首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fragment assembly string graph   总被引:1,自引:0,他引:1  
We present a concept and formalism, the string graph, which represents all that is inferable about a DNA sequence from a collection of shotgun sequencing reads collected from it. We give time and space efficient algorithms for constructing a string graph given the collection of overlaps between the reads and, in particular, present a novel linear expected time algorithm for transitive reduction in this context. The result demonstrates that the decomposition of reads into kmers employed in the de Bruijn graph approach described earlier is not essential, and exposes its close connection to the unitig approach we developed at Celera. This paper is a preliminary piece giving the basic algorithm and results that demonstrate the efficiency and scalability of the method. These ideas are being used to build a next-generation whole genome assembler called BOA (Berkeley Open Assembler) that will easily scale to mammalian genomes.  相似文献   

2.
For the last twenty years fragment assembly was dominated by the "overlap - layout - consensus" algorithms that are used in all currently available assembly tools. However, the limits of these algorithms are being tested in the era of genomic sequencing and it is not clear whether they are the best choice for large-scale assemblies. Although the "overlap - layout - consensus" approach proved to be useful in assembling clones, it faces difficulties in genomic assemblies: the existing algorithms make assembly errors even in bacterial genomes. We abandoned the "overlap - layout - consensus" approach in favour of a new Eulerian Superpath approach that outperforms the existing algorithms for genomic fragment assembly (Pevzner et al. 2001 InProceedings of the Fifth Annual International Conference on Computational Molecular Biology (RECOMB-01), 256-26). In this paper we describe our new EULER-DB algorithm that, similarly to the Celera assembler takes advantage of clone-end sequencing by using the double-barreled data. However, in contrast to the Celera assembler, EULER-DB does not mask repeats but uses them instead as a powerful tool for contig ordering. We also describe a new approach for the Copy Number Problem: "How many times a given repeat is present in the genome?". For long nearly-perfect repeats this question is notoriously difficult and some copies of such repeats may be "lost" in genomic assemblies. We describe our EULER-CN algorithm for the Copy Number Problem that proved to be successful in difficult sequencing projects.  相似文献   

3.
MOTIVATION: Since the simultaneous publication of the human genome assembly by the International Human Genome Sequencing Consortium (HGSC) and Celera Genomics, several comparisons have been made of various aspects of these two assemblies. In this work, we set out to provide a more comprehensive comparative analysis of the two assemblies and their associated gene sets. RESULTS: The local sequence content for both draft genome assemblies has been similar since the early releases, however it took a year for the quality of the Celera assembly to approach that of HGSC, suggesting an advantage of HGSC's hierarchical shotgun (HS) sequencing strategy over Celera's whole genome shotgun (WGS) approach. While similar numbers of ab initio predicted genes can be derived from both assemblies, Celera's Otto approach consistently generated larger, more varied gene sets than the Ensembl gene build system. The presence of a non-overlapping gene set has persisted with successive data releases from both groups. Since most of the unique genes from either genome assembly could be mapped back to the other assembly, we conclude that the gene set discrepancies do not reflect differences in local sequence content but rather in the assemblies and especially the different gene-prediction methodologies.  相似文献   

4.
The whole-genome shotgun (WGS) assembly technique has been remarkably successful in efforts to determine the sequence of bases that make up a genome. WGS assembly begins with a large collection of short fragments that have been selected at random from a genome. The sequence of bases at each end of the fragment is determined, albeit imprecisely, resulting in a sequence of letters called a "read." Each letter in a read is assigned a quality value, which estimates the probability that a sequencing error occurred in determining that letter. Reads are typically cut off after about 500 letters, where sequencing errors become endemic. We report on a set of procedures that (1) corrects most of the sequencing errors, (2) changes quality values accordingly, and (3) produces a list of "overlaps," i.e., pairs of reads that plausibly come from overlapping parts of the genome. Our procedures, which we call collectively the "UMD Overlapper," can be run iteratively and as a preprocessor for other assemblers. We tested the UMD Overlapper on Celera's Drosophila reads. When we replaced Celera's overlap procedures in the front end of their assembler, it was able to produce a significantly improved genome.  相似文献   

5.
6.
The genome sequence of silkworm, Bombyx mori.   总被引:21,自引:0,他引:21  
We performed threefold shotgun sequencing of the silkworm (Bombyx mori) genome to obtain a draft sequence and establish a basic resource for comprehensive genome analysis. By using the newly developed RAMEN assembler, the sequence data derived from whole-genome shotgun (WGS) sequencing were assembled into 49,345 scaffolds that span a total length of 514 Mb including gaps and 387 Mb without gaps. Because the genome size of the silkworm is estimated to be 530 Mb, almost 97% of the genome has been organized in scaffolds, of which 75% has been sequenced. By carrying out a BLAST search for 50 characteristic Bombyx genes and 11,202 non-redundant expressed sequence tags (ESTs) in a Bombyx EST database against the WGS sequence data, we evaluated the validity of the sequence for elucidating the majority of silkworm genes. Analysis of the WGS data revealed that the silkworm genome contains many repetitive sequences with an average length of <500 bp. These repetitive sequences appear to have been derived from truncated transposons, which are interspersed at 2.5- to 3-kb intervals throughout the genome. This pattern suggests that silkworm may have an active mechanism that promotes removal of transposons from the genome. We also found evidence for insertions of mitochondrial DNA fragments at 9 sites. A search for Bombyx orthologs to Drosophila genes controlling sex determination in the WGS data revealed 11 Bombyx genes and suggested that the sex-determining systems differ profoundly between the two species.  相似文献   

7.
SUMMARY: We provide the graphical tool BACCardI for the construction of virtual clone maps from standard assembler output files or BLAST based sequence comparisons. This new tool has been applied to numerous genome projects to solve various problems including (a) validation of whole genome shotgun assemblies, (b) support for contig ordering in the finishing phase of a genome project, and (c) intergenome comparison between related strains when only one of the strains has been sequenced and a large insert library is available for the other. The BACCardI software can seamlessly interact with various sequence assembly packages. MOTIVATION: Genomic assemblies generated from sequence information need to be validated by independent methods such as physical maps. The time-consuming task of building physical maps can be circumvented by virtual clone maps derived from read pair information of large insert libraries.  相似文献   

8.
Chudin  Eugene  Walker  Randal  Kosaka  Alan  Wu  Sue X  Rabert  Douglas  Chang  Thomas K  Kreder  Dirk E 《Genome biology》2002,4(1):1-10

Background

The availability of both mouse and human draft genomes has marked the beginning of a new era of comparative mammalian genomics. The two available mouse genome assemblies, from the public mouse genome sequencing consortium and Celera Genomics, were obtained using different clone libraries and different assembly methods.

Results

We present here a critical comparison of the two latest mouse genome assemblies. The utility of the combined genomes is further demonstrated by comparing them with the human 'golden path' and through a subsequent analysis of a resulting conserved sequence element (CSE) database, which allows us to identify over 6,000 potential novel genes and to derive independent estimates of the number of human protein-coding genes.

Conclusion

The Celera and public mouse assemblies differ in about 10% of the mouse genome. Each assembly has advantages over the other: Celera has higher accuracy in base-pairs and overall higher coverage of the genome; the public assembly, however, has higher sequence quality in some newly finished bacterial artifical chromosome clone (BAC) regions and the data are freely accessible. Perhaps most important, by combining both assemblies, we can get a better annotation of the human genome; in particular, we can obtain the most complete set of CSEs, one third of which are related to known genes and some others are related to other functional genomic regions. More than half the CSEs are of unknown function. From the CSEs, we estimate the total number of human protein-coding genes to be about 40,000. This searchable publicly available online CSEdb will expedite new discoveries through comparative genomics.  相似文献   

9.
Whole‐genome shotgun sequencing of multispecies communities using only a single library layout is commonly used to assess taxonomic and functional diversity of microbial assemblages. Here, we investigate to what extent such metagenome skimming approaches are applicable for in‐depth genomic characterizations of eukaryotic communities, for example lichens. We address how to best assemble a particular eukaryotic metagenome skimming data, what pitfalls can occur, and what genome quality can be expected from these data. To facilitate a project‐specific benchmarking, we introduce the concept of twin sets, simulated data resembling the outcome of a particular metagenome sequencing study. We show that the quality of genome reconstructions depends essentially on assembler choice. Individual tools, including the metagenome assemblers Omega and MetaVelvet, are surprisingly sensitive to low and uneven coverages. In combination with the routine of assembly parameter choice to optimize the assembly N50 size, these tools can preclude an entire genome from the assembly. In contrast, MIRA, an all‐purpose overlap assembler, and SPAdes, a multisized de Bruijn graph assembler, facilitate a comprehensive view on the individual genomes across a wide range of coverage ratios. Testing assemblers on a real‐world metagenome skimming data from the lichen Lasallia pustulata demonstrates the applicability of twin sets for guiding method selection. Furthermore, it reveals that the assembly outcome for the photobiont Trebouxia sp. falls behind the a priori expectation given the simulations. Although the underlying reasons remain still unclear, this highlights that further studies on this organism require special attention during sequence data generation and downstream analysis.  相似文献   

10.
11.
Background: De novo genome assembly relies on two kinds of graphs: de Bruijn graphs and overlap graphs. Overlap graphs are the basis for the Celera assembler, while de Bruijn graphs have become the dominant technical device in the last decade. Those two kinds of graphs are collectively called assembly graphs.Results: In this review, we discuss the most recent advances in the problem of constructing, representing and navigating assembly graphs, focusing on very large datasets. We will also explore some computational techniques, such as the Bloom filter, to compactly store graphs while keeping all functionalities intact. Conclusions: We complete our analysis with a discussion on the algorithmic issues of assembling from long reads (e.g., PacBio and Oxford Nanopore). Finally, we present some of the most relevant open problems in this field.  相似文献   

12.
The diploid genome sequence of an individual human   总被引:4,自引:1,他引:3  
Presented here is a genome sequence of an individual human. It was produced from ∼32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb) of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel) included 3,213,401 single nucleotide polymorphisms (SNPs), 53,823 block substitutions (2–206 bp), 292,102 heterozygous insertion/deletion events (indels)(1–571 bp), 559,473 homozygous indels (1–82,711 bp), 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.  相似文献   

13.
14.
The assembly methods used for whole-genome shotgun (WGS) data have a major impact on the quality of resulting draft genomes. We present a novel algorithm to generate a set of "reliable" overlaps based on identifying repeat k-mers. To demonstrate the benefits of using reliable overlaps, we have created a version of the Phrap assembly program that uses only overlaps from a specific list. We call this version PhrapUMD. Integrating PhrapUMD and our "reliable-overlap" algorithm with the Baylor College of Medicine assembler, Atlas, we assemble the BACs from the Rattus norvegicus genome project. Starting with the same data as the Nov. 2002 Atlas assembly, we compare our results and the Atlas assembly to the 4.3 Mb of rat sequence in the 21 BACs that have been finished. Our version of the draft assembly of the 21 BACs increases the coverage of finished sequence from 93.4% to 96.3%, while simultaneously reducing the base error rate from 4.5 to 1.1 errors per 10,000 bases. There are a number of ways of assessing the relative merits of assemblies when the finished sequence is available. If one views the overall quality of an assembly as proportional to the inverse of the product of the error rate and sequence missed, then the assembly presented here is seven times better. The UMD Overlapper with options for reliable overlaps is available from the authors at http://www.genome.umd.edu. We also provide the changes to the Phrap source code enabling it to use only the reliable overlaps.  相似文献   

15.
MOTIVATION: Current genomic sequence assemblers assume that the input data is derived from a single, homogeneous source. However, recent whole-genome shotgun sequencing projects have violated this assumption, resulting in input fragments covering the same region of the genome whose sequences differ due to polymorphic variation in the population. While single-nucleotide polymorphisms (SNPs) do not pose a significant problem to state-of-the-art assembly methods, these methods do not handle insertion/deletion (indel) polymorphisms of more than a few bases. RESULTS: This paper describes an efficient method for detecting sequence discrepencies due to polymorphism that avoids resorting to global use of more costly, less stringent affine sequence alignments. Instead, the algorithm uses graph-based methods to determine the small set of fragments involved in each polymorphism and performs more sophisticated alignments only among fragments in that set. Results from the incorporation of this method into the Celera Assembler are reported for the D. melanogaster, H. sapiens, and M. musculus genomes.  相似文献   

16.
17.
18.
Numerous phenotypic traits differ among inbred mice, and the genetic diversity of inbred strains has been exploited in studies of quantitative trait loci (QTL). Sequencing the mouse genome has resulted in improved tools for the study of QTL, but a comprehensive catalog of sequence variants between strains would be of great value in identifying and testing potentially causative alleles. A/J DNA was included in the Celera shotgun sequence of the mouse genome and C57BL/6 DNA was sequenced by an international consortium. We have resequenced A/J and B6 DNA to cover nearly all of the protein-coding portions of mouse Chromosome 16, revealing that there are 106 nonsynonymous substitutions in 74 of the 779 genes on the chromosome. The pattern of substitution is more similar to the spectrum of benign polymorphism in the human population than it is to human disease-causing mutations. In mouse, polymorphic variants tend to be associated with one another on large haplotypes; this pattern also holds true for nonsynonymous polymorphism. However, sufficient fragmentation of haplotypes is present to suggest that only a very-high-resolution haplotype map will enable effective inference of alleles in additional strains. SNP data have been submitted to dbSNP with ssid No. 46531525-46532013.  相似文献   

19.
The complete genome of Cnaphalocrocis medinalis granulovirus(CnmeGV) from a serious migratory rice pest, Cnaphalocrocis medinalis(Lepidoptera: Pyralidae), was sequenced using the Roche 454 Genome Sequencer FLX system(GS FLX) with shotgun strategy and assembled by Roche GS De Novo assembler software. Its circular double-stranded genome is 111,246 bp in size with a high A+T content of 64.8% and codes for 118 putative open reading frames(ORFs). It contains 37 conserved baculovirus core ORFs, 13 unique ORFs, 26 ORFs that were found in all Lepidoptera baculoviruses and 42 common ORFs. The analysis of nucleotide sequence repeats revealed that the CnmeGV genome differs from the rest of sequenced GVs by a 23 kb and a 17 kb gene block inversions, and does not contain any typical homologous region(hr) except for a region of non-hr-like sequence. Chitinase and cathepsin genes, which are reported to have major roles in the liquefaction of the hosts, were not found in the CnmeGV genome, which explains why CnmeGV infected insects do not show the phenotype of typical liquefaction. Phylogenetic analysis,based on the 37 core baculovirus genes, indicates that CnmeGV is closely related to Adoxophyes orana granulovirus. The genome analysis would contribute to the functional research of CnmeGV,and would benefit to the utilization of CnmeGV as pest control reagent for rice production.  相似文献   

20.
We propose a genome sequencing strategy, which is neither divide-and-conquer (clone by clone) nor the shotgun approach. Random PCR-based and PCR relay sequencing constitute the basis of this novel strategy. Most of the genome is sequenced by the former process that requires only a set of non-specific primers and a template DNA. Random PCR-based sequencing reduces redundancy in sequencing by exploiting known sequence information. The number of primers required for random PCR was significantly diminished by using a combination of primers. The former process can be partially replaced by the shotgun method, if necessary. The gap-filling process can be effectively performed by way of PCR relay. The feasibility of this strategy was demonstrated using the Escherichia coli genome. This strategy enhances the global effort towards genome sequencing by being available through the Internet and by allowing the use of preexisting sequence data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号