首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymically dispersed luteal cells obtained from PMSG-hCG-treated immature pseudopregnant rats were incubated with oxytocin and vasopressin. In response to increasing doses of hCG the rat luteal cells produced progesterone and accumulated intracellular cAMP in a dose-dependent manner. A neuropeptide GnRH agonist (4 X 10(-6) M) produced a significant inhibition of hCG-stimulated progesterone production and of accumulation of intracellular cAMP. However, neither the basal nor the hCG-stimulated rate of progesterone production and level of intracellular cAMP was affected by the neurohypophysial peptides tested. Therefore, it is concluded that oxytocin and vasopressin do not have a direct action on steroidogenesis by rat luteal cells.  相似文献   

2.
Incubation of luteal cells with human, horse and rat sera, but not bovine sera resulted in enhanced basal and hCG-stimulated progesterone accumulation. The stimulatory effect of human or rat sera on basal, hCG- or 8 Br-cyclic AMP-induced progesterone synthesis in luteal cells was evident within 15-30 min after incubation, reaching a maximum after 3-4 h. The stimulatory effects of hCG and/or sera were blocked by inhibitors of RNA and protein synthesis. Similarly, lysosomotropic agents, chloroquine (100 microM) and ammonium chloride (10 mM), partly blocked the steroidogenic response of luteal cells to hCG and/or human or rat sera. Incubation of cells in the presence of 2-deoxyglucose, sodium azide and phenylmethylsulfonyl fluoride resulted in partial inhibition of progesterone secretion in response to hCG or sera. Fractionation of human or rat sera into various lipoprotein fractions demonstrated that LDL and HDL most effectively supported and potentiated the steroidogenic response to hCG. Lipoprotein-deficient serum, however, did not alter gonadotropin-induced steroid production. Incubation of luteal cells with increasing concentrations of h-LDL and h-HDL enhanced both basal and hCG-mediated steroidogenesis in a dose-related manner, although very high concentrations of these lipoproteins were inhibitory. Further, [3H]cholesterol from [3H]cholesteryl linoleate-LDL was incorporated into luteal cell progesterone and the extent of this incorporation was enhanced by hCG. Addition of excess unlabeled h-LDL, h-HDL, as well as r-HDL, drastically reduced the incorporation of radioactive label into progesterone. These studies suggest that (a) serum potentiation of steroidogenesis was due to presence of lipoproteins, mainly LDL and HDL, and (b) the lipoprotein-bound cholesterol is delivered into the luteal cells and utilized for steroidogenesis.  相似文献   

3.
Li QL  Ni J  Bian SL  Yao LC  Zhu H  Zhang W 《生理学报》2001,53(2):142-146
本文旨在观察神经酰胺对离体孵育的大鼠黄体细胞孕酮分泌及细胞凋亡的影响,以PMSG-hCG处理的雌性Wistar大鼠为模型,分离制备黄体细胞,将外源性细胞渗透性神经酰胺与黄体细胞共同孵育,分别用放免法和流式细胞仪分析神经酰胺对黄体细胞孕酮生成和凋亡的影响,同时还检测了一氧化氮合酶(NOS)活性和一氧化氮(NO)水平的变化,结果显示,神经酰胺可以剂量相关方式抑制hCG-诱导的孕酮分泌,而对基础孕酮没有显著影响,离体孵育12h的大鼠黄体细胞存在自发性凋亡,5umol/L神经酰胺能显著增加亡率(P<0.05),流式细胞仪分析可见增强的凋亡蜂,实验还发现,50umol/L神经酰胺能明显促进NOS活性(P<0.01)和NO生成(P<0.01),结果提示,神经酰胺可能通过调节甾体激素生成和细胞凋亡而作为一种重要的信息分子参与黄体退化等卵巢的生理过程。  相似文献   

4.
To determine and compare the direct effects of prostaglandin F2a (PGF2a) and human chorionic gonadotropin (hCG) on luteal cell progesterone production in vitro, 9 human corpora lutea obtained at tubal ligation were minced and treated with collagenase to disaggregate luteal cells. Dispersed luteal cells (80% viable) were incubated in air at 37 degrees C in a shaking water bath for 3 h and total progesterone in the media and cells was determined by radioimmunoassay. Optimum progesterone production was obtained using 25,000 or more cells per incubate and an incubation time of 2-4 h. hCG-stimulated progesterone production increased significantly with 0.01 IU to as high as 100 IU. In the early luteal phase (days 1-5 post ovulation or days 15-20 of the luteal phase), PGF2a (10-1000 ng) significantly inhibited progesterone production but significantly stimulated progesterone production in the mid-luteal phase (days 21-25). PGF2a had no effect on luteal cell progesterone production in the late luteal phase (days 26-30). This age-dependent direct effect of PGF2a on human luteal cell progesterone production in vitro indicates a role for PGF2a in the total intragonadal regulation of progesterone output, possibly through a paracrine or autocrine manner directed towards synchronizing luteal progesterone secretion and endometrial preparation for nidation.  相似文献   

5.
The effects of oxytocin and oestradiol on progesterone production by dispersed luteal cells of non-pregnant cows were studied. In acute incubation (3 h), oxytocin, at a concentration of 800 mIU/ml, significantly inhibited the production of progesterone induced by HCG (10 IU/ml). Suppression of basal progesterone production was evident in some corpora lutea. Lower oxytocin concentrations (4 and 40 mIU/ml) had no effect. At a concentration of 400 mIU/ml, oxytocin may be inhibitory to basal and HCG-induced progesterone production. Oestradiol (1 μkg/ml) had no effect on basal progesterone production but may suppress the production of progesterone induced by HCG. However, incubation with oxytocin (400 mIU/ml) plus oestradiol (1 μg/ml) resulted in a significant inhibition of HCG-induced progesterone production. These data provide evidence for an inhibitory effect of oxytocin on the corpus luteum of non-pregnant cows. Oestradiol may interact with oxytocin to inhibit the bovine corpus luteum function.  相似文献   

6.
田淑君  王启发 《生理学报》1994,46(4):375-380
实验取经PMSG-hCG处理的未成年雌性大鼠卵巢,用胶原酶-DNA酶消化,制得黄体细胞悬浮液,预孵育1h后加入各种处理因素,继续孵育2h,用放射免疫方法测孵育液中孕酮的量。结果:孵育液中含有高钙或高钾或加入A23187时均可增加黄体细胞基础及hCG诱导的孕酮生成量。相反,减少钙的浓度或加入EGAT或戊脉胺,孕酮生成量则明显减少。酪氨酸抑制hCG刺激的孕酮生成,但对高钙、高钾和A23187增加孕酮的作用没有影响,并对上述三者分别与hCG同时作用所致孕酮生成增加也没有影响。提示:大鼠黄体细胞孕酮生成依赖于细胞内外的钙;细胞内外钙浓度的变化不影响酪氨酸抗hCG致孕酮生成作用;钙与hCG使孕酮增加的作用可能是通过不同机制。  相似文献   

7.
The role of the phosphatidylinositol second messenger system in luteal regulation has not been extensively studied, particularly in the primate. The objectives of this study were (1) to further characterize the response of the primate CL to the calcium ionophore A23187, in terms of intracellular free calcium concentrations ([Ca2+]i) and progesterone (P) production; and (2) to assess the effects of depleting, as well as elevating, available calcium on luteal P and prostaglandin (PG) production. The response to A23187, in terms of [Ca2+]i, was measured by fura-2 fluorescence microscopy of single small and large luteal cells. A23187 significantly increased [Ca2+]i in both cell types (p less than 0.01). P production (basal and hCG-stimulated) by dispersed primate luteal cells incubated for various times (1-8 h) with and without A23187 was measured. Treatment with A23187 rapidly (within 1-2 h) attenuated (p less than 0.05) the time-dependent increase in basal and hCG-stimulated P production. Luteal P and PG production following treatment with the calcium ionophore, ionomycin, alone or in combination with additional CaCl2, was also monitored. Treatment with ionomycin (p less than 0.01) and CaCl2 (p less than 0.01) inhibited luteal P production. In contrast, treatment with ionomycin stimulated (p less than 0.01) luteal PG production. To determine the effects of Ca2+ depletion on luteal function, P and PG production by cells incubated for 2 and 8 h in the absence and presence of the Ca(2+)-chelator EGTA was measured. Luteal production of both P and PG was inhibited by 8-h treatment with EGTA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Arachidonic acid (AA) and its metabolites mediate many physiological processes including reproduction and endocrinology. The current study investigated effects of several inhibitors of AA cascade on steroidogenesis by rat corpus luteum cells in vitro. Dispersed luteal cells prepared from rat corpus luteum on day 6 of pseudopregnancy secreted progesterone (P4) in time-dependent and human chorinonic gonadotropin (hCG)-dependent fashion. Arachidonyl trifluoromethyl ketone, a preferential inhibitor of the type IVA phospholipase A(2) (PLA(2)-IVA), stimulated basal P4 secretion and had no influence on hCG-stimulated steroidogenesis. A novel and more specific inhibitor pyrrophenone inhibited hCG-induced P4 secretion. A cyclooxygenase inhibitor indomethacin did not affect basal secretion but inhibited hCG-stimulated secretion. Nordihydroguaiaretic acid tended to decrease basal P4 secretion and completely inhibited hCG-stimulated secretion. Obtained results suggest that AA metabolic cascade, which is triggered at least in part by PLA(2)-IVA activity, is potentially implicated in hCG-stimulated P4 secretory response in the rat corpus luteum.  相似文献   

9.
Ten chronically hemiovariectomized cynomolgus and rhesus monkeys were luteectomized 5.5 +/- 0.3 days after the midcycle luteinizing hormone (LH) and follicle-stimulating hormone (FSH) surge in two consecutive cycles. The corpus luteum (CL) was removed, weighed, dispersed with collagenase and the luteal cells counted. Luteal cells (50,000/ml) were incubated in Ham's F10 medium for 3 h at 37 degrees C either in the presence or absence of 100 ng/ml human chorionic gonadotropin (hCG). Daily blood samples were taken from the monkeys throughout the study for determination of LH, FSH, estradiol (E2) and progesterone levels. Within 5 days following each luteectomy (LX), all monkeys responded with a significant increase in FSH and LH (P less than 0.05). Ovulatory LH/FSH surges occurred 14.4 +/- 0.5 days after the first LX. Hormonal profiles of serum progesterone prior to the first and second LX, CL weight and number of luteal cells/CL were similar (P greater than 0.05). However, luteal cells obtained at the second LX produced more progesterone (P less than 0.05) in vitro under basal and hCG-stimulated conditions than cells from the first LX. The areas under the LH and FSH curves following the first LX were highly correlated (P less than 0.05) with the in vitro progesterone production following the second LX. Thus, the monkeys with the largest areas under the LH and FSH curves subsequently had the highest in vitro progesterone production.  相似文献   

10.
The potential involvement of protein tyrosine kinases (PTK) in the mechanism of prolactin (Prl) action on ovarian cell steroidogenesis has not been elucidated and information about research on this subject is scarce. In this preliminary study pharmacological intervention was used to provide support for a possible involvement of tyrosine kinases in prolactin induction of progesterone secretion by porcine thecal and luteal cells. Material used in this experiment were cultures of porcine follicular theca interna and early corpus luteum cells. The former were isolated from, proestrous preovulatory follicles and the latter were obtained by enzymatic dispersion of luteal tissue. Three of tyrosine kinase inhibitors, genistein, herbimycin and tyrphostin, were applied. They act through different mechanisms, partially blocking Prl-stimulated progesterone secretion. Herbimycin at a dose of 3 microM inhibited Prl-stimulated progesterone secretion beneath the control level in theca and by 70% in luteal cells. Genistein at a dose of 45 microM inhibited Prl-stimulated progesterone secretion beneath the control level in theca and down to the control in luteal cells. On the other hand, tyrphostin at a dose of 100 microM only slightly suppressed Prl-stimulated progesterone secretion by thecal and luteal cells (33% and 40% respectively). This investigation is the first search for evidence of involvement of tyrosine kinases in Prl-stimulated progesterone production by ovarian cells in the pig.  相似文献   

11.
Arachidonic acid has been proposed to function as a hormone-induced second messenger in a variety of mammalian endocrine tissues. The present studies were conducted to evaluate whether arachidonic acid, either added exogenously or released endogenously following treatment with physiologic (phospholipase A2) or pharmacologic (melittin) agents, influences basal and/or luteinizing hormone (LH)-induced cyclic adenosine 3',5'-monophosphate (cAMP) and progesterone production in granulosa cells from domestic hens. Phospholipase A2 (PLA2) and melittin treatments failed to alter basal concentrations of progesterone, whereas arachidonic acid had a slight stimulatory effect (only at the 50-microM dose) on progesterone levels, and no effect on cAMP. By contrast, arachidonic acid, PLA2, and melittin each inhibited LH-promoted progesterone production in a dose-dependent fashion. The inhibitory effects of arachidonic acid on the progesterone response were determined to occur both prior and subsequent to cAMP formation since cAMP levels in arachidonic acid-treated cells were attenuated after treatment with 10 ng LH or 100 microM forskolin (at 10- to 100-microM doses of arachidonic acid), and progesterone production was decreased in the presence of 1 mM 8-bromo-cAMP (with 50 and 100 microM arachidonic acid). The post-cAMP mechanism of action is characterized by the inability of cells to convert 25-hydroxy-cholesterol, but not pregnenolone, to progesterone. The effects of arachidonic acid are probably direct, since pharmacologic inhibitors of the lipoxygenase (nordihydroguaiaretic acid) and cyclooxygenase (indomethacin) pathways of arachidonic acid metabolism failed to alter the suppression of  相似文献   

12.
The effects of kaurenol, a diterpene alcohol, were evaluated on progesterone and cyclic AMP (cAMP) production in freshly dispersed avian granulosa cells. Kaurenol (50 microM) alone caused a fourfold increase in progesterone synthesis without a measurable influence on cAMP levels. When granulosa cells were challenged with near-maximally stimulating concentrations of LH (50 ng/ml) or forskolin (10 microM), kaurenol (10-100 microM) dose-dependently suppressed steroidogenesis. Similarly, cAMP production in response to LH and forskolin stimulation was also inhibited. When progesterone synthesis was stimulated by the addition of pregnenolone or 25-hydroxycholesterol substrates to the culture medium, the typical dose response to the latter precursor, but not to pregnenolone, was abolished by kaurenol. Whereas the mechanism of kaurenol's stimulatory effect on basal steroidogenesis remains unknown, it is suggested that its inhibitory action on LH- and forskolin-promoted progesterone production may be due to the inhibition of the adenylate cyclase cAMP effector system as well as to the impairment of the action of the mitochondrial cholesterol side chain cleavage enzyme system.  相似文献   

13.
The effects of adrenocorticotropic hormone (ACTH), human chorionic gonadotropin (hCG) and prostaglandin E2 (PGE2) on the progesterone secretion of luteal cells from rats were studied. Corpora lutea were harvested on Day 6 of pseudopregnancy and digested by trypsin. Homogeneous suspensions of luteal cells were used for short-term incubation. ACTH, PGE2, and hCG were added to the medium and the changes in progesterone production were measured by radioimmunoassay (RIA). Furthermore, specific ACTH-binding sites of the luteal cell membrane were studied by Scatchard analysis. ACTH, PGE2 and hCG increased synthesis of progesterone, and the combination of hCG with ACTH or PGE2 further increased production of the hormone. The effect of ACTH could be prevented by indomethacin. These effect of ACTH seem to be connected with specific ACTH-binding sites of the luteal cell membrane and with increased production of PGE2.  相似文献   

14.
Human corpora lutea of various ages were minced and incubated in the presence of hCG (10 i.u./ml), cAMP (10 mM) or FSH (20 mu/ml) and production of progesterone and oestradiol was measured. Cyclic AMP and hCG stimulated progesterone and oestradiol production during at least the mid- and late luteal phases, but FSH stimulated only oestradiol production during the early and mid-luteal phases and had no effect on progesterone production. This demonstrates that progesterone and oestradiol synthesis by the human corpus luteum can be independently controlled.  相似文献   

15.
In an attempt to justify use of trypsin to achieve more thorough dispersion of luteal cell clumps in vitro, progesterone (P) production by collagenase dispersed monkey luteal cells from the mid-luteal phase corpus luteum (CL) was examined in vitro either after 10 min, or continuous (3h) exposure to trypsin (TR). In the first experiment, cells were pre-incubated in TR, then incubated at 37 degrees C for 3h with human chorionic gonadotropin (hCG) after the addition of soybean-trypsin inhibitor (STI). Pre-incubation of luteal cells with TR had no effect on the level of P production under basal conditions. Cells that were preincubated with TR responded to hCG stimulation with increased progesterone secretion (P less than 0.01) in a fashion similar to untreated cells. P production in response to hCG was independent of TR concentration over the range of 0.05% to 0.2% during the pre-incubation period. However, continuous exposure (3h) of cells to TR significantly depressed (P less than 0.01) basal P secretion and inhibited the response to hCG. We conclude that TR had no effect on the biopotency of hCG per se, but probably the over-exposure to TR had an adverse effect on the LH/hCG receptors. Addition of STI after a 10 min pre-incubation with TR, prevented these deliterious effects, thereby permitting the use of TR to improve the completeness of luteal cell dissociation.  相似文献   

16.
Corpora lutea were obtained from pig ovaries on Day 18 of pregnancy or pseudopregnancy. Pseudopregnancy was induced by the administration of oestradiol benzoate on Days 11-15 of the oestrous cycle or by the administration of hCG on Day 12. The luteal cells were prepared for morphometric analysis and investigation of steroid production in vitro by dispersion with 0.25% trypsin. A blood sample from each sow was collected at slaughter for measurement of progesterone, oestradiol-17 beta and testosterone. The concentrations of these steroids were also estimated in luteal tissue and in the medium after incubation. Progesterone concentration was significantly higher (P less than 0.01) in luteal tissue and in plasma of pregnant than of pseudopregnant sows. Testosterone content of luteal tissue from all sows was 20-fold higher than oestradiol, although plasma concentrations of these hormones were not different. The luteal cells from hCG-treated sows produced more progesterone (P less than 0.01) in vitro than did those from the other groups. The luteal cells from oestradiol-treated sows generally released smaller amounts of steroids during incubation. Treatment with hCG increased the proportion of large luteal cells and decreased the proportion of small luteal cells. These results demonstrate that hCG or oestradiol benzoate injections altered the steroidogenic activity of luteal cells and that treatment with hCG was also associated with changes in the diameter of the luteal cells and thus in the ratio of small to large luteal cells.  相似文献   

17.
The effects of thapsigargin on intracellular Ca2+ concentration ([Ca2+]i) and progesterone production were determined in granulosa cells from the two largest preovulatory follicles of laying hens. [Ca2+]i was measured in cells loaded with the Ca(2+)-responsive fluorescent dye Fura-2. Thapsigargin stimulated a 4.6 +/- 0.2-fold increase in [Ca2+]i from a resting level of 55 +/- 6 nM up to 233 +/- 23 nM (n = 8) in 100% of the cells tested (n = 86). However, two different response patterns were observed. Dependent on the cell populations, a maximally effective concentration of thapsigargin (100 nM) stimulated either a rapid (within 16 +/- 2 s) transient increase in [Ca2+]i or a slowly (99 +/- 20 s) developing and sustained increase in [Ca2+]i. Both [Ca2+]i responses were concentration (0.001-1 microM)-dependent with an EC50 around 40 nM. The transient [Ca2+]i response occurred in the absence of extracellular Ca2+ and was unaffected by pretreating the cells with the Ca2+ channel blockers methoxyverapamil (50 microM) or lanthanum (1 mM). The plateau phase of the sustained [Ca2+]i response returned to resting level in the absence of extracellular Ca2+, but remained elevated in the presence of methoxyverapamil (50 microM) or lanthanum (1 mM). Despite its ability to cause transient or prolonged increases in [Ca2+]i, thapsigargin (0.001-1 microM) did not affect basal or luteinizing hormone-stimulated progesterone production by chicken granulosa cells.  相似文献   

18.
To determine if the antiprogestagen RU486 has a direct effect on luteal progesterone secretion, whole corpora lutea or dispersed luteal cells were incubated in the presence of RU486. Whole corpora lutea, isolated from rats at day 5 of pseudopregnancy, were incubated individually in hormone-free medium. The concentrations of progesterone and 20 alpha-dihydroprogesterone in the medium plus corpus luteum was measured before and after 24 h of incubation. In the absence of RU486 the concentration of 20 alpha-dihydro-progesterone increased, while that of progesterone remained unchanged. In the presence of RU486 (230 microM) the concentration of both progesterone and 20 alpha-dihydro-progesterone was increased. Dispersed luteal cells were incubated for 24 h in the presence of various amounts of RU486. In the absence and in the presence of 0.2 and 2.3 microM RU486 a high ratio between 20 alpha-dihydro-progesterone and progesterone was found, while in the presence of 23 microM RU486 the concentrations of progesterone and 20 alpha-dihydro-progesterone were equal. 20 alpha-Hydroxysteroid dehydrogenase (20 alpha-HSD) activity measured in luteal homogenates started to increase between 6 and 12 h of incubation. This increase could be prevented after incubation of the corpora lutea in the presence of 23 or 230 microM RU486 for 24 hrs. It is concluded that the progesterone antagonist RU486 can have a direct effect on luteal progesterone production. RU486 prevents the increase in 20 alpha-HSD activity that normally occurs during in vitro incubation. However, since these effects in vitro can only be obtained with high concentrations of RU486, it is unlikely that this antiluteolytic effect plays a role after injection of RU486 in vivo.  相似文献   

19.
This study was undertaken to investigate whether bovine granulosa and theca interna cells could be luteinized in vitro into luteal-like cells. Granulosa and theca cells were cultured for 9 days in the presence of forskolin (10 microM), insulin (2 micrograms/ml), insulin-like growth factor I (100 ng/ml), or a combination of these agents. During the first day of culture, granulosa and theca cells secreted estradiol and androstenedione, respectively; progesterone rose only after 3-5 days in culture and reached a maximum on the ninth day of culture. Cells incubated in the presence of forskolin plus insulin exhibited morphological and functional characteristics of luteal cells isolated from the corpus luteum. It was found that cell diameter, basal and stimulated progesterone secretion, and pattern of cell replication for both cell types were comparable to those of luteal cells. Numerous lipid droplets and intensified mitochondrial adrenodoxin staining also indicated active steroidogenesis in luteinized cells. After 9 days in culture, stimulants were withdrawn, and the culture proceeded in basal medium for an additional 5 days; elevated progesterone levels were maintained by luteinized granulosa cells (LGC), whereas in contrast a dramatic drop in progesterone production was observed in luteinized theca cells (LTC). On Day 9, cells were challenged for 3 h with LH (10 ng/ml), forskolin (10 microM), or cholera toxin (100 ng/ml), resulting in a 4-fold increase in progesterone secretion by LTC; the same treatments failed to stimulate progesterone in LGC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Peripheral plasma progesterone concentrations exhibited an increase 10 days before implantation, coinciding with the resumption of blastocyst growth and with a decrease in plasma androgen values (DHA, androstenedione, testosterone). No definite pattern of oestrone was observed and oestradiol concentrations remained undetectable. The production of steroids by dispersed luteal cells showed that the growth of the corpora lutea paralleled that of blastocysts and resulted in hypertrophy followed by hyperplasia of the luteal cell. The production of progesterone in the medium increased with blastocyst size up to implantation; it was enhanced by mink charcoal-treated serum, but prolactin, LH, FSH or a combination of these hormones did not affect the progesterone production, whatever the stage of diapause. DHA and androstenedione secretion increased in the two last stages of blastocyst growth and was enhanced by LH. The conversion of androstenedione and testosterone into oestrone and oestradiol was observed at all stages of embryonic diapause, indicating that corpora lutea contain aromatase activity even at an early stage. The secretion of oestrone was higher than that of oestradiol. The non-luteal tissue contributed up to 50% of the steroid production; while progesterone and androgen production remained constant, that of oestradiol decreased at the end of the delay period. These results indicated a change in the size and the secretory capacity of the luteal cell related to blastocyst development and implantation. Although progesterone was the main product of the corpora lutea, androgens and oestrogens were also secreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号