reaction pathway involving a hula-twist at C5 could satisfy the observed NMR and visible absorption changes. Alternatively, C15 Z-E photoisomerization, although expected to lead to a small change of the chemical shift of C15, in addition to changes of the C4-C5-C6-N2 dihedral angle could be consistent with visible absorption changes and the chemical shift difference at C4. NMR spectroscopy of a 13C-labeled chromopeptide provided indication for broadening due to conformational exchange reactions in the intact photoreceptor domain, which is more pronounced for the C- and D-rings of the chromophore. This broadening was also evident in the F2 hydrogen dimension from heteronuclear 1H-13C HSQC spectroscopy, which did not detect resonances for the 13C5-H, 13C10-H, and 13C15-H hydrogen atoms whereas strong signals were detected for the (13)C-labeled chromopeptide. The most pronounced 13C-chemical shift difference between chromopeptide and intact receptor domain was that of the 13C4-resonance, which could be consistent with an increased conformational energy of the C4-C5-C6-N2 dihedral angle in the intact protein in the Pr state. Nuclear Overhauser effect spectroscopy experiments of the 13C-labeled chromopeptide, where chromophore-protein interactions are expected to be reduced, were consistent with a ZZZssa conformation, which has also been found for the biliverdin chromophore in the x-ray structure of a fragment of Deinococcus radiodurans bacteriophytochrome in the Pr form.  相似文献   

8.
Ab initio RHF and DFT/B3LYP calculations at the 6-31G** level have been performed to study possible conformations of the cyclopropyl retinal Schiff base analog 3 of known absolute configuration. In both the free base and the protonated form, the geometries are determined on the diene side by optimum conjugative interaction with the three-membered ring, on the triene side by repulsive interaction with the 9-methyl group. There are three low energy conformations, in which the seven-membered ring is either in a chair or in a twist-chair conformation. To decide between these alternatives, chiroptical parameters were calculated employing the GAUSSIAN/CIS routines and compared with the CD spectrum obtained by Nakanishi et al. Of the energy-minimized geometries only two fit the experimental data. In both, the dihedral angle C12-C13, which is indicative of the relative orientation of the two chromophores, is positive.  相似文献   

9.
Sugihara M  Buss V  Entel P  Elstner M  Frauenheim T 《Biochemistry》2002,41(51):15259-15266
Density functional theory (DFT) calculations based on the self-consistent-charge tight-binding approximation have been performed to study the influence of the protein pocket on the 3-dimensional structure of the 11-cis-retinal Schiff base (SB) chromophore. Starting with an effectively planar chromophore embedded in a protein pocket consisting of the 27 next-nearest amino acids, the relaxed chromophore geometry resulting from energy optimization and molecular dynamics (MD) simulations has yielded novel insights with respect to the following questions: (i) The conformation of the beta-ionone ring. The protein pocket tolerates both conformations, 6-s-cis and 6-s-trans, with a total energy difference of 0.7 kcal/mol in favor of the former. Of the two possible 6-s-cis conformations, the one with a negative twist angle (optimized value: -35 degrees ) is strongly favored, by 3.6 kcal/mol, relative to the one in which the dihedral is positive. (ii) Out-of-plane twist of the chromophore. The environment induces a nonplanar helical deformation of the chromophore, with the distortions concentrated in the central region of the chromophore, from C10 to C13. The dihedral angle between the planes formed by the bonds from C7 to C10 and from C13 to C15 is 42 degrees. (iii) The absolute configuration of the chromophore. The dihedral angle about the C12-C13 bond is +170 degrees from planar s-cis, which imparts a positive helicity on the chromophore, in agreement with earlier considerations based on theoretical and spectroscopic evidence.  相似文献   

10.
SL1 is a stem-loop RNA sequence from the genome of HIV-1 thought to be the initiation site for the dimerization of the retroviral genomic RNA. The aim of this study is to check the stability in solution of different experimental dimeric structures available in the literature. Two kinds of dimer have been evidenced: an extended duplex looking like a double helix with two internal bulges and a kissing complex in which the monomers with a stem/loop conformation are linked by intermolecular loop-loop interactions. Two divergent experimental structures of the kissing complex from the Lai isolate are reported in the literature, one obtained from NMR (Mujeeb et al., Nature Structural Biology, 1998, Vol. 5, pp. 432-436) and the other one from x-ray crystallography (Ennifar et al., Nature Structural Biology, 2001, Vol. 8, pp. 1064-1068). A crystallographic structure of the Mal isolate was also reported (Ennifar et al., Nature Structure Biology, 2001, Vol. 8, pp. 1064-1068). Concerning the extended duplex, a NMR structure is available for Lai (Girard et al., Journal of Biomolecular Structure and Dynamics, 1999, Vol. 16, pp. 1145-1157) and a crystallographic structure for Mal (Ennifar et al., Structure, 1999, Vol. 7, pp. 1439-1449). Using a molecular dynamics technique, all these experimental structures have been simulated in solution with explicit water and counterions. We show that both extended duplex structures are stable. On the contrary, the crystallographic structures of the Lai and Mal kissing complexes are rapidly destabilized in aqueous environment. Finally, the NMR structure of the Lai loop-loop kissing complex remains globally stable over a 20 ns MD simulation, although large rearrangements occur at the level of the stem/loop junctions that are flexible, as shown from free energy calculations. These results are compared to electrophoresis experiments on dimer formation.  相似文献   

11.
Rhodopsin is the G-protein coupled photoreceptor that initiates the rod phototransduction cascade in the vertebrate retina. Using specific isotope enrichment and magic angle spinning (MAS) NMR, we examine the spatial structure of the C10-C11=C12-C13-C20 motif in the native retinylidene chromophore, its 10-methyl analogue, and the predischarge photoproduct metarhodopsin-I. For the rhodopsin study 11-Z-[10,20-(13)C(2)]- and 11-Z-[11,20-(13)C(2)]-retinal were synthesized and incorporated into bovine opsin while maintaining a natural lipid environment. The ligand is covalently bound to Lys(296) in the photoreceptor. The C10-C20 and C11-C20 distances were measured using a novel 1-D CP/MAS NMR rotational resonance experimental procedure that was specifically developed for the purpose of these measurements [Verdegem, P. J. E., Helmle, M., Lugtenburg, J., and de Groot, H. J. M. (1997) J. Am. Chem. Soc. 119, 169]. We obtain r(10,20) = 0.304 +/- 0.015 nm and r(11,20) = 0.293 +/- 0.015 nm, which confirms that the retinylidene is 11-Z and shows that the C10-C13 unit is conformationally twisted. The corresponding torsional angle is about 44 degrees as indicated by Car-Parrinello modeling studies. To increase the nonplanarity in the chromophore, 11-Z-[10,20-(13)C(2)]-10-methylretinal and 11-Z-[(10-CH(3)), 13-(13)C(2)]-10-methylretinal were prepared and incorporated in opsin. For the resulting analogue pigment r(10,20) = 0.347 +/- 0.015 nm and r((10)(-)(CH)()3())(,)(13) = 0.314 +/- 0.015 nm were obtained, consistent with a more distorted chromophore. The analogue data are in agreement with the induced fit principle for the interaction of opsin with modified retinal chromophores. Finally, we determined the intraligand distances r(10,20) and r(11,20) also for the photoproduct metarhodopsin-I, which has a relaxed all-E structure. The results (r(10,20) >/= 0.435 nm and r(11,20) = 0.283 +/- 0.015 nm) fully agree with such a relaxed all-E structure, which further validates the 1-D rotational resonance technique for measuring intraligand distances and probing ligand structure. As far as we are aware, these results represent the first highly precise distance determinations in a ligand at the active site of a membrane protein. Overall, the MAS NMR data indicate a tight binding pocket, well defined to bind specifically only one enantiomer out of four possibilities and providing a steric complement to the chromophore in an ultrafast ( approximately 200 fs) isomerization process.  相似文献   

12.
D Sommer  P S Song 《Biochemistry》1990,29(7):1943-1948
The relative extent of chromophore exposure of the red-absorbing (Pr) and far-red-absorbing (Pfr) forms of 124-kDa oat phytochrome and the secondary structure of the phytochrome apoprotein have been investigated by using zinc-induced modification of the phytochrome chromophore. The absence of bleaching of Pr in the presence of a 1:1 stoichiometric ratio of zinc ions, in contrast to extensive spectral bleaching of the Pfr form, confirms previous reports of differential exposure of the Pfr chromophore relative to the Pr chromophore [Hahn et al. (1984) Plant Physiol. 74, 755-758]. The emission of orange fluorescence by zinc-chelated Pfr indicates that the Pfr chromophore has been modified from its native extended/semi-extended conformation to a cyclohelical conformation. Circular dichroism (CD) analyses of native phytochrome in 20 mM Tris buffer suggests that the Pr-to-Pfr phototransformation is accompanied by a photoreversible change in the far-UV region consistent with an increase in the alpha-helical folding of the apoprotein. The secondary structure of phytochrome in Tris buffer, as determined by CD, differs slightly from that of phytochrome in phosphate buffer, suggesting that phytochrome is a conformationally flexible molecule. Upon the addition of a 1:1 molar ratio of zinc ions to phytochrome, a dramatic change in the CD of the Pfr form is observed, while the CD spectrum of the Pf form is unaffected. Analysis of the bleached Pfr CD spectrum by the method of Chang et al. (1978) reveals that chelation with zinc ions significantly alters the secondary structure of the phytochrome molecule, specifically by increasing the beta-sheet content primarily at the expense of alpha-helical folding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A S Ulrich  M P Heyn  A Watts 《Biochemistry》1992,31(42):10390-10399
The orientation and conformation of retinal within bacteriorhodopsin of the purple membrane of Halobacterium halobium was established by solid-state deuterium NMR spectroscopy, through the determination of individual chemical bond vectors. The chromophore ([2,4,4,16,16,17,17,17,18,18-2H11]retinal) was specifically deuterium-labeled on the cyclohexene ring and incorporated into the protein. A uniaxially oriented sample of purple membrane patches was prepared and measured at a series of inclinations relative to the spectrometer field. 31P NMR was used to characterize the mosaic spread of the oriented sample, and computer simulations were applied in the analysis of the 2H NMR and 31P NMR spectral line shapes. From the deuterium quadrupole splittings, the specific orientations of the three labeled methyl groups on the cyclohexene ring could be calculated. The two adjacent methyl groups (on C1) of the retinal were found to lie approximately horizontal in the membrane and make respective angles of 94 degrees +/- 2 degrees and 75 degrees +/- 2 degrees with the membrane normal. The third group (on C5) points toward the cytoplasmic side with an angle of 46 degrees +/- 3 degrees. These intramolecular constraints indicate that the cyclohexene ring lies approximately perpendicular to the membrane surface and that it has a (6S)-trans conformation. From the estimated angle of the tilt of the chomophore long axis, it is concluded that the polyene chain is slightly curved downward to the extracellular side of the membrane.  相似文献   

14.
Phytochrome photoreceptors undergo reversible photoconversion between the red-absorbing form, Pr, and the far-red-absorbing form, Pfr. The first step in the conversion from Pr to Pfr is a Z to E isomerization around the C15=C16 double bond of the bilin chromophore. We prepared four synthetic biliverdin (BV) derivatives in which rings C and D are sterically locked by cyclizing with an additional carbon chain. In these chromophores, which are termed 15Za, 15Zs, 15Ea, and 15Es, the C15=C16 double bond is in either the Z or E configuration and the C14-C15 single bond in either the syn or anti conformation. The chromophores were assembled with Agrobacterium phytochrome Agp1, which incorporates BV as natural chromophore. All locked BV derivatives bound covalently to the protein and formed adducts with characteristic spectral properties. The 15Za adduct was spectrally similar to the Pr form and the 15Ea adduct similar to the Pfr form of the BV adduct. Thus, the chromophore of Agp1 adopts a C15=C16 Z configuration and a C14-C15 anti conformation in the Pr form and a C15=C16 E configuration and a C14-C15 anti conformation in the Pfr form. Both the 15Zs and the 15Es adducts absorbed only in the blue region of the visible spectra. All chromophore adducts were analyzed by size exclusion chromatography and histidine kinase activity to probe for protein conformation. In either case, the 15Za adduct behaved like the Pr and the 15Ea adduct like the Pfr form of Agp1. Replacing the natural chromophore by a locked 15Ea derivative can thus bring phytochrome holoprotein in the Pfr form in darkness. In this way, physiological action of Pfr can be studied in vivo and separated from Pr/Pfr cycling and other light effects.  相似文献   

15.
The polymorphic phase behavior of aqueous dispersions of 1-oleoyl-, 1-linoleoyl-, and 1-linolenoyl-sn-3-glycerophosphoethanolamine (1-C18:1c-PE, 1-C18:2c-PE, and 1-C18:3c-PE, respectively) has been investigated by 31P NMR, small-angle and wide-angle X-ray diffraction, and freeze-fracture techniques in response to changes in temperature and pH. Between -20 and 0 degrees C at pH 7, NMR and X-ray data indicate that 1-C18:1c-PE adopts a lamellar phase. Above 20 degrees C, the X-ray diffraction from 1-C18:1c-PE reveals no long-range lattice order, whereas the NMR data indicate lamellar structure to 90 degrees C. Freeze-fracture electron microscopy shows that 1-C18:1c-PE at pH 8.2 forms closed multilamellar vesicles upon dispersion and also that large unilamellar vesicles produced by extrusion techniques (LUVETs) can be made from 1-C18:1c-PE at pH 7. Such LUVETs can trap [3H]inulin and support a K+ diffusion potential for up to 4 h. At pH 8.5 and above, 1-C18:1c-PE forms optically clear, fluid dispersions with NMR and X-ray characteristics consistent with a micellar (noninverted) phase structure. Attempts to prepare LUVETs from 1-C18:1c-PE at pH 9 result in structures that can neither trap [3H]inulin nor support a membrane potential.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
O6-ethyl-G (e6G) is an important DNA lesion, caused by the exposure of cells to alkylating agents such as N-ethyl-N-nitrosourea. A strong correlation exists between persistence of e6G lesion and subsequent carcinogenic conversion. We have determined the three-dimensional structure of a DNA molecule incorporating the e6G lesion by X-ray crystallography. The DNA dodecamer d(CGC[e6G]AATTCGCG), complexed to minor groove binding drugs Hoechst 33258 or Hoechst 33342, has been crystallized in the space group P212121, isomorphous to other related dodecamer DNA crystals. In addition, the native dodecamer d(CGCGAATTCGCG) was crystallized with Hoechst 33342. All three new structures were solved by the molecular replacement method and refined by the constrained least squares procedure to R-factors of approximately 16% at approximately 2.0 A resolution. In the structure of three Hoechst drug-dodecamer complexes in addition to the one published earlier [Teng et al. (1988) Nucleic Acids Res., 16, 2671-2690], the Hoechst molecule lies squarely at the central AATT site with the ends approaching the G4-C21 and the G16-C9 base pairs, consistent with other spectroscopic data, but not with another crystal structure reported [Pjura et al. (1987) J. Mol. Biol., 197, 257-271]. The two independent e6G-C base pairs in the DNA duplex adopt different base pairing schemes. The e6G4-C21 base pair has a configuration similar to a normal Watson-Crick base pair, except with bifurcated hydrogen bonds between e6G4 and C21, and the ethyl group is in the proximal orientation. In contrast, the e6G16-C9 base pair adopts a wobble configuration and the ethyl group is in the distal orientation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The structure of the calcium-saturated regulatory domain of skeletal troponin C (sNTnC) complexed with the switch peptide comprising residues 115-131 of troponin I (TnI), and with a bifunctional rhodamine fluorescent label attached to residues 56 (E56C) and 63 (E63C) on the C helix of sNTnC, has been determined using nuclear magnetic resonance (NMR) spectroscopy. The structure shows that the integrity of the C helix is not altered by the E(56,63)C mutations or by the presence of the bifunctional rhodamine and that the label does not interact with the hydrophobic cleft of sNTnC. Moreover, the overall fold of the protein and the position of the TnI peptide are similar to those observed previously with related cardiac NTnC complexes with residues 147-163 of cardiac TnI [Li et al. (1999) Biochemistry 38, 8289-8298] and including the drug bepridil [Wang et al. (2002) J. Biol. Chem. 277, 31124-31133]. The degree of opening of the structure is reduced as compared to that of calcium-saturated sNTnC in the absence of the switch peptide [Gagné et al. (1995) Nat. Struct. Biol. 2, 784-789]. The switch peptide is bound in a shallow and complementary hydrophobic surface cleft largely defined by helices A and B and also has key ionic interactions with sNTnC. These results show that bifunctional rhodamine probes can be attached to surface helices via suitable pairs of solvent-accessible residues that have been mutated to cysteines, without altering the conformation of the labeled domain. A set of such probes can be used to determine the orientation and motion of the target domain in the cellular environment [Corrie et al. (1999) Nature 400, 425-430; Ferguson et al. (2003) Mol. Cell 11(4), in press].  相似文献   

18.
Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C2H3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark- and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the "business end" of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the beta-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2H NMR is thus illuminating in terms of their different biological functions.  相似文献   

19.
van Dijk AD  Fushman D  Bonvin AM 《Proteins》2005,60(3):367-381
When classical, Nuclear Overhauser Effect (NOE)-based approaches fail, it is possible, given high-resolution structures of the free molecules, to model the structure of a complex in solution based solely on chemical shift perturbation (CSP) data in combination with orientational restraints from residual dipolar couplings (RDCs) when available. RDCs can be incorporated into the docking following various strategies: as direct restraints and/or as intermolecular intervector projection angle restraints (Meiler et al., J Biomol NMR 2000;16:245-252). The advantage of the latter for docking is that they directly define the relative orientation of the molecules. A combined protocol in which RDCs are first introduced as intervector projection angle restraints and at a later stage as direct restraints is shown here to give the best performance. This approach, implemented in our information-driven docking approach HADDOCK (Dominguez et al., J Am Chem Soc 2003;125:1731-1737), is used to determine the solution structure of the Lys48-linked di-ubiquitin, for which chemical shift mapping, RDCs, and (15)N-relaxation data have been previously obtained (Varadan et al., J Mol Biol 2002;324:637-647). The resulting structures, derived from CSP and RDC data, are cross-validated using (15)N-relaxation data. The solution structure differs from the crystal structure by a 20 degrees rotation of the two ubiquitin units relative to each other.  相似文献   

20.
Isolinoleic acid (18:2 delta 6,9) deuterated at 10 different positions was esterified to form 1-palmitoyl-2-isolinoleoyl-sn-glycero-3-phosphocholine (PiLPC), and the average structural and motional properties of the diunsaturated chain, in aqueous dispersions of PiLPC, were examined by 2H NMR spectroscopy. For each sample, 2H spectra were acquired over a temperature range of 1-40 degrees C and the quadrupolar splittings interpreted in terms of carbon-deuterium bond order parameters, SCD. Furthermore, definition of the average orientation of the C8 methylene unit with respect to the bilayer normal [Baenziger, J. E., Smith, I. C. P., Hill, R. J., & Jarrell, H. C. (1988) J. Am. Chem. Soc. 110, 8229-8231] provided sufficient information to calculate both the average orientations and the molecular order parameters, Smol (which reflects the amplitudes of motion), for the C6-C7 and the C9-C10 double bonds. The results indicate that both the motional freedom (reflected in the order profile) and the average structure (reflected in the orientation of carbon segments with respect to the bilayer normal) are strongly affected by the presence of two cis-unsaturated double bonds. The data were interpreted in terms of two possible models whereby, in each case, the chain adopts a conformation consistent with the low-energy conformation of 1,4-pentadiene [Applegate, K. R., & Glomset, J. A. (1986) J. Lipid Res. 27, 658-680] but undergoes a two-site jump between the conformations. The jump motion arises mainly from rotations about the C7-C8 and the C8-C9 single bonds that disorder the C8 and the C9-C10 segments (Smol = 0.15 and 0.08, respectively) but leave the C6-C7 double bond relatively immobile (Smol = 0.55; all at 40 degrees C). It is suggested that acyl chains containing three or more double bonds could not undergo a similar jump motion and therefore would be highly ordered and not "fluid" as is generally thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号