首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of population genetics of invasive species offers opportunities to investigate rapid evolutionary processes at work, and while the ecology of biological invasions has enjoyed extensive attention in the past, the recentness of molecular techniques makes their application in invasion ecology a fairly new approach. Despite this, molecular biology has already proved powerful in inferring aspects not only relevant to the evolutionary biologist but also to those concerned with invasive species management. Here, we review the different molecular markers routinely used in such studies and their application(s) in addressing different questions in invasion ecology. We then review the current literature on molecular genetic studies aimed at improving management and the understanding of invasive species by resolving of taxonomic issues, elucidating geographical sources of invaders, detecting hybridisation and introgression, tracking dispersal and spread and assessing the importance of genetic diversity in invasion success. Finally, we make some suggestions for future research efforts in molecular ecology of biological invasions.  相似文献   

2.
Transportation infrastructures such as roads, railroads and canals can have major environmental impacts. Ecological road effects include the destruction and fragmentation of habitat, the interruption of ecological processes and increased erosion and pollution. Growing concern about these ecological road effects has led to the emergence of a new scientific discipline called road ecology. The goal of road ecology is to provide planners with scientific advice on how to avoid, minimize or mitigate negative environmental impacts of transportation. In this review, we explore the potential of molecular genetics to contribute to road ecology. First, we summarize general findings from road ecology and review studies that investigate road effects using genetic data. These studies generally focus only on barrier effects of roads on local genetic diversity and structure and only use a fraction of available molecular approaches. Thus, we propose additional molecular applications that can be used to evaluate road effects across multiple scales and dimensions of the biodiversity hierarchy. Finally, we make recommendations for future research questions and study designs that would advance molecular road ecology. Our review demonstrates that molecular approaches can substantially contribute to road ecology research and that interdisciplinary, long-term collaborations will be particularly important for realizing the full potential of molecular road ecology.  相似文献   

3.
Recent discoveries have uncovered considerable genetic diversity among aquatic viruses and raised questions about the variability of this diversity within and between environments. Studies of the temporal and spatial dynamics of aquatic viral assemblages have been hindered by the lack of a common genetic marker among viruses for rapid diversity assessments. Randomly amplified polymorphic DNA (RAPD) PCR bypasses this obstacle by sampling at the genetic level without requiring viral isolation or previous sequence knowledge. In this study, the utility of RAPD-PCR for assessing DNA viral richness within Chesapeake Bay water samples was evaluated. RAPD-PCR using single 10-mer oligonucleotide primers successfully produced amplicons from a variety of viral samples, and banding patterns were highly reproducible, indicating that each band likely represents a single amplicon originating from viral template DNA. In agreement with observations from other community profiling techniques, resulting RAPD-PCR banding patterns revealed more temporal than spatial variability in Chesapeake Bay virioplankton assemblages. High-quality hybridization probes and sequence information were also easily generated from single RAPD-PCR products or whole reactions. Thus, the RAPD-PCR technique appears to be practical and efficient for routine use in high-resolution viral diversity studies by providing assemblage comparisons through fingerprinting, probing, or sequence information.  相似文献   

4.
A large number of repetitive DNA sequences are found in multiple sites in the genomes of numerous bacteria, archaea and eukarya. While the functions of many of these repetitive sequence elements are unknown, they have proven to be useful as the basis of several powerful tools for use in molecular diagnostics, medical microbiology, epidemiological analyses and environmental microbiology. The repetitive sequence-based PCR or rep-PCR DNA fingerprint technique uses primers targeting several of these repetitive elements and PCR to generate unique DNA profiles or 'fingerprints' of individual microbial strains. Although this technique has been extensively used to examine diversity among variety of prokaryotic microorganisms, rep-PCR DNA fingerprinting can also be applied to microbial ecology and microbial evolution studies since it has the power to distinguish microbes at the strain or isolate level. Recent advancement in rep-PCR methodology has resulted in increased accuracy, reproducibility and throughput. In this minireview, we summarize recent improvements in rep-PCR DNA fingerprinting methodology, and discuss its applications to address fundamentally important questions in microbial ecology and evolution.  相似文献   

5.
热带与亚热带森林分子生态学研究   总被引:5,自引:3,他引:2  
当前 ,植物学家会有更多的方法和手段来从事植物学的研究 ,如分子生物学方法、遗传学的方法、植物生理学的方法、分类学方法等。其中分子生物学方法直接研究植物遗传物质DNA ,从根本上揭示了生物体内涵 ,有着极其重要的作用[4 7] 。因此用分子生物学手段进行生态学的研究有着广泛应用前景和重要意义。分子生物学方法既节省时间和资金 ,又比传统方法解决了更多的问题[6 1] 。例如在动物学研究中 ,用少许的毛发就可以分析高山土拨鼠 (MarmotamarmotaSciuridae)的交配系统[30 ] ;粪便所带的肠道粘膜细胞DNA也可以…  相似文献   

6.
1. New logical and analytical frameworks for studying functional traits have led to major advances in plant and freshwater ecology at local and global scales. The ecological and taxonomic diversity of terrestrial adult beetles (Coleoptera) means that functional trait approaches should have considerable power to illuminate the function not only of these animals but also of the ecosystems in which they occur. 2. Even though the functional trait concept is not new in ecology, it is still plagued with inconsistencies in methodology and terminology. Plant‐based studies have shown that an integrated and relatively consistent functional trait approach facilitates comparisons between studies, and allows the full utility and predictive capacity of trait‐based approaches to be realised. 3. This review outlines a logical framework for adult beetle functional trait studies using uniform terminology and methodology similar to those used by plant ecologists. Beetle life‐history and ecomorphological trait studies are synthesised and it is shown that a combination of both is analogous to the functional trait approach. A general functional trait list for beetles and potential functional links is outlined, as are potential analysis approaches. A consistent functional trait approach, coupled with advances in molecular techniques, has the capability to provide deeper insights into beetle community assembly and how beetles impact ecosystems and will enable worldwide comparisons and predictions to be made.  相似文献   

7.
使用SSR和mtVNTR分子标记识别扬子鳄个体   总被引:3,自引:0,他引:3  
黄磊  王义权 《动物学报》2005,51(3):501-506
扬子鳄是中国特有的濒危物种,为有效避免种群衰退,最大限度地保持该物种现有的遗传多样性,有必要对种群的个体进行个体识别研究,以便重建遗传谱系,指导现有繁育工作。应用SSR(Simple sequence repeats)与mtVNTR(Variable number tandem repeats on mitochondrial DNA)两种分子标记对扬子鳄39个个体进行了个体识别分析,结果显示:8个SSR座位的累计个体识别率与累计父权排除率分别达0.9968、0.7697,mtVNTR的个体识别率为0.9146,联合SSR与mtVNTR两种分子标记的累计个体识别率理论值达0.9997,并在实际分析中将39个扬子鳄个体完全区分开,其区分能力较RAPD(Random amplified polymorphic DNA)、AFLP(Amplified fragment length polymorphism)及mtDNA控制区5’端序列分析等分子标记要高。此外,SSR和mtvNTR还可对某些低频等位基因及其携带个体做有效的筛查,这对今后进行大量扬子鳄个体的分子标记识别和群体的遗传谱系建立等工作将具有一定实际意义[动物学报51(3):501—506,2005]。  相似文献   

8.
9.
With the emergence of landscape genetics, the basic assumptions and predictions of classical population genetic theories are being re‐evaluated to account for more complex spatial and temporal dynamics. Within the last decade, there has been an exponential increase in such landscape genetic studies ( Holderegger & Wagner 2006 ; Storfer et al. 2010 ), and both methodology and underlying concepts of the field are under rapid and constant development. A number of major innovations and a high level of originality are required to fully merge existing population genetic theory with landscape ecology and to develop novel statistical approaches for measuring and predicting genetic patterns. The importance of simulation studies for this specific research has been emphasized in a number of recent articles (e.g., Balkenhol et al. 2009a ; Epperson et al. 2010 ). Indeed, many of the major questions in landscape genetics require the development and application of sophisticated simulation tools to explore gene flow, genetic drift, mutation and natural selection in landscapes with a wide range of spatial and temporal complexities. In this issue, Jaquiéry et al. (2011) provide an excellent example of such a simulation study for landscape genetics. Using a metapopulation simulation design and a novel ‘scale of phenomena’ approach, Jaquiéry et al. (2011) demonstrate the utility and limitations of genetic distances for inferring landscape effects on effective dispersal.  相似文献   

10.
Elliott KT  Neidle EL 《IUBMB life》2011,63(12):1075-1080
For more than 25 years, Acinetobacter baylyi ADP1 has been used in molecular biology studies that address a broad range of questions. Recently, the rapid accumulation of data from DNA sequencing, gene expression, protein structure, and other high-throughput methodology has increased the ability to tackle complex topics using sophisticated approaches to metabolic and genetic engineering. While the genetic malleability of ADP1 makes it an ideal organism for such investigations, A. baylyi ADP1 has yet to become a common choice for bacterial studies. This review describes examples of ADP1-based studies that exploit its highly efficient system for natural transformation and chromosomal incorporation of exogenous DNA. These studies focus on a wide array of problems, including gene duplication and amplification, horizontal gene transfer, bioreporters, and metabolic reconstruction. Interesting results in these diverse areas highlight the utility of using A. baylyi in laboratory and industrial settings.  相似文献   

11.
海洋微生物宏基因组工程进展与展望   总被引:2,自引:0,他引:2  
据初步统计,生活于海洋环境包括大洋深处的微生物有100万种以上,构成了一个动态的遗传基因库,其中绝大多数微生物或者从来没有经过实验室培养,或者至今无法培养,因而其分类地位及其生态学功能尚未为人类所认识。随着16S rRNA序列分析与系统分类学的广泛应用,海洋微生物多样性研究领域已经发生了很可观的改变,这些变化极大的丰富了人们对的微生物多样性及其生态功能的认识和理解。这里结合笔者近十年来的工作实践,讨论近年来在海洋微生物资源开发利用方面的研究进展,提出一个带有自动化特征的宏基因组功能表达平台,探讨海洋微生物资源利用的新途径。可以预见在不久的将来,海洋环境宏基因组工程研究将在一定程度上使得传统未培养海洋微生物基因资源及其功能产物能够为人类所开发和利用。  相似文献   

12.
Modern genetic and immunological techniques have become important tools for assessing protistan species diversity for both the identification and quantification of specific taxa in natural microbial communities. Although these methods are still gaining use among ecologists, the new approaches have already had a significant impact on our understanding of protistan diversity and biogeography. For example, genetic studies of environmental samples have uncovered many protistan phylotypes that do not match the DNA sequences of any cultured organisms, and whose morphological identities are unknown at the present time. Additionally, rapid and sensitive methods for detecting and enumerating taxa of special importance (e.g. bloom-forming algae, parasitic protists) have enabled much more detailed distributional and experimental studies than have been possible using traditional methods. Nevertheless, while the application of molecular approaches has advanced some aspects of aquatic protistan ecology, significant issues still thwart the widespread adoption of these approaches. These issues include the highly technical nature of some of the molecular methods, the reconciliation of morphology-based and sequence-based species identifications, and the species concept itself.  相似文献   

13.
松鼠由于受到非法猎捕、栖息地破坏及欧洲部分地区的北美灰松鼠生态入侵,导致种群数量锐减,现已被世界自然保护联盟(IUCN)列为近危种,我国吉林省已将其列入省重点保护野生动物名录.分子生物学研究方法的快速发展,尤其是基于mtDNA片段开展的相关研究,以及已筛选出并能应用于松鼠研究的微卫星位点的应用,使松鼠分子生态学研究不断深入.本文对松鼠的分子系统发育、遗传多样性和分子系统地理学等分子生态学内容进行了综述,并提出松鼠分子生态学未来研究的展望:进一步探讨松鼠与日本松鼠的系统分化关系;松鼠连续种群、隔离种群和集合种群的遗传多样性比较分析;利用核基因其他标记分析松鼠分子系统地理学问题;探讨亚洲是否存在第四纪冰期避难所.  相似文献   

14.
Social interactions, including cooperation and altruism, are characteristic of numerous species, but many aspects of the evolution, ecology and genetics of social behavior remain unclear. The microbial soil amoeba Dictyostelium discoideum is a model system for the study of social evolution and provides insights into the nature of social cooperation and its genetic basis. This species exhibits altruism during both asexual and sexual cycles of its life history, and recent studies have uncovered several possible genetic mechanisms associated with kin discrimination and cheating behavior during asexual fruiting-body formation. By contrast, the molecular and evolutionary mechanisms that underlie sexual macrocyst formation remain largely enigmatic. D. discoideum, given its utility in molecular genetic studies, should continue to help us address these and other relevant questions in sociobiology, and thereby contribute to a coherent theoretical framework for the nature of social cooperation.  相似文献   

15.
Stable infections by maternally transmitted symbionts are frequently found in field populations, especially in arthropods. Many questions remain regarding their contribution to host biology and ecology, and especially on environmental adaptation of their host. Wolbachia is one of the most common endosymbiont of invertebrates. This cytoplasmically inherited endocellular bacterium induces number of reproductive alterations in its arthropod hosts and various fitness effects that allow it to spread in host populations. To better understand the influence of Wolbachia on host phenotypes and consequences of the manipulation of reproduction on the host genetic differentiation, it is crucial to be able to discriminate Wolbachia strains and determine their prevalence, which requires exhaustive screening. In the present report, we proposed the use of a new tool for the population studies, based on the high resolution melting (HRM) analysis, less expensive and faster than the 'classical' methods for large-scale studies. We investigated the effectiveness of HRM to explore and characterize the diversity of Wolbachia strains. Results obtained showed that HRM is a powerful tool to identify strains and detect polymorphism in singly infected hosts. When individuals harboured a mixture of Wolbachia strains (multiple infections), there is a risk of underestimation of the diversity if the proportions of the strains are highly different. However, the same limitations exist for the other techniques commonly used. Overall, this study demonstrated that HRM analysis is a rapid and reliable technique useful for studying, without a priori, Wolbachia strains diversity in field populations.  相似文献   

16.
17.
The role of ecological theory in microbial ecology   总被引:3,自引:0,他引:3  
Microbial ecology is currently undergoing a revolution, with repercussions spreading throughout microbiology, ecology and ecosystem science. The rapid accumulation of molecular data is uncovering vast diversity, abundant uncultivated microbial groups and novel microbial functions. This accumulation of data requires the application of theory to provide organization, structure, mechanistic insight and, ultimately, predictive power that is of practical value, but the application of theory in microbial ecology is currently very limited. Here we argue that the full potential of the ongoing revolution will not be realized if research is not directed and driven by theory, and that the generality of established ecological theory must be tested using microbial systems.  相似文献   

18.
Invasive species are predicted to suffer from reductions in genetic diversity during founding events, reducing adaptive potential. Integrating evidence from two literature reviews and two case studies, we address the following questions: How much genetic diversity is lost in invasions? Do multiple introductions ameliorate this loss? Is there evidence for loss of diversity in quantitative traits? Do invaders that have experienced strong bottlenecks show adaptive evolution? How do multiple introductions influence adaptation on a landscape scale? We reviewed studies of 80 species of animals, plants, and fungi that quantified nuclear molecular diversity within introduced and source populations. Overall, there were significant losses of both allelic richness and heterozygosity in introduced populations, and large gains in diversity were rare. Evidence for multiple introductions was associated with increased diversity, and allelic variation appeared to increase over long timescales (~100 years), suggesting a role for gene flow in augmenting diversity over the long‐term. We then reviewed the literature on quantitative trait diversity and found that broad‐sense variation rarely declines in introductions, but direct comparisons of additive variance were lacking. Our studies of Hypericum canariense invasions illustrate how populations with diminished diversity may still evolve rapidly. Given the prevalence of genetic bottlenecks in successful invading populations and the potential for adaptive evolution in quantitative traits, we suggest that the disadvantages associated with founding events may have been overstated. However, our work on the successful invader Verbascum thapsus illustrates how multiple introductions may take time to commingle, instead persisting as a ‘mosaic of maladaptation’ where traits are not distributed in a pattern consistent with adaptation. We conclude that management limiting gene flow among introduced populations may reduce adaptive potential but is unlikely to prevent expansion or the evolution of novel invasive behaviour.  相似文献   

19.
There is growing realisation that integrating genetics and ecology is critical in the context of biological invasions, since the two are explicitly linked. So far, the focus of ecological genetics of invasive alien species (IAS) has been on determining the sources and routes of invasions, and the genetic make-up of founding populations, which is critical for defining and testing ecological and evolutionary hypotheses. However an ecological genetics approach can be extended to investigate questions about invasion success and impacts on native, recipient species. Here, we discuss recent progress in the field, provide overviews of recent methodological advances, and highlight areas that we believe are of particular interest for future research. First, we discuss the main insights from studies that have inferred source populations and invasion routes using molecular genetic data, with particular focus on the role of genetic diversity, adaptation and admixture in invasion success. Second, we consider how genetic tools can lead to a better understanding of patterns of dispersal, which is critical to predicting the spread of invasive species, and how studying invasions can shed light on the evolution of dispersal. Finally, we explore the potential for combining molecular genetic data and ecological network modelling to investigate community interactions such as those between predator and prey, and host and parasite. We conclude that invasions are excellent model systems for understanding the role of natural selection in shaping phenotypes and that an ecological genetics approach offers great potential for addressing fundamental questions in invasion biology.  相似文献   

20.

Background

Copepods outnumber every other multicellular animal group. They are critical components of the world's freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited.

Discussion

The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. Genome-wide and EST studies of parasitic copepods of salmon and large EST studies of selected free-living copepods have demonstrated the potential utility of modern genomics approaches for the study of copepods and have generated resources such as EST libraries, shotgun genome sequences, BAC libraries, genome maps and inbred lines that will be invaluable in assisting further efforts to provide genomics tools for copepods.

Summary

Genomics research on copepods is needed to extend our exploration and characterization of their fundamental biological traits, so that we can better understand how copepods function and interact in diverse environments. Availability of large scale genomics resources will also open doors to a wide range of systems biology type studies that view the organism as the fundamental system in which to address key questions in ecology and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号