首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a limited repertoire of domain families that are duplicated and combined in different ways to form the set of proteins in a genome. Proteins are gene products, and at the level of genes, duplication, recombination, fusion and fission are the processes that produce new genes. We attempt to gain an overview of these processes by studying the evolutionary units in proteins, domains, in the protein sequences of 40 genomes. The domain and superfamily definitions in the Structural Classification of Proteins Database are used, so that we can view all pairs of adjacent domains in genome sequences in terms of their superfamily combinations. We find 783 out of the 859 superfamilies in SCOP in these genomes, and the 783 families occur in 1307 pairwise combinations. Most families are observed in combination with one or two other families, while a few families are very versatile in their combinatorial behaviour; 209 families do not make combinations with other families. This type of pattern can be described as a scale-free network. We also study the N to C-terminal orientation of domain pairs and domain repeats. The phylogenetic distribution of domain combinations is surveyed, to establish the extent of common and kingdom-specific combinations. Of the kingdom-specific combinations, significantly more combinations consist of families present in all three kingdoms than of families present in one or two kingdoms. Hence, we are led to conclude that recombination between common families, as compared to the invention of new families and recombination among these, has also been a major contribution to the evolution of kingdom-specific and species-specific functions in organisms in all three kingdoms. Finally, we compare the set of the domain combinations in the genomes to those in the RCSB Protein Data Bank, and discuss the implications for structural genomics.  相似文献   

2.
There is a limited repertoire of domain families in nature that are duplicated and combined in different ways to form the set of proteins in a genome. Most proteins in both prokaryote and eukaryote genomes consist of two or more domains, and we show that the family size distribution of multi-domain protein families follows a power law like that of individual families. Most domain pairs occur in four to six different domain architectures: in isolation and in combinations with different partners. We showed previously that within the set of all pairwise domain combinations, most small and medium-sized families are observed in combination with one or two other families, while a few large families are very versatile and combine with many different partners. Though this may appear to be a stochastic pattern, in which large families have more combination partners by virtue of their size, we establish here that all the domain families with more than three members in genomes are duplicated more frequently than would be expected by chance considering their number of neighbouring domains. This duplication of domain pairs is statistically significant for between one and three quarters of all families with seven or more members. For the majority of pairwise domain combinations, there is no known three-dimensional structure of the two domains together, and we term these novel combinations. Novel domain combinations are interesting and important targets for structural elucidation, as the geometry and interaction between the domains will help understand the function and evolution of multi-domain proteins. Of particular interest are those combinations that occur in the largest number of multi-domain proteins, and several of these frequent novel combinations contain DNA-binding domains.Abbreviations:SCOP: Structural Classification of Proteins database, PDB: Protein DataBank, HMM: hidden Markov model  相似文献   

3.
MOTIVATION: The sequence patterns contained in the available motif and hidden Markov model (HMM) databases are a valuable source of information for protein sequence annotation. For structure prediction and fold recognition purposes, we computed mappings from such pattern databases to the protein domain hierarchy given by the ASTRAL compendium and applied them to the prediction of SCOP classifications. Our aim is to make highly confident predictions also for non-trivial cases if possible and abstain from a prediction otherwise, and thus to provide a method that can be used as a first step in a pipeline of prediction methods. We describe two successful examples for such pipelines. With the AutoSCOP approach, it is possible to make predictions in a large-scale manner for many domains of the available sequences in the well-known protein sequence databases. RESULTS: AutoSCOP computes unique sequence patterns and pattern combinations for SCOP classifications. For instance, we assign a SCOP superfamily to a pattern found in its members whenever the pattern does not occur in any other SCOP superfamily. Especially on the fold and superfamily level, our method achieves both high sensitivity (above 93%) and high specificity (above 98%) on the difference set between two ASTRAL versions, due to being able to abstain from unreliable predictions. Further, on a harder test set filtered at low sequence identity, the combination with profile-profile alignments improves accuracy and performs comparably even to structure alignment methods. Integrating our method with structure alignment, we are able to achieve an accuracy of 99% on SCOP fold classifications on this set. In an analysis of false assignments of domains from new folds/superfamilies/families to existing SCOP classifications, AutoSCOP correctly abstains for more than 70% of the domains belonging to new folds and superfamilies, and more than 80% of the domains belonging to new families. These findings show that our approach is a useful additional filter for SCOP classification prediction of protein domains in combination with well-known methods such as profile-profile alignment. AVAILABILITY: A web server where users can input their domain sequences is available at http://www.bio.ifi.lmu.de/autoscop.  相似文献   

4.
Structures for protein domains have increased rapidly in recent years owing to advances in structural biology and structural genomics projects. New structures are often similar to those solved previously, and such similarities can give insights into function by linking poorly understood families to those that are better characterized. They also allow the possibility of combing information to find still more proteins adopting a similar structure and sometimes a similar function, and to reprioritize families in structural genomics pipelines. We explore this possibility here by preparing merged profiles for pairs of structurally similar, but not necessarily sequence-similar, domains within the SMART and Pfam database by way of the Structural Classification of Proteins (SCOP). We show that such profiles are often able to successfully identify further members of the same superfamily and thus can be used to increase the sensitivity of database searching methods like HMMer and PSI-BLAST. We perform detailed benchmarks using the SMART and Pfam databases with four complete genomes frequently used as annotation benchmarks. We quantify the associated increase in structural information in Swissprot and discuss examples illustrating the applicability of this approach to understand functional and evolutionary relationships between protein families.  相似文献   

5.
Evolutionary innovation in eukaryotes and especially animals is at least partially driven by genome rearrangements and the resulting emergence of proteins with new domain combinations, and thus potentially novel functionality. Given the random nature of such rearrangements, one could expect that proteins with particularly useful multidomain combinations may have been rediscovered multiple times by parallel evolution. However, existing reports suggest a minimal role of this phenomenon in the overall evolution of eukaryotic proteomes. We assembled a collection of 172 complete eukaryotic genomes that is not only the largest, but also the most phylogenetically complete set of genomes analyzed so far. By employing a maximum parsimony approach to compare repertoires of Pfam domains and their combinations, we show that independent evolution of domain combinations is significantly more prevalent than previously thought. Our results indicate that about 25% of all currently observed domain combinations have evolved multiple times. Interestingly, this percentage is even higher for sets of domain combinations in individual species, with, for instance, 70% of the domain combinations found in the human genome having evolved independently at least once in other species. We also show that previous, much lower estimates of this rate are most likely due to the small number and biased phylogenetic distribution of the genomes analyzed. The process of independent emergence of identical domain combination is widespread, not limited to domains with specific functional categories. Besides data from large-scale analyses, we also present individual examples of independent domain combination evolution. The surprisingly large contribution of parallel evolution to the development of the domain combination repertoire in extant genomes has profound consequences for our understanding of the evolution of pathways and cellular processes in eukaryotes and for comparative functional genomics.  相似文献   

6.
Domains are considered as the basic units of protein folding, evolution, and function. Decomposing each protein into modular domains is thus a basic prerequisite for accurate functional classification of biological molecules. Here, we present ADDA, an automatic algorithm for domain decomposition and clustering of all protein domain families. We use alignments derived from an all-on-all sequence comparison to define domains within protein sequences based on a global maximum likelihood model. In all, 90% of domain boundaries are predicted within 10% of domain size when compared with the manual domain definitions given in the SCOP database. A representative database of 249,264 protein sequences were decomposed into 450,462 domains. These domains were clustered on the basis of sequence similarities into 33,879 domain families containing at least two members with less than 40% sequence identity. Validation against family definitions in the manually curated databases SCOP and PFAM indicates almost perfect unification of various large domain families while contamination by unrelated sequences remains at a low level. The global survey of protein-domain space by ADDA confirms that most large and universal domain families are already described in PFAM and/or SMART. However, a survey of the complete set of mobile modules leads to the identification of 1479 new interesting domain families which shuffle around in multi-domain proteins. The data are publicly available at ftp://ftp.ebi.ac.uk/pub/contrib/heger/adda.  相似文献   

7.
Proteins are composed of evolutionary units called domains; the majority of proteins consist of at least two domains. These domains and nature of their interactions determine the function of the protein. The roles that combinations of domains play in the formation of the protein repertoire have been found by analysis of domain assignments to genome sequences. Additional findings on the geometry of domains have been gained from examination of three-dimensional protein structures. Future work will require a domain-centric functional classification scheme and efforts to determine structures of domain combinations.  相似文献   

8.
A natural way to study protein sequence, structure, and function is to put them in the context of evolution. Homologs inherit similarities from their common ancestor, while analogs converge to similar structures due to a limited number of energetically favorable ways to pack secondary structural elements. Using novel strategies, we previously assembled two reliable databases of homologs and analogs. In this study, we compare these two data sets and develop a support vector machine (SVM)-based classifier to discriminate between homologs and analogs. The classifier uses a number of well-known similarity scores. We observe that although both structure scores and sequence scores contribute to SVM performance, profile sequence scores computed based on structural alignments are the best discriminators between remote homologs and structural analogs. We apply our classifier to a representative set from the expert-constructed database, Structural Classification of Proteins (SCOP). The SVM classifier recovers 76% of the remote homologs defined as domains in the same SCOP superfamily but from different families. More importantly, we also detect and discuss interesting homologous relationships between SCOP domains from different superfamilies, folds, and even classes.  相似文献   

9.
Members of a superfamily of proteins could result from divergent evolution of homologues with insignificant similarity in the amino acid sequences. A superfamily relationship is detected commonly after the three-dimensional structures of the proteins are determined using X-ray analysis or NMR. The SUPFAM database described here relates two homologous protein families in a multiple sequence alignment database of either known or unknown structure. The present release (1.1), which is the first version of the SUPFAM database, has been derived by analysing Pfam, which is one of the commonly used databases of multiple sequence alignments of homologous proteins. The first step in establishing SUPFAM is to relate Pfam families with the families in PALI, which is an alignment database of homologous proteins of known structure that is derived largely from SCOP. The second step involves relating Pfam families which could not be associated reliably with a protein superfamily of known structure. The profile matching procedure, IMPALA, has been used in these steps. The first step resulted in identification of 1280 Pfam families (out of 2697, i.e. 47%) which are related, either by close homologous connection to a SCOP family or by distant relationship to a SCOP family, potentially forming new superfamily connections. Using the profiles of 1417 Pfam families with apparently no structural information, an all-against-all comparison involving a sequence-profile match using IMPALA resulted in clustering of 67 homologous protein families of Pfam into 28 potential new superfamilies. Expansion of groups of related proteins of yet unknown structural information, as proposed in SUPFAM, should help in identifying ‘priority proteins’ for structure determination in structural genomics initiatives to expand the coverage of structural information in the protein sequence space. For example, we could assign 858 distinct Pfam domains in 2203 of the gene products in the genome of Mycobacterium tubercolosis. Fifty-one of these Pfam families of unknown structure could be clustered into 17 potentially new superfamilies forming good targets for structural genomics. SUPFAM database can be accessed at http://pauling.mbu.iisc.ernet.in/~supfam.  相似文献   

10.
The ever increasing speed of DNA sequencing widens the discrepancy between the number of known gene products, and the knowledge of their function and structure. Proper annotation of protein sequences is therefore crucial if the missing information is to be deduced from sequence‐based similarity comparisons. These comparisons become exceedingly difficult as the pairwise identities drop to very low values. To improve the accuracy of domain identification, we exploit the fact that the three‐dimensional structures of domains are much more conserved than their sequences. Based on structure‐anchored multiple sequence alignments of low identity homologues we constructed 850 structure‐anchored hidden Markov models (saHMMs), each representing one domain family. Since the saHMMs are highly family specific, they can be used to assign a domain to its correct family and clearly distinguish it from domains belonging to other families, even within the same superfamily. This task is not trivial and becomes particularly difficult if the unknown domain is distantly related to the rest of the domain sequences within the family. In a search with full length protein sequences, harbouring at least one domain as defined by the structural classification of proteins database (SCOP), version 1.71, versus the saHMM database based on SCOP version 1.69, we achieve an accuracy of 99.0%. All of the few hits outside the family fall within the correct superfamily. Compared to Pfam_ls HMMs, the saHMMs obtain about 11% higher coverage. A comparison with BLAST and PSI‐BLAST demonstrates that the saHMMs have consistently fewer errors per query at a given coverage. Within our recommended E‐value range, the same is true for a comparison with SUPERFAMILY. Furthermore, we are able to annotate 232 proteins with 530 nonoverlapping domains belonging to 102 different domain families among human proteins labelled “unknown” in the NCBI protein database. Our results demonstrate that the saHMM database represents a versatile and reliable tool for identification of domains in protein sequences. With the aid of saHMMs, homology on the family level can be assigned, even for distantly related sequences. Due to the construction of the saHMMs, the hits they provide are always associated with high quality crystal structures. The saHMM database can be accessed via the FISH server at http://babel.ucmp.umu.se/fish/ . Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
Availability of the human genome data has enabled the exploration of a huge amount of biological information encoded in it. There are extensive ongoing experimental efforts to understand the biological functions of the gene products encoded in the human genome. However, computational analysis can aid immensely in the interpretation of biological function by associating known functional/structural domains to the human proteins. In this article we have discussed the implications of such associations. The association of structural domains to human proteins could help in prioritizing the targets for structure determination in the structural genomics initiatives. The protein kinase family is one of the most frequently occurring protein domain families in the human proteome while P-loop hydrolase, which comprises many GTPases and ATPases, is a highly represented superfamily. Using the superfamily relationships between families of unknown and known structures we could increase structural information content of the human genome by about 5%. We could also make new associations of domain families to 33 human proteins that are potentially linked to genetically inherited diseases.  相似文献   

12.
Immunoglobulin superfamily proteins in Caenorhabditis elegans   总被引:2,自引:0,他引:2  
  相似文献   

13.
Structural data as collated in the Protein Data Bank (PDB) have been widely applied in the study and prediction of protein-protein interactions. However, since the basic PDB Entries contain only the contents of the asymmetric unit rather than the biological unit, some key interactions may be missed by analysing only the PDB Entry. A total of 69,054 SCOP (Structural Classification of Proteins) domains were examined systematically to identify the number of additional novel interacting domain pairs and interfaces found by considering the biological unit as stored in the PQS (Protein Quaternary Structure) database. The PQS data adds 25,965 interacting domain pairs to those seen in the PDB Entries to give a total of 61,783 redundant interacting domain pairs. Redundancy filtering at the level of the SCOP family shows PQS to increase the number of novel interacting domain-family pairs by 302 (13.3%) from 2277, but only 16/302 (1.4%) of the interacting domain pairs have the two domains in different SCOP families. This suggests the biological units add little to the elucidation of novel biological interaction networks. However, when the orientation of the domain pairs is considered, the PQS data increases the number of novel domain-domain interfaces observed by 1455 (34.5%) to give 5677 non-redundant domain-domain interfaces. In all, 162/1455 novel domain-domain interfaces are between domains from different families, an increase of 8.9% over the PDB Entries. Overall, the PQS biological units provide a rich source of novel domain-domain interfaces that are not seen in the studied PDB Entries, and so PQS domain-domain interaction data should be exploited wherever possible in the analysis and prediction of protein-protein interactions.  相似文献   

14.
Standley DM  Toh H  Nakamura H 《Proteins》2008,72(4):1333-1351
A method to functionally annotate structural genomics targets, based on a novel structural alignment scoring function, is proposed. In the proposed score, position-specific scoring matrices are used to weight structurally aligned residue pairs to highlight evolutionarily conserved motifs. The functional form of the score is first optimized for discriminating domains belonging to the same Pfam family from domains belonging to different families but the same CATH or SCOP superfamily. In the optimization stage, we consider four standard weighting functions as well as our own, the "maximum substitution probability," and combinations of these functions. The optimized score achieves an area of 0.87 under the receiver-operating characteristic curve with respect to identifying Pfam families within a sequence-unique benchmark set of domain pairs. Confidence measures are then derived from the benchmark distribution of true-positive scores. The alignment method is next applied to the task of functionally annotating 230 query proteins released to the public as part of the Protein 3000 structural genomics project in Japan. Of these queries, 78 were found to align to templates with the same Pfam family as the query or had sequence identities > or = 30%. Another 49 queries were found to match more distantly related templates. Within this group, the template predicted by our method to be the closest functional relative was often not the most structurally similar. Several nontrivial cases are discussed in detail. Finally, 103 queries matched templates at the fold level, but not the family or superfamily level, and remain functionally uncharacterized.  相似文献   

15.
Membrane proteins serve as cellular gatekeepers, regulators, and sensors. Prior studies have explored the functional breadth and evolution of proteins and families of particular interest, such as the diversity of transport-associated membrane protein families in prokaryotes and eukaryotes, the composition of integral membrane proteins, and family classification of all human G-protein coupled receptors. However, a comprehensive analysis of the content and evolutionary associations between membrane proteins and families in a diverse set of genomes is lacking. Here, a membrane protein annotation pipeline was developed to define the integral membrane genome and associations between 21,379 proteins from 34 genomes; most, but not all of these proteins belong to 598 defined families. The pipeline was used to provide target input for a structural genomics project that successfully cloned, expressed, and purified 61 of our first 96 selected targets in yeast. Furthermore, the methodology was applied (1) to explore the evolutionary history of the substrate-binding transmembrane domains of the human ABC transporter superfamily, (2) to identify the multidrug resistance-associated membrane proteins in whole genomes, and (3) to identify putative new membrane protein families.  相似文献   

16.
Comparative studies of the proteomes from different organisms have provided valuable information about protein domain distribution in the kingdoms of life. Earlier studies have been limited by the fact that only about 50% of the proteomes could be matched to a domain. Here, we have extended these studies by including less well-defined domain definitions, Pfam-B and clustered domains, MAS, in addition to Pfam-A and SCOP domains. It was found that a significant fraction of these domain families are homologous to Pfam-A or SCOP domains. Further, we show that all regions that do not match a Pfam-A or SCOP domain contain a significantly higher fraction of disordered structure. These unstructured regions may be contained within orphan domains or function as linkers between structured domains. Using several different definitions we have re-estimated the number of multi-domain proteins in different organisms and found that several methods all predict that eukaryotes have approximately 65% multi-domain proteins, while the prokaryotes consist of approximately 40% multi-domain proteins. However, these numbers are strongly dependent on the exact choice of cut-off for domains in unassigned regions. In conclusion, all eukaryotes have similar fractions of multi-domain proteins and disorder, whereas a high fraction of repeating domain is distinguished only in multicellular eukaryotes. This implies a role for repeats in cell-cell contacts while the other two features are important for intracellular functions.  相似文献   

17.
One of the major research directions in bioinformatics is that of predicting the protein superfamily in large databases and classifying a given set of protein domains into superfamilies. The classification reflects the structural, evolutionary and functional relatedness. These relationships are embodied in hierarchical classification such as Structural Classification of Protein (SCOP), which is manually curated. Such classification is essential for the structural and functional analysis of proteins. Yet, a large number of proteins remain unclassified. We have proposed an unsupervised machine-learning FuzzyART neural network algorithm to classify a given set of proteins into SCOP superfamilies. The proposed method is fast learning and uses an atypical non-linear pattern recognition technique. In this approach, we have constructed a similarity matrix from p-values of BLAST all-against-all, trained the network with FuzzyART unsupervised learning algorithm using the similarity matrix as input vectors and finally the trained network offers SCOP superfamily level classification. In this experiment, we have evaluated the performance of our method with existing techniques on six different datasets. We have shown that the trained network is able to classify a given similarity matrix of a set of sequences into SCOP superfamilies at high classification accuracy.  相似文献   

18.
The explosion in gene sequence data and technological breakthroughs in protein structure determination inspired the launch of structural genomics (SG) initiatives. An often stated goal of structural genomics is the high-throughput structural characterisation of all protein sequence families, with the long-term hope of significantly impacting on the life sciences, biotechnology and drug discovery. Here, we present a comprehensive analysis of solved SG targets to assess progress of these initiatives. Eleven consortia have contributed 316 non-redundant entries and 323 protein chains to the Protein Data Bank (PDB), and 459 and 393 domains to the CATH and SCOP structure classifications, respectively. The quality and size of these proteins are comparable to those solved in traditional structural biology and, despite huge scope for duplicated efforts, only 14% of targets have a close homologue (>/=30% sequence identity) solved by another consortium. Analysis of CATH and SCOP revealed the significant contribution that structural genomics is making to the coverage of superfamilies and folds. A total of 67% of SG domains in CATH are unique, lacking an already characterised close homologue in the PDB, whereas only 21% of non-SG domains are unique. For 29% of domains, structure determination revealed a remote evolutionary relationship not apparent from sequence, and 19% and 11% contributed new superfamilies and folds. The secondary structure class, fold and superfamily distributions of this dataset reflect those of the genomes. The domains fall into 172 different folds and 259 superfamilies in CATH but the distribution is highly skewed. The most populous of these are those that recur most frequently in the genomes. Whilst 11% of superfamilies are bacteria-specific, most are common to all three superkingdoms of life and together the 316 PDB entries have provided new and reliable homology models for 9287 non-redundant gene sequences in 206 completely sequenced genomes. From the perspective of this analysis, it appears that structural genomics is on track to be a success, and it is hoped that this work will inform future directions of the field.  相似文献   

19.
Domains are the evolutionary units that comprise proteins, and most proteins are built from more than one domain. Domains can be shuffled by recombination to create proteins with new arrangements of domains. Using structural domain assignments, we examined the combinations of domains in the proteins of 131 completely sequenced organisms. We found two-domain and three-domain combinations that recur in different protein contexts with different partner domains. The domains within these combinations have a particular functional and spatial relationship. These units are larger than individual domains and we term them "supra-domains". Amongst the supra-domains, we identified some 1400 (1203 two-domain and 166 three-domain) combinations that are statistically significantly over-represented relative to the occurrence and versatility of the individual component domains. Over one-third of all structurally assigned multi-domain proteins contain these over-represented supra-domains. This means that investigation of the structural and functional relationships of the domains forming these popular combinations would be particularly useful for an understanding of multi-domain protein function and evolution as well as for genome annotation. These and other supra-domains were analysed for their versatility, duplication, their distribution across the three kingdoms of life and their functional classes. By examining the three-dimensional structures of several examples of supra-domains in different biological processes, we identify two basic types of spatial relationships between the component domains: the combined function of the two domains is such that either the geometry of the two domains is crucial and there is a tight constraint on the interface, or the precise orientation of the domains is less important and they are spatially separate. Frequently, the role of the supra-domain becomes clear only once the three-dimensional structure is known. Since this is the case for only a quarter of the supra-domains, we provide a list of the most important unknown supra-domains as potential targets for structural genomics projects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号