首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most organisms performing oxygenic photosynthesis contain either cytochrome c 6 or plastocyanin, or both, to transfer electrons from cytochrome b 6-f to photosystem I. Even though plastocyanin has superseded cytochrome c 6 along evolution, plants contain a modified cytochrome c 6, the so called cytochrome c 6A, whose function still remains unknown. In this article, we describe a second cytochrome c 6 (the so called cytochrome c 6-like protein), which is found in some cyanobacteria but is phylogenetically more related to plant cytochrome c 6A than to cyanobacterial cytochrome c 6. In this article, we conclude that the cytochrome c 6-like protein is a putative electron donor to photosystem I, but does play a role different to that of cytochrome c 6 and plastocyanin as it cannot accept electrons from cytochrome f. The existence of this third electron donor to PSI could explain why some cyanobacteria are able to grow photoautotrophically in the absence of both cytochrome c 6 and plastocyanin. In any way, the Cyt c 6-like protein from Nostoc sp. PCC 7119 would be potentially utilized for the biohydrogen production, using cell-free photosystem I catalytic nanoparticles.  相似文献   

2.
We have shown earlier that microsomal cytochrome b 5 can form a specific complex with mitochondrial cytochrome P450 (cytochrome P450scc). The formation of the complex between these two heme proteins was proved spectrophotometrically, by affinity chromatography on immobilized cytochrome b 5, and by measuring the cholesterol side-chain cleavage activity of cytochrome P450scc in a reconstituted system in the presence of cytochrome b 5. To further study the mechanism of interaction of these heme proteins and evaluate the role of negatively charged amino acid residues Glu42, Glu48, and Asp65 of cytochrome b 5, which are located at the site responsible for interaction with electron transfer partners, we used sitedirected mutagenesis to replace residues Glu42 and Glu48 with lysine and residue Asp65 with alanine. The resulting mutant forms of cytochrome b 5 were expressed in E. coli, and full-length and truncated forms (shortened from the C-terminal sequence due to cleavage of 40 amino acid residues) of these cytochrome b 5 mutants were purified. Addition of the truncated forms of cytochrome b 5 (which do not contain the hydrophobic C-terminal sequence responsible for interaction with the membrane) to the reconstituted system containing cytochrome P450scc caused practically no stimulation of catalytic activity, indicating an important role of the hydrophobic fragment of cytochrome b 5 in its interaction with cytochrome P450scc. However, full-length cytochrome b 5 and the full-length Glu48Lys and Asp65Ala mutant forms of cytochrome b 5 stimulated the cholesterol side-chain cleavage reaction catalyzed by cytochrome P450scc by 100%, suggesting that residues Glu48 and Asp65 of cytochrome b 5 are not directly involved in its interaction with cytochrome P450scc. The replacement of Glu42 for lysine, however, made the Glu42Lys mutant form of cytochrome b 5 about 40% less effective in stimulation of the cholesterol side-chain cleavage activity of cytochrome P450scc, indicating that residue Glu42 of cytochrome b 5 is involved in electrostatic interactions with cytochrome P450scc. Residues Glu42 and Glu48 of cytochrome b 5 appear to participate in electrostatic interaction with microsomal type cytochrome P450.  相似文献   

3.
Cytochrome P450 2B4 is a microsomal protein with a multi-step reaction cycle similar to that observed in the majority of other cytochromes P450. The cytochrome P450 2B4-substrate complex is reduced from the ferric to the ferrous form by cytochrome P450 reductase. After binding oxygen, the oxyferrous protein accepts a second electron which is provided by either cytochrome P450 reductase or cytochrome b5. In both instances, product formation occurs. When the second electron is donated by cytochrome b5, catalysis (product formation) is ∼10- to 100-fold faster than in the presence of cytochrome P450 reductase. This allows less time for side product formation (hydrogen peroxide and superoxide) and improves by ∼15% the coupling of NADPH consumption to product formation. Cytochrome b5 has also been shown to compete with cytochrome P450 reductase for a binding site on the proximal surface of cytochrome P450 2B4. These two different effects of cytochrome b5 on cytochrome P450 2B4 reactivity can explain how cytochrome b5 is able to stimulate, inhibit, or have no effect on cytochrome P450 2B4 activity. At low molar ratios (<1) of cytochrome b5 to cytochrome P450 reductase, the more rapid catalysis results in enhanced substrate metabolism. In contrast, at high molar ratios (>1) of cytochrome b5 to cytochrome P450 reductase, cytochrome b5 inhibits activity by binding to the proximal surface of cytochrome P450 and preventing the reductase from reducing ferric cytochrome P450 to the ferrous protein, thereby aborting the catalytic reaction cycle. When the stimulatory and inhibitory effects of cytochrome b5 are equal, it will appear to have no effect on the enzymatic activity. It is hypothesized that cytochrome b5 stimulates catalysis by causing a conformational change in the active site, which allows the active oxidizing oxyferryl species of cytochrome P450 to be formed more rapidly than in the presence of reductase.  相似文献   

4.
5.
Research on photosynthetic electron transfer closely parallels that of other electron transfer pathways and in many cases they overlap. Thus, the first bacterial cytochrome to be characterized, called cytochrome c 2, is commonly found in non-sulfur purple photosynthetic bacteria and is a close homolog of mitochondrial cytochrome c. The cytochrome bc 1 complex is an integral part of photosynthetic electron transfer yet, like cytochrome c 2, was first recognized as a respiratory component. Cytochromes c 2 mediate electron transfer between the cytochrome bc 1 complex and photosynthetic reaction centers and cytochrome a-type oxidases. Not all photosynthetic bacteria contain cytochrome c 2; instead it is thought that HiPIP, auracyanin, Halorhodospira cytochrome c551, Chlorobium cytochrome c555, and cytochrome c 8 may function in a similar manner as photosynthetic electron carriers between the cytochrome bc 1 complex and reaction centers. More often than not, the soluble or periplasmic mediators do not interact directly with the reaction center bacteriochlorophyll, but require the presence of membrane-bound intermediates: a tetraheme cytochrome c in purple bacteria and a monoheme cytochrome c in green bacteria. Cyclic electron transfer in photosynthesis requires that the redox potential of the system be delicately poised for optimum efficiency. In fact, lack of redox poise may be one of the defects in the aerobic phototrophic bacteria. Thus, large concentrations of cytochromes c 2 and c′ may additionally poise the redox potential of the cyclic photosystem of purple bacteria. Other cytochromes, such as flavocytochrome c (FCSD or SoxEF) and cytochrome c551 (SoxA), may feed electrons from sulfide, sulfur, and thiosulfate into the photosynthetic pathways via the same soluble carriers as are part of the cyclic system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Cyanobacterial thylakoids catalyze both photosynthetic and respiratory activities. In a photosystem I-less Synechocystis sp. PCC 6803 strain, electrons generated by photosystem II appear to be utilized by cytochrome oxidase. To identify the lumenal electron carriers (plastocyanin and/or cytochromes c 553, c 550, and possibly c M) that are involved in transfer of photosystem II-generated electrons to the terminal oxidase, deletion constructs for genes coding for these components were introduced into a photosystem I-less Synechocystis sp. PCC 6803 strain, and electron flow out of photosystem II was monitored in resulting strains through chlorophyll fluorescence yields. Loss of cytochrome c 553 or plastocyanin, but not of cytochrome c 550, decreased the rate of electron flow out of photosystem II. Surprisingly, cytochrome c M could not be deleted in a photosystem I-less background strain, and also a double-deletion mutant lacking both plastocyanin and cytochromec 553 could not be obtained. Cytochrome c M has some homology with the cytochrome c-binding regions of the cytochromecaa3 -type cytochrome oxidase from Bacillus spp. and Thermus thermophilus. We suggest that cytochrome c M is a component of cytochrome oxidase in cyanobacteria that serves as redox intermediate between soluble electron carriers and the cytochromeaa3 complex, and that either plastocyanin or cytochrome c 553 can shuttle electrons from the cytochrome b6f complex to cytochrome c M.  相似文献   

7.
Eric Lam  Richard Malkin   《BBA》1982,682(3):378-386
Photoreactions of cytochrome b6 have been studied using resolved chloroplast electron-transfer complexes. In the presence of Photosystem (PS) II and the cytochrome b6-f complex, photoreduction of the cytochrome can be observed. No soluble components are required for this reaction. Cytochrome b6 photoreduction was found to be inhibited by quinone analogs, which inhibit at the Rieske iron-sulfur center of the cytochrome complex, by the addition of ascorbate and by depletion of the Rieske center and bound plastoquinone from the cytochrome complex. Photoreduction of cytochrome b6 can also be demonstrated in the presence of the cytochrome complex and PS I. This photoreduction requires plastocyanin and a low-potential electron donor, such as durohydroquinone. Cytochrome b6 photoreduction in the presence of PS I is inhibited by quinone analogs which interact with the Rieske iron-sulfur center. These results are discussed in terms of a Q-cycle mechanism in which plastosemiquinone serves as the reductant for cytochrome b6 via an oxidant-induced reductive pathway.  相似文献   

8.
The triphasic course previously reported for the reduction of cytochrome b in the succinate-cytochrome c reductase by either succinate or duroquinol has been shown to be dependent on the redox state of the enzyme preparation. Prior reduction with increasing concentrations of ascorbate leads to partial reduction of cytochrome c1, and a gradual decrease in the magnitude of the oxidation phase of cytochrome b. At an ascorbate concentration sufficient to reduce cytochrome c1 almost completely, the reduction of cytochrome b by either succinate or duroquinol becomes monophasic. Owing to the presence of a trace amount of cytochrome oxidase in the reductase preparation employed, the addition of cytochrome c makes electron flow from substrate to oxygen possible. Under such circumstances, the addition of a limited amount of either succinate or duroquinol leads to a multiphasic reduction and oxidation of cytochrome b. After the initial three phases as described previously, cytochrome b becomes oxidized before cytochrome c1 when the limited amount of added substrate is being used up. However, at the end of the reaction when cytochrome ca is being rapidly oxidized, cytochrome b becomes again reduced. The above observations support a cyclic scheme of electron flow in which the reduction of cytochrome b proceeds by two different routes and its oxidation controlled by the redox state of a component of the respiratory chain.  相似文献   

9.
The reactivity between different cytochromes c purified from Pseudomonas aeruginosa cells grown aerobically in the absence of nitrate and isolated cytochromes co and baa 3 was determined. The P. aeruginosa cytochrome co reacted most rapidly with the membrane-bound cytochrome c-551 among three c-type cytochromes analyzed, whereas the cytochrome baa 3 reacted best with the membrane-bound cytochrome c-555. The results indicated that two terminal electron transfer systems are present in aerobic P. aeruginosa: one contains the cytochrome c-551 and cytochrome co, and the other contains the cytochrome c-555 and cytochrome baa 3.  相似文献   

10.
The involvement of cytochrome b5 in different cytochrome P450 monooxygenase and palmitoyl CoA desaturase activities in microsomes from insecticide-resistant (LPR) house flies was determined using a specific polyclonal antiserum developed against house fly cytochrome b5. Anti-b5 antiserum inhibited the reduction of cytochrome b5 by NADH-cytochrome b5 reductase. The antiserum also inhibited palmitoyl CoA desaturase, methoxycoumarin-O-demethylase (MCOD), ethoxycoumarin-O-deethylase (ECOD), and benzo[a]pyrene hydroxylase (aromatic hydrocarbon hydroxylase, AHH) activities. However, methoxyresorufin-O-demethylase (MROD) and ethoxyresorufin-O-deethy-lase (EROD) activities were not affected by this antiserum. These results demonstrate that cytochrome b5 is involved in fatty acyl CoA desaturase activities and in certain cytochrome P450 monooxygenase activities (i.e., MCOD, ECOD, and AHH) in LPR house fly microsomes. Other cytochrome P450 monooxygenase activities (i.e., MROD and EROD) may not require cytochrome b5. The results suggest that cytochrome b5 involvement with cytochrome P450 monooxygenase activities is dependent upon the cytochrome P450 isoform involved. © 1994 Wiley-Liss, Inc.  相似文献   

11.
Cytochrome a 1 c 1 was highly purified from Nitrobacter agilis. The cytochrome contained heme a and heme c of equimolar amount, and its reduced form showed absorption peaks at 587, 550, 521, 434 and 416 nm. Molecular weight per heme a of the cytochrome was estimated to be approx. 100,000–130,000 from the amino acid composition. A similar value was obtained by determining the protein content per heme a. The cytochrome molecule was composed of three subunits with molecular weights of 55,000, 29,000 and 19,000, respectively. The 29 kd subunit had heme c.Hemes a and c of cytochrome a 1 c 1 were reduced on addition of nitrite, and the reduced cytochrome was hardly autoxidizable. Exogenously added horse heart cytochrome c was reduced by nitrite in the presence of cytochrome a 1 c 1; K m values of cytochrome a 1 c 1 for nitrite and N. agilis cytochrome c were 0.5 mM and and 6 M, respectively. V max was 1.7 mol ferricytochrome c reduced/min·mol of cytochrome a 1 c 1 The pH optimum of the reaction was about 8. The nitrite-cytochrome c reduction catalyzed by cytochrome a 1 c 1 was 61% and 88% inhibited by 44M azide and cyanide, respectively. In the presence of 4.4 mM nitrate, the reaction was 89% inhibited. The nitrite-cytochrome c reduction catalysed by cytochrome a 1 c 1 was 2.5-fold stimulated by 4.5 mM manganous chloride. An activating factor which was present in the crude enzyme preparation stimulated the reaction by 2.8-fold, and presence of both the factor and manganous ion activated the reaction by 7-fold.Cytochrome a 1 c 1 showed also cytochrome c-nitrate reductase activity. The pH optimum of the reaction was about 6. The nitrate reductase activity was also stimulated by manganous ions and the activating factor.  相似文献   

12.
Using mouse probes specific to cytochrome cS and to cytochrome cT, the single-copy genes encoding these two proteins have been mapped to paralogous chromosomal regions by analysis of restriction fragment length variants in interspecific crosses. The gene for cytochrome cS, Cycs, maps to a position between Tcrb and Cbl-1 on proximal mouse Chromosome 6, and the gene for cytochrome cT, Cyct, maps between Gad-1 and Sfpi-1 on mouse Chromosome 2.  相似文献   

13.
Mutants with defective respiratory nitrite utilization (Nir- phenotype) were obtained by transposon Tn5 insertion into genomic DNA of the ZoBell strain of Pseudomonas stutzeri. Three representative mutants were characterized with respect to their activities of nitrite and nitric oxide reduction, cytochrome cd 1 content, and pattern of soluble c-type cytochromes. Mutant strain MK201 over-produced cytochrome c 552 about fourfold by comparison with the wild type, but possessed an in vitro functional cytochrome cd 1. Mutant strain MK202 lacked cytochrome cd 1 and, simultaneously, had low amounts of cytochrome c 552 and the split -peak c-type cytochrome. Strain MK203 synthesized nitrite reductase defective in the heme d 1 prosthetic group. Irrespective of these biochemically distinct Nir- phenotypes, all mutants preserved the nitric oxidereducing capability of the wild type. The mutant characteristics demonstrate that cytochrome cd 1 is essential for nitrite respiration of P. stutzeri and establish the presence of a nitric oxide-reducing system distinct from cytochrome cd 1. They also indicate the functional or regulatory interdependence of c-type cytochromes.  相似文献   

14.
Eduard Hurt  Günter Hauska   《BBA》1982,682(3):466-473
(1) Oxidant-induced reduction of cytochrome b6 is completely dependent on a reduced component within the isolated cytochrome b6-f complex. This component can be reduced by dithionite or by NADH/N-methylphenazonium methosulfate. It is a 2H+/2e carrier with a midpoint potential of 100 mV at pH 7.0, which is very similar to the midpoint potential of the plastoquinone pool in chloroplasts. (2) Oxidant-induced reduction of cytochrome b6 is stimulated by plastoquinol-1 as well as by plastoquinol-9. The midpoint potential of the transient reduction of cytochrome b6, however, was not shifted by added plastoquinol. (3) Quinone analysis of the purified cytochrome b6-f complex revealed about one plastoquinone per cytochrome f. The endogenous quinone is heterogeneous, a form more polar than plastoquinone-A, probably plastoquinone-C, dominating, This is different from the thylakoid membrane where plastoquinone-A is the main quinone. (4) The endogenous quinone can be extracted from the lyophilized cytochrome b6-f complex by acetone, but not by hydrocarbon solvents. Oxidant-induced reduction of cytochrome b6 was observed in the lyophilized and hexane-extracted complex, but was lost in the acetone-extracted complex. Reconstitution was achieved either with plastoquinol-1 or plastoquinol-9, suggesting that a plastoquinol molecule is involved in oxidant-induced reduction of cytochrome b6.  相似文献   

15.
Using a classical methodlogy of purification consisting of three chromatographic steps (Octyl-Sepharose, DEAE-cellulose, CM-cellulos) we have purified a new cytochrome P-450 from human liver microsomes. It was called cytochrome P-4509. It has been proven to be different from all preceedingly purified human liver microsomal cytochrome P-450 isozymes by its immunological and electrophoretical properties. It does not cross-react with any rat liver cytochrome P-450 and anti-cytochrome P-4509, does not recognize rat liver microsomes; thus this cytochrome P-4509 is specific to humans. This cytochrome P-450 isozyme exists in low amounts in human liver microsomes and exhibits an important quatitative polymorphism. In reconstituted system, cytochrome P-4509 is able to hydroxylate all substrates tested but is not specific on any; its exatc role in xenobiotic metabolism in man remains to be elucidated.  相似文献   

16.
Summary The mitochondria of the cyt-2-1, cya-3-16, cya-4-23 and 299-1 nuclear mutants and the [mi-3] and [exn-5] cytoplasmic mutants of Neurospora crassa are deficient in cytochrome aa 3, while the cyb-1-1 and cyb-2-1 mutants have mitochondrial b-cytochrome dificiencies. However, the mitochondria from cyb-1-1 cyt-2-1, cyb-1-1 [mi-3] and cyb-2-1 [mi-3] double mutants contain 30% to 50% of the amount of cytochrome aa 3 that is present in mitochondria from wild-type; i.e. cyb-1-1 and cyb-2-2 act as suppressors of the cytochrome aa 3 deficiency phenotypes that are associated with the cyt-2-1 and [mi-3] mutations.The production of cytochrome aa 3 can be induced in cyt-2-1 and [mi-3] by growing cells in medium containing antimycin A, an inhibitor of electron transport in the cytochrome bc 1 segment of the mitochondrial electrontransport chain. Moreover, the growth of the [mi-3] mutant is strongly stimulated by low concentrations of antimycin A. The induction of cytochrome aa 3 by antimycin treatments does not occur in [exn-5], cya-4-23 and 299-1 cells, but does take place in cya-3-16 cells.Although some of the seven constituent polypeptides of cytochrome aa 3 are present the mitochondria of [mi-3], the holoenzyme complex is not formed in the mutant. In contrast, the mitochondria of cyb-1-1 [mi-3] and cyb-2-2 [mi-3] double mutants contain a fully assembled cytochrome oxidase complex as well as some unassembled subunit polypeptides.The observations are indicative of the existence of at least two regulatory systems controlling the production of cytochrome aa 3. One of the circuits appears to control the basal or constitutive production of cytochrome oxidase, the other seems to coordinate the level of cytochrome aa 3 with some function of the mitochondrial cytochrome bc 1 complex, possibly electron transport.  相似文献   

17.
Cytochrome c3 of Desulfovibrio desulfuricans strain G20 is an electron carrier for uranium (VI) reduction. When D. desulfuricans G20 was grown in medium containing a non-lethal concentration of uranyl acetate (1 mM), the rate at which the cells reduced U(VI) was decreased compared to cells grown in the absence of uranium. Western analysis did not detect cytochrome c3 in periplasmic extracts from cells grown in the presence of uranium. The expression of this predominant tetraheme cytochrome was not detectably altered by uranium during growth of the cells as monitored through a translational fusion of the gene encoding cytochrome c3 (cycA) to lacZ. Instead, cytochrome c3 protein was found tightly associated with insoluble U(IV), uraninite, after the periplasmic contents of cells were harvested by a pH shift. The association of cytochrome c3 with U(IV) was interpreted to be non-specific, since pure cytochrome c3 adsorbed to other insoluble metal oxides, including cupric oxide (CuO), ferric oxide (Fe2O3), and commercially available U(IV) oxide.An erratum to this article can be found at  相似文献   

18.
The effects of nitric oxide (NO) on electron transfer were studied with a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans. NO inhibited the oxidation of cytochrome c induced by continuous illumination in intact cells. NO inhibited the re-reduction of cytochrome c, the slow phase of the carotenoid bandshift, and the oxidation of cytochrome b after a flash illumination, suggesting that NO inhibited the photosynthetic cyclic electron transfer through the cytochrome b-c 1 region. NO also inhibited the nitrite (NO 2 - ) and NO reductions with succinate as the electron donor in intact cells, but did not inhibit the NO 2 - and NO reductions in chromatophore membranes with ascorbate and phenazine methosulfate as the electron donors. NO reversibly inhibited the ubiquinol: cytochrome c oxidoreductase of the membranes, suggesting that NO inhibited the electron transfer through the cytochrome b-c 1 region and that the cytochrome b-c 1 complex also was involved in the electron transport in both NO 2 - and NO reductions. The catalytic site of NO reduction was distinct from the inhibitory site of NO.Abbreviations UHDBT 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole - UHNQ 3-undecyl-2-hydroxy-1,4-naphthoquinone - MOPS 3-(N-morpholino)propane-sulfonic acid - PMS phenazine methosulfate - DCIP 2,6-dichlorophenol indophenol - DDC diethyl-dithiocarbamate  相似文献   

19.
A comparative study of terminal respiration was undertaken in five genera of aquatic fungi in the Leptomitales. The cytochrome system in this group of fungi contained cytochrome a-a3 (605 nm), cytochrome c (551 nm), cytochrome b (557 nm), and cytochomo b (564 nm). A representative of each of three aerobic genera, Leptomitus, Apodachlya, and Sapromyces, had a total cytochrome content of about 2×10?10 mol/mg dry weight. An endogenous respiration rate of 21 μl O2 uptake/ (h × mg dry weight) at 21.7°C was found in Leptomitus and Apodmhlya and 14 in Sapromyces. The strain belonging to the fermenlative genus Mindeniella had approximately one-third of the total cytochrome content and one-third of the endogenous respiration rate observed in Leptomitus and Apodachlya. Mindeniella and Sapromyces contained less total cytochrome when grown under reduced oxygen tension than when grown in air. Only about one-half of the b-type cytochrome was redueible by endogenous substrates. Both cytochrome a3 and an unidentified pigment bound CO. The endogenous respiration of Leptomitus, Apodachlyo, and Sapromyces was strongly Inhibited by sodium cyanide, sodium azide, antimycin A, and sodium fluoroacetate.  相似文献   

20.
Cytochrome c oxidase of the ba 3-type from Thermus thermophilus does not interact with cyanide in the oxidized state and acquires the ability to bind heme iron ligands only upon reduction. Cyanide complexes of the reduced heme a 3 in cytochrome ba 3 and in mitochondrial aa 3-type cytochrome oxidase are similar spectroscopically, but the a 32+-CN complex of cytochrome ba 3 is strikingly tight. Experiments have shown that the K d value of the cytochrome ba 3 complex with cyanide in the presence of reductants of the enzyme binuclear center does not exceed 10−8 M, which is four to five orders of magnitude less than the K d of the cyanide complex of the reduced heme a 3 of mitochondrial cytochrome oxidase. The tightness of the cytochrome ba 3 complex with cyanide is mainly associated with an extremely slow rate of the ligand dissociation (k off ≤ 10−7 sec−1), while the rate of binding (k on ∼ 102 M−1·sec−1) is similar to the rate observed for the mitochondrial cytochrome oxidase. It is proposed that cyanide dissociation from the cytochrome ba 3 binuclear center might be hindered sterically by the presence of the second ligand molecule in the coordination sphere of CuB2+. The rate of cyanide binding with the reduced heme a 3 does not depend on pH in the neutral area, but it approaches linear dependence on H+ activity in the alkaline region. Cyanide binding appears to be controlled by protonation of an enzyme group with pK a = 8.75.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号