首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prior studies suggest that the hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of the lipids in pulmonary surfactant to an air-water interface by stabilizing a negatively curved rate-limiting structure that is intermediate between bilayer vesicles and the surface film. This model predicts that other peptides capable of stabilizing negative curvature should also promote lipid adsorption. Previous reports have shown that under appropriate conditions, gramicidin-A (GrA) induces dioleoyl phosphatidylcholine (DOPC), but not dimyristoyl phosphatidylcholine (DMPC), to form the negatively curved hexagonal-II (HII) phase. The studies reported here determined if GrA would produce the same effects on adsorption of DMPC and DOPC that the hydrophobic surfactant proteins have on the surfactant lipids. Small angle X-ray scattering and 31P-nuclear magnetic resonance confirmed that at the particular conditions used to study adsorption, GrA induced DOPC to form the HII phase, but DMPC remained lamellar. Measurements of surface tension showed that GrA in vesicles produced a general increase in the rate of adsorption for both phospholipids. When restricted to the interface, however, in preexisting films, GrA with DOPC, but not with DMPC, replicated the ability of the surfactant proteins to promote adsorption of vesicles containing only the lipids. The correlation between the structural and functional effects of GrA with the two phospholipids, and the similar effects on adsorption of GrA with DOPC and the hydrophobic surfactant proteins with the surfactant lipids fit with the model in which SP-B and SP-C facilitate adsorption by stabilizing a rate-limiting intermediate with negative curvature.  相似文献   

2.
The hydrophobic surfactant proteins, SP-B and SP-C, greatly accelerate the adsorption of the surfactant lipids to an air/water interface. Previous studies of factors that affect curvature suggest that vesicles may adsorb via a rate-limiting structure with prominent negative curvature, in which the hydrophilic face of the lipid leaflets is concave. To determine if SP-B and SP-C might promote adsorption by inducing negative curvature, we used small-angle x-ray scattering to test whether the physiological mixture of the two proteins affects the radius of cylindrical monolayers in the inverse hexagonal phase. With dioleoyl phosphatidylethanolamine alone, the proteins had no effect on the hexagonal lattice constant, suggesting that the proteins fail to insert into the cylindrical monolayers. The surfactant lipids also contain ∼10% anionic phospholipids, which might allow incorporation of the cationic proteins. With 10% of the anionic dioleoyl phosphatidylglycerol added to dioleoyl phosphatidylethanolamine, the proteins induced a dose-related decrease in the hexagonal lattice constant. At 30°C, the reduction reached a maximum of 8% relative to the lipids alone at ∼1% (w/w) protein. Variation of NaCl concentration tested whether the effect of the protein represented a strictly electrostatic effect that screening by electrolyte would eliminate. With concentrations up to 3 M NaCl, the dose-related change in the hexagonal lattice constant decreased but persisted. Measurements at different hydrations determined the location of the pivotal plane and proved that the change in the lattice constant produced by the proteins resulted from a shift in spontaneous curvature. These results provide the most direct evidence yet that the surfactant proteins can induce negative curvature in lipid leaflets. This finding supports the model in which the proteins promote adsorption by facilitating the formation of a negatively curved, rate-limiting structure.  相似文献   

3.
Schram V  Hall SB 《Biophysical journal》2001,81(3):1536-1546
We determined the influence of the two hydrophobic proteins, SP-B and SP-C, on the thermodynamic barriers that limit adsorption of pulmonary surfactant to the air-water interface. We compared the temperature and concentration dependence of adsorption, measured by monitoring surface tension, between calf lung surfactant extract (CLSE) and the complete set of neutral and phospholipids (N&PL) without the proteins. Three stages generally characterized the various adsorption isotherms: an initial delay during which surface tension remained constant, a fall in surface tension at decreasing rates, and, for experiments that reached approximately 40 mN/m, a late acceleration of the fall in surface tension to approximately 25 mN/m. For the initial change in surface tension, the surfactant proteins accelerated adsorption for CLSE relative to N&PL by more than ten-fold, reducing the Gibbs free energy of transition (DeltaG(O)) from 119 to 112 kJ/mole. For the lipids alone in N&PL, the enthalpy of transition (DeltaH(O), 54 kJ/mole) and entropy (-T. DeltaS, 65 kJ/mole at 37 degrees C) made roughly equal contributions to DeltaG(O). The proteins in CLSE had little effect on -T. DeltaS(O) (68 kJ/mole), but lowered DeltaG(O) for CLSE by reducing DeltaH(O) (44 kJ/mole). Models of the detailed mechanisms by which the proteins facilitate adsorption must meet these thermodynamic constraints.  相似文献   

4.
The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism.  相似文献   

5.
Pattle, who provided some of the initial direct evidence for the presence of pulmonary surfactant in the lung, was also the first to show surfactant was susceptible to proteases such as trypsin. Pattle concluded surfactant was a lipoprotein. Our group has investigated the roles of the surfactant proteins (SP-) SP-A, SP-B, and SP-C using a captive bubble tensiometer. These studies show that SP-C>SP-B>SP-A in enhancing surfactant lipid adsorption (film formation) to the equilibrium surface tension of approximately 22-25 mN/m from the 70 mN/m of saline at 37 degrees C. In addition to enhancing adsorption, surfactant proteins can stabilize surfactant films so that lateral compression induced through surface area reduction results in the lowering of surface tension (gamma) from approximately 25 mN/m (equilibrium) to values near 0 mN/m. These low tensions, which are required to stabilize alveoli during expiration, are thought to arise through exclusion of fluid phospholipids from the surface monolayer, resulting in an enrichment in the gel phase component dipalmitoylphosphatidylcholine (DPPC). The results are consistent with DPPC enrichment occurring through two mechanisms, selective DPPC adsorption and preferential squeeze-out of fluid components such as unsaturated phosphatidylcholine (PC) and phosphatidylglycerol (PG) from the monolayer. Evidence for selective DPPC adsorption arises from experiments showing that the surface area reductions required to achieve gamma near 0 mN/m with DPPC/PG samples containing SP-B or SP-A plus SP-B films were less than those predicted for a pure squeeze-out mechanism. Surface activity improves during quasi-static or dynamic compression-expansion cycles, indicating the squeeze-out mechanism also occurs. Although SP-C was not as effective as SP-B in promoting selective DPPC adsorption, this protein is more effective in promoting the reinsertion of lipids forced out of the surface monolayer following overcompression at low gamma values. Addition of SP-A to samples containing SP-B but not SP-C limits the increase in gamma(max) during expansion. It is concluded that the surfactant apoproteins possess distinct overlapping functions. SP-B is effective in selective DPPC insertion during monolayer formation and in PG squeeze-out during monolayer compression. SP-A can promote adsorption during film formation, particularly in the presence of SP-B. SP-C appears to have a superior role to SP-B in formation of the surfactant reservoir and in reinsertion of collapse phase lipids.  相似文献   

6.
Surface activity and sensitivity to inhibition from phospholipase A2 (PLA2), lysophosphatidylcholine (LPC), and serum albumin were studied for a synthetic C16:0 diether phosphonolipid (DEPN-8) combined with 1.5% by weight of mixed hydrophobic surfactant proteins (SP)-B/C purified from calf lung surfactant extract (CLSE). Pure DEPN-8 had better adsorption and film respreading than the major lung surfactant phospholipid dipalmitoyl phosphatidylcholine and reached minimum surface tensions <1 mN/m under dynamic compression on the Wilhelmy balance and on a pulsating bubble surfactometer (37 degrees C, 20 cycles/min, 50% area compression). DEPN-8 + 1.5% SP-B/C exhibited even greater adsorption and had overall dynamic surface tension lowering equal to CLSE on the bubble. In addition, films of DEPN-8 + 1.5% SP-B/C on the Wilhelmy balance had better respreading than CLSE after seven (but not two) cycles of compression-expansion at 23 degrees C. DEPN-8 is structurally resistant to degradation by PLA2, and DEPN-8 + 1.5% SP-B/C maintained high adsorption and dynamic surface activity in the presence of this enzyme. Incubation of CLSE with PLA2 led to chemical degradation, generation of LPC, and reduced surface activity. DEPN-8 + 1.5% SP-B/C was also more resistant than CLSE to direct biophysical inhibition by LPC, and the two were similar in their sensitivity to biophysical inhibition by serum albumin. These findings indicate that synthetic surfactants containing DEPN-8 combined with surfactant proteins or related synthetic peptides have potential utility for treating surfactant dysfunction in inflammatory lung injury.  相似文献   

7.
The lung surfactant proteins SP-B and SP-C are pivotal for fast and reversible lipid insertion at the air/liquid interface, a prerequisite for functional lung activity. We used a model system consisting of a preformed monolayer at the air/liquid interface supplemented with surfactant protein SP-B or SP-C and unilamellar vesicles injected into the subphase of a film balance. The content of SP-B or SP-C was similar to that found in lung lavage. In order to elucidate distinct steps of lipid insertion, we measured the time-dependent pressure increase as a function of the initial surface pressure, the temperature and the phosphatidylglycerol content by means of surface tension measurements and scanning force microscopy (SFM). The results of the film balance study are indicative of a two-step mechanism in which initial adsorption of vesicles to the protein-containing monolayer is followed by rupture and integration of lipid material. Furthermore, we found that vesicle adsorption on a preformed monolayer supplemented with SP-B or SP-C is strongly enhanced by negatively charged lipids as provided by DPPG and the presence of Ca2+ ions in the subphase. Hence, long-range electrostatic interactions are thought to play an important role in attracting vesicles to the surface, being the initial step in replenishment of lipid material. While insertion into the monolayer is independent of the type of protein SP-B or SP-C, initial adsorption is faster in the presence of SP-B than SP-C. We propose that the preferential interaction between SP-B and negatively charged DPPG leads to accumulation of negative charges in particular regions, causing strong adhesion between DPPG-containing vesicles and the monolayer mediated by Ca2+ ions, which eventually causes flattening and rupture of attached liposomes as observed by in situ SFM.  相似文献   

8.
The interaction of the low molecular weight group of surfactant-associated proteins, SP 5-18, with the major phospholipids of pulmonary surfactant was studied by fluorescence measurements of liposomal permeability and fusion, morphological studies, and surface activity measurements. The ability of SP 5-18 to increase the permeability of large unilamellar lipid vesicles was enhanced by the presence of negatively charged phospholipid. The permeability of these vesicles increased as the protein concentration was raised and the pH was lowered. SP 5-18 also induced leakage from liposomes made both from a synthetic surfactant lipid mixture and from lipids separated from SP 5-18 during its purification from canine sources. When SP 5-18 was added to egg phosphatidylglycerol liposomes, the population of liposomes which became permeable leaked all encapsulated contents, while the remaining liposomes did not leak at all. The extent of leakage was higher in the presence of 3 mM calcium. SP 5-18 also induced lipid mixing between two populations of egg phosphatidylglycerol liposomes in the presence of 3 mM calcium, as monitored by resonance energy transfer between two different fluorescent lipid probes, N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine and N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine. Negative-staining electron microscopy showed that the addition of SP 5-18 and 3 mM calcium produced vesicles twice the size of control egg phosphatidylglycerol liposomes. In addition, surface balance measurements revealed that the adsorption of liposomal lipids to an air/water interface was enhanced by the presence of SP 5-18, negatively charged phospholipids, and 3 mM calcium. These observations suggest a similar lipid dependence for the interactions observed in the fluorescence and adsorption experiments.  相似文献   

9.
The role of surfactant proteins in DPPC enrichment of surface films   总被引:2,自引:0,他引:2       下载免费PDF全文
A pressure-driven captive bubble surfactometer was used to determine the role of surfactant proteins in refinement of the surface film. The advantage of this apparatus is that surface films can be spread at the interface of an air bubble with a different lipid/protein composition than the subphase vesicles. Using different combinations of subphase vesicles and spread surface films a clear correlation between dipalmitoylphosphatidylcholine (DPPC) content and minimum surface tension was observed. Spread phospholipid films containing 50% DPPC over a subphase containing 50% DPPC vesicles did not form stable surface films with a low minimum surface tension. Addition of surfactant protein B (SP-B) to the surface film led to a progressive decrease in minimum surface tension toward 1 mN/m upon cycling, indicating an enrichment in DPPC. Surfactant protein C (SP-C) had no such detectable refining effect on the film. Surfactant protein A (SP-A) had a positive effect on refinement when it was present in the subphase. However, this effect was only observed when SP-A was combined with SP-B and incubated with subphase vesicles before addition to the air bubble containing sample chamber. Comparison of spread films with adsorbed films indicated that refinement induced by SP-B occurs by selective removal of non-DPPC lipids upon cycling. SP-A, combined with SP-B, induces a selective adsorption of DPPC from subphase vesicles into the surface film. This is achieved by formation of large lipid structures which might resemble tubular myelin.  相似文献   

10.
This study examines the direct inhibitory effects of Pneumocystis carinii (Pc) organisms and chemical components on the surface activity and composition of whole calf lung surfactant (WLS) and calf lung surfactant extract (CLSE) in vitro. Incubation of WLS suspensions with intact Pc organisms (10(7) per milligram of surfactant phospholipid) did not significantly alter total phospholipid levels or surfactant protein A content. Incubation with intact Pc organisms also did not impair dynamic surface tension lowering in suspensions of WLS or centrifuged large surfactant aggregates on a bubble surfactometer (37 degrees C, 20 cycles/min, 0.5 and 2.5 mg phospholipid/ml). However, exposure of WLS or CLSE to disrupted (sonicated) Pc organisms led to severe detriments in activity, with minimum surface tensions of 17-19 mN/m vs. <1 mN/m for surfactants alone. Extracted hydrophobic chemical components from Pc (98.8% lipids, 0.1 mM) reduced the surface activity of WLS and CLSE similarly to sonicated Pc organisms, whereas extracted hydrophilic chemical components from Pc (primarily proteins) had only minor effects on surface tension lowering. These results indicate that in addition to surfactant dysfunction induced by inflammatory lung injury and edema-derived inhibitors in Pc pneumonia, disrupted Pc organisms in the alveolar lumen also have the potential to directly inhibit endogenous and exogenous lung surfactants in affected patients.  相似文献   

11.
To investigate the mechanisms by which vesicles of pulmonary surfactant adsorb to an air-liquid interface, we measured the effect of different phospholipids and of their concentration both in the subphase and at the interface on this process. Adsorbing vesicles contained the hydrophobic surfactant proteins mixed with the following four sets of surfactant phospholipids that varied the content of anionic headgroups and mixed acyl chains independently: the complete set of purified phospholipids (PPL) from calf surfactant; modified PPL (mPPL) from which the anionic phospholipids were removed; a mixture of dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylglycerol (DPPG) (9:1, mol:mol); and DPPC alone. The initial reduction in surface tension depended strongly on the anionic phospholipids and the subphase concentration. The acyl groups had no effect. Adsorption beyond the initial stage depended more on the mixed acyl groups, became increasingly independent of subphase concentration, and was determined instead by the interfacial concentration of the surface film. The different constituents produced the same effects in vesicles adsorbing to a clean interface or in a preexisting film to which vesicles of SP:DPPC adsorbed. Adsorption for vesicles of SP:PPL adsorbing to DPPC or of SP:DPPC to PPL above a certain threshold surface concentration followed exactly the same isotherm. Our results fit best with a two-step model for adsorption. The anionic phospholipids first promote the initial juxtaposition of vesicles to the interface. Compounds with mixed acyl constituents at the point of contact between vesicle and interface then facilitate fusion with the surface.  相似文献   

12.
Two small hydrophobic proteins, SP-B and SP-C, are responsible for rapid adsorption of pulmonary surfactant to the air/water interface. Despite their physiological importance, the number of protein molecules required to trigger an absorption event remains unknown. To investigate this issue, we varied the protein content of calf lung surfactant extract (CLSE) by dilution with protein-depleted surfactant lipids (neutral and phospholipids, N&PL). Vesicles of a constant size and of composition ranging between 100% N&PL and 100% CLSE were generated by probe sonication. Their adsorption kinetics to an air/water interface were monitored at different temperatures using a Wilhelmy plate to measure surface tension. When plotted versus protein concentration, the adsorption rates during the initial change in surface tension exhibit a diphasic behavior, first increasing rapidly and linearly between 0% and 25% CLSE, and then more slowly at higher concentrations. Direct linearity at low protein content (0-5% CLSE ratio) was confirmed at 37 degrees C. These observations argue against cooperative behavior, for which the adsorption rate would first rise slowly with the protein content, and then increase suddenly once the critical number of proteins on each vesicle is reached. The apparent activation energy E(a) and the free energy of activation DeltaG(0)*, calculated from the temperature dependence of adsorption, further support the view that at least the early stages of protein-induced surfactant adsorption proceeds through a sequence of events involving not several, but a single surfactant protein.  相似文献   

13.
The content-dependent activity of surfactant protein (SP)-B was studied in mixtures with dipalmitoyl phosphatidylcholine (DPPC), synthetic lipids (SL), and purified phospholipids (PPL) from calf lung surfactant extract (CLSE). At fixed SP-B content, adsorption and dynamic surface tension lowering were ordered as PPL/SP-B approximately SL/SP-B > DPPC/SP-B. All mixtures were similar in having increased surface activity as SP-B content was incrementally raised from 0.05 to 0.75% by weight. SP-B had small but measurable effects on interfacial properties even at very low levels < or =0.1% by weight. PPL/SP-B (0.75%) had the highest adsorption and dynamic surface activity, approaching the behavior of CLSE. All mixtures containing 0.75% SP-B reached minimum surface tensions <1 mN/m in pulsating bubble studies at low phospholipid concentration (1 mg/ml). Mixtures of PPL or SL with SP-B (0.5%) also had minimum surface tensions <1 mN/m at 1 mg/ml, whereas DPPC/SP-B (0.5%) reached <1 mN/m at 2.5 mg/ml. Physiological activity also was strongly dependent on SP-B content. The ability of instilled SL/SP-B mixtures to improve surfactant-deficient pressure-volume mechanics in excised lavaged rat lungs increased as SP-B content was raised from 0.1 to 0.75% by weight. This study emphasizes the crucial functional activity of SP-B in lung surfactants. Significant differences in SP-B content between exogenous surfactants used to treat respiratory disease could be associated with substantial activity variations.  相似文献   

14.
Two small hydrophobic proteins, SP-B and SP-C, are responsible for rapid adsorption of pulmonary surfactant to the air/water interface. Despite their physiological importance, the number of protein molecules required to trigger an absorption event remains unknown. To investigate this issue, we varied the protein content of calf lung surfactant extract (CLSE) by dilution with protein-depleted surfactant lipids (neutral and phospholipids, N&PL). Vesicles of a constant size and of composition ranging between 100% N&PL and 100% CLSE were generated by probe sonication. Their adsorption kinetics to an air/water interface were monitored at different temperatures using a Wilhelmy plate to measure surface tension. When plotted versus protein concentration, the adsorption rates during the initial change in surface tension exhibit a diphasic behavior, first increasing rapidly and linearly between 0% and 25% CLSE, and then more slowly at higher concentrations. Direct linearity at low protein content (0-5% CLSE ratio) was confirmed at 37 °C. These observations argue against cooperative behavior, for which the adsorption rate would first rise slowly with the protein content, and then increase suddenly once the critical number of proteins on each vesicle is reached. The apparent activation energy Ea and the free energy of activation ΔG0*, calculated from the temperature dependence of adsorption, further support the view that at least the early stages of protein-induced surfactant adsorption proceeds through a sequence of events involving not several, but a single surfactant protein.  相似文献   

15.
During exhalation, the surfactant film of lipids and proteins that coats the alveoli in the lung is compressed to high surface pressures, and can remain metastable for prolonged periods at pressures approaching 70 mN/m. Monolayers of calf lung surfactant extract (CLSE), however, collapse in vitro, during an initial compression at approximately 45 mN/m. To gain information on the source of this discrepancy, we investigated how monolayers of CLSE collapse from the interface. Observations with fluorescence, Brewster angle, and light scattering microscopies show that monolayers containing CLSE, CLSE-cholesterol (20%), or binary mixtures of dipalmitoyl phosphatidylcholine(DPPC)-dihydrocholesterol all form bilayer disks that reside above the monolayer. Upon compression and expansion, lipids flow continuously from the monolayer into the disks, and vice versa. In several respects, the mode of collapse resembles the behavior of other amphiphiles that form smectic liquid-crystal phases. These findings suggest that components of surfactent films must collapse collectively rather than being squeezed out individually.  相似文献   

16.
SP-B and SP-C alter diffusion in bilayers of pulmonary surfactant   总被引:2,自引:0,他引:2       下载免费PDF全文
Schram V  Hall SB 《Biophysical journal》2004,86(6):3734-3743
The hydrophobic proteins SP-B and SP-C promote rapid adsorption of pulmonary surfactant to an air/water interface by an unknown mechanism. We tested the hypothesis that these proteins accelerate adsorption by disrupting the structure of the lipid bilayer, either by a generalized increase in fluidity or by a focal induction of interfacial boundaries within the bilayer. We used fluorescence recovery after photobleaching to measure diffusion of nitrobenzoxadiazolyl-dimyristoyl-phosphatidylethanolamine between 11 and 54 degrees C in multilayers containing the complete set of lipids and proteins in calf lung surfactant extract (CLSE), or the complete set of neutral and phospholipids without the proteins. Above 35 degrees C, Arrhenius plots of diffusion were parallel for CLSE and neutral and phospholipids, but shifted to lower values for CLSE, suggesting that the proteins rigidify the lipid bilayer rather than producing the proposed increase in membrane fluidity. The slopes of the Arrhenius plots for CLSE were steeper below 35 degrees C, suggesting that the proteins induce phase separation at that temperature. The mobile fraction fell below 27 degrees C, consistent with a percolation threshold of coexisting gel and liquid-crystal phases. The induction of lateral phase separation in CLSE, however, does not correlate with apparent changes in adsorption kinetics at this temperature. Our results suggest that SP-B and SP-C accelerate adsorption through a mechanism other than the disruption of surfactant bilayers, possibly by stabilizing a high-energy, highly curved adsorption intermediate.  相似文献   

17.
The hydrophobic surfactant proteins SP-B and SP-C promote rapid adsorption of pulmonary surfactant to an air/water interface. Previous evidence suggests that they achieve this effect by facilitating the formation of a rate-limiting negatively curved stalk between the vesicular bilayer and the interface. To determine whether the proteins can alter the curvature of lipid leaflets, we used x-ray diffraction to investigate how the physiological mixture of these proteins affects structures formed by 1-palmitoyl-2-oleoyl phosphatidylethanolamine, which by itself undergoes the lamellar-to-inverse hexagonal phase transition at 71°C. In amounts as low as 0.03% (w:w) and at temperatures as low as 57°C, the proteins induce formation of bicontinuous inverse cubic phases. The proteins produce a dose-related shift of diffracted intensity to the cubic phases, with minimal evidence of other structures above 0.1% and 62°C, but no change in the lattice-constants of the lamellar or cubic phases. The induction of the bicontinuous cubic phases, in which the individual lipid leaflets have the same saddle-shaped curvature as the hypothetical stalk-intermediate, supports the proposed model of how the surfactant proteins promote adsorption.  相似文献   

18.
The inhibitory effects of oleic acid (OA) on the surface activity of pulmonary surfactant were characterized by use of the oscillating bubble surfactometer, the Wilhelmy balance, and excised rat lungs. Oscillating bubble studies showed that OA prevented lavaged calf surfactant [0.5 mM phospholipid (PL)] from lowering surface tension below 15 mN/m at or above a molar ratio of OA/PL = 0.5. In contrast to inhibition of surfactant by plasma proteins, increasing the surfactant concentration did not eliminate inhibition by oleic acid, which occurred at OA/PL greater than 0.67 on the oscillating bubble even at surfactant concentrations of 1.5 and 12 mM PL. Studies of surfactant adsorption showed that preformed films of OA had little effect on the adsorption of pulmonary surfactant. Wilhelmy balance studies showed that OA did interfere with the ability of spread films of surfactant to reach low surface tensions during dynamic compression. Further balance experiments with binary films of OA and dipalmitoyl phosphatidylcholine showed that these compounds were miscible in surface films. Together these findings suggested that OA inhibited pulmonary surfactant activity by disrupting the rigid interfacial film responsible for the generation of very low surface tension during dynamic compression. Mechanical studies in excised rat lungs showed that instillation of OA gave altered deflation pressure-volume characteristics with decreased quasi-static compliance, indicating disruption of pulmonary surfactant function in situ. This alteration of mechanics occurred without major changes in the composition of lavaged PLs or in the tissue compliance of the lungs defined by mechanical measurements during inflation-deflation with saline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Pulmonary surfactant provides for a lipid rich film at the lung air-water interface, which prevents alveolar collapse at the end of expiration. The films are likely enriched in the major surfactant component dipalmitoylphosphatidylcholine (DPPC), which, due to its saturated fatty acid chains, can withstand high surface pressures up to 70 mN/m, thereby reducing surface tension in that interface to very low values (close to 1 mN/m). Despite many experimental measurements in situ, as well as in vitro for native lung surfactant films, the exact mechanism by which other fluid lipid components of surfactant, in combination with surfactant proteins, allow for such low surface tension values to be reached is not well understood. We have performed molecular dynamics simulation of films composed of DPPC alone and in mixtures with other fluid and acidic lipid components of surfactant at the high densities relevant to the low surface tension regime. 10-50 ns simulations were performed with the software GROMACS, with 40-64 lipids molecules plus water, using 5 different lipid compositions and 7 different areas per lipid. The primary focus was to learn how differences in lipid composition affect the response of the monolayer to compression, such as the development of curvature or the loss of lipids to the exterior of the monolayer. The systems studied exhibit features of two of the major schools of thought of lung surfactant mechanisms, in that although unsaturated lipids did not appear to prevent the monolayers from achieving high surface pressure, POPG did appear to be selectively squeezed out of the DPPC/POPG monolayers at high lipid densities.  相似文献   

20.
A molecular film of pulmonary surfactant strongly reduces the surface tension of the lung epithelium-air interface. Human pulmonary surfactant contains 5-10% cholesterol by mass, among other lipids and surfactant specific proteins. An elevated proportion of cholesterol is found in surfactant, recovered from acutely injured lungs (ALI). The functional role of cholesterol in pulmonary surfactant has remained controversial. Cholesterol is excluded from most pulmonary surfactant replacement formulations, used clinically to treat conditions of surfactant deficiency. This is because cholesterol has been shown in vitro to impair the surface activity of surfactant even at a physiological level. In the current study, the functional role of cholesterol has been re-evaluated using an improved method of evaluating surface activity in vitro, the captive bubble surfactometer (CBS). Cholesterol was added to one of the clinically used therapeutic surfactants, BLES, a bovine lipid extract surfactant, and the surface activity evaluated, including the adsorption rate of the substance to the air-water interface, its ability to produce a surface tension close to zero and the area compression needed to obtain that low surface tension. No differences in the surface activity were found for BLES samples containing either none, 5 or 10% cholesterol by mass with respect to the minimal surface tension. Our findings therefore suggest that the earlier-described deleterious effects of physiological amounts of cholesterol are related to the experimental methodology. However, at 20%, cholesterol effectively abolished surfactant function and a surface tension below 15 mN/m was not obtained. Inhibition of surface activity by cholesterol may therefore partially or fully explain the impaired lung function in the case of ALI. We discuss a molecular mechanism that could explain why cholesterol does not prevent low surface tension of surfactant films at physiological levels but abolishes surfactant function at higher levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号