首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanotrophs and Methanogens in Masonry   总被引:1,自引:0,他引:1       下载免费PDF全文
Methanotrophs were present in 48 of 225 stone samples which were removed from 19 historical buildings in Germany and Italy. The average cell number of methanotrophs was 20 CFU per g of stone, and their activities ranged between 11 and 42 pmol of CH4 g of stone−1 day−1. Twelve strains of methane-oxidizing bacteria were isolated. They belonged to the type II methanotrophs of the genera Methylocystis, Methylosinus, and Methylobacterium. In masonry, growth substrates like methane or methanol are available in very low concentrations. To determine if methane could be produced by the stone at rates sufficient to support growth of methanotrophs, methane production by stone samples under nonoxic conditions was examined. Methane production of 0.07 to 215 nmol of CH4 g of stone−1 day−1 was detected in 23 of 47 stone samples examined. This indicated the presence of the so-called “mini-methane”-producing bacteria and/or methanogenic archaea. Methanotrophs occurred in nearly all samples which showed methane production. This finding indicated that methanotrophs depend on biogenic methane production in or on stone surfaces of historical buildings.  相似文献   

2.
The isolated habitat of the ervené Blato bog (South Bohemia, Czech Republic) and its relict insect fauna have been the subject of long-term monitoring. The species composition and abundance of Lepidoptera (light traps) and Coleoptera (pitfall traps) were monitored for 4 years (1994–1997) simultaneously on two sites – in the edaphic climax pine forest and in wetland successional habitats. The method of statistical evaluation by RDA and CCA ordination, representing the habitat preference of species of Coleoptera (Carabidae only) and Lepidoptera (all nocturnal phototactic taxa) between the edaphic climax forest and succession stages, was used. All categories of the peatland taxa (tyrphobiontic, tyrphophilous and tyrphoneutral species) were analysed. Ten highly stenotopic tyrphobiontic species and 23 tyrphophilous species of Lepidoptera (out of 487) were most characteristic of the bog habitat. Only two tyrphophilous carabid species (out of 20) were characteristic of the bog. The most important relict species (tyrphobionts) of Lepidoptera are most diverse and abundant within the successional habitats and in the open wet forest. The relict fauna of the closed climax pine forest is much less diverse and composed mostly of abundant tyrphophilous and tyrphoneutral forest species. Preservation or restoration of sufficiently constant hydrological conditions, which prevents formation of the closed forest, is the basic management for habitat conservation of all relict tyrphobiontic species of the ervené Blato bog and similar peat land habitat islands. The peat bog is a unified complex system of specific diverse and relict taxa. The most specific taxa are tyrphobiontic Lepidoptera, but a number of other vulnerable tyrphophilous and tyrphoneutral insects are associated with the peat bog as well.  相似文献   

3.
Kravchenko  I. K.  Doroshenko  E. V. 《Microbiology》2003,72(1):98-102
The nitrogenase (acetylene reductase) activity in monolithic and minced peat samples was found to be low, no more than 0.014–0.022 mg N/(kg h). Incorporation of the 15N2 isotope into organic compounds of peat soil was 2.71–8.13 mg N/kg over 15 days. The nitrogen-fixing activity was the highest in a 10- to 20-cm layer of soil and much lower in the upper (under green moss) and deeper (20- to 30-cm) layers. The addition of glucose to soil samples stimulated nitrogen fixation considerably after 18–26 h. The maximum nitrogenase activity (3.5–3.8 mg N/(kg h)), observed after 60–70 h, coincided with the peak of respiratory activity. A repeated addition of glucose after its exhaustion increased nitrogenase activity, without a lag period, to 8.5 mg N/(kg h). Investigation of the effect of environmental factors (temperature, pH, aeration, and light intensity) on potential nitrogen-fixing activity in peat samples revealed that nitrogen fixation could proceed in a wide range of pH values (from 3.0 to 7.5) and temperatures (from 5 to 35°C). The nitrogen-fixing bacteria belonging to different trophic groups were enumerated by using nitrogen-free media with pH values and mineralization levels close to those in situ. In samples of peat soil, diazotrophic methanol-utilizing bacteria prevailed (2.0–2.5 × 106 cells/g); the second largest group was facultatively anaerobic bacteria of the family Enterobacteriaceae.  相似文献   

4.
5.
The Bacteria community composition in an acidic Sphagnum peat bog (pH 3.9 to 4.5) was characterized by a combination of 16S rRNA gene clone library analysis, rRNA-targeted fluorescence in situ hybridization (FISH), and cultivation. Among 84 environmental 16S rRNA gene clones, a set of only 16 cloned sequences was closely related (≥95% similarity) to taxonomically described organisms. Main groups of clones were affiliated with the Acidobacteria (24 clones), Alphaproteobacteria (20), Verrucomicrobia (13), Actinobacteria (8), Deltaproteobacteria (4), Chloroflexi (3), and Planctomycetes (3). The proportion of cells that hybridized with oligonucleotide probes specific for members of the domains Bacteria (EUB338-mix) and Archaea (ARCH915 and ARC344) accounted for only 12 to 22% of the total cell counts. Up to 24% of the EUB338-positive cells could be assigned by FISH to specific bacterial phyla. Alphaproteobacteria and Planctomycetes were the most numerous bacterial groups (up to 1.3 × 107 and 1.1 × 107 cells g−1 peat, respectively). In contrast to conventional plating techniques, a novel biofilm-mediated enrichment approach allowed us to isolate some representatives of predominant Bacteria groups, such as Acidobacteria and Planctomycetes. This novel strategy has great potential to enable the isolation of a significant proportion of the peat bog bacterial diversity.  相似文献   

6.
Samples of phytobenthos were collected during three different seasons in 2005 along a linear transect of a lowland peat bog at various spatial scales (10 cm, 1 m, 10 m) to investigate the seasonal dynamics, diversity, and factors influencing the spatial patterns of microalgal communities. Non‐metric multidimensional scaling (NMDS), similarity percentage (SIMPER) analyses, ANOSIM, Mantel tests and diversity indices were used to analyze the data. Seasonal dynamics were exhibited by an increase in diversity, and a decrease in dominance from May to October, with significant differences in species composition. Mantel tests showed the significant influence of distance, microhabitat type, and conductivity on maintaining the similarity of species composition on scales of 1 m and 10 m. The small‐scale processes (colonization and niche differentiation), microhabitat type, geographic distance and conductivity were found to be the main factors influencing the distribution of algal assemblages. We conclude that these factors are related to winter disturbance, and the consequent colonization and subsequent niche differentiation. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The emission of methane (1.3 mmol of CH4 m−2 day−1), precursors of methanogenesis, and the methanogenic microorganisms of acidic bog peat (pH 4.4) from a moderately reduced forest site were investigated by in situ measurements, microcosm incubations, and cultivation methods, respectively. Bog peat produced CH4 (0.4 to 1.7 μmol g [dry wt] of soil−1 day−1) under anoxic conditions. At in situ pH, supplemental H2-CO2, ethanol, and 1-propanol all increased CH4 production rates while formate, acetate, propionate, and butyrate inhibited the production of CH4; methanol had no effect. H2-dependent acetogenesis occurred in H2-CO2-supplemented bog peat only after extended incubation periods. Nonsupplemented bog peat initially produced small amounts of H2 that were subsequently consumed. The accumulation of H2 was stimulated by ethanol and 1-propanol or by inhibiting methanogenesis with bromoethanesulfonate, and the consumption of ethanol was inhibited by large amounts of H2; these results collectively indicated that ethanol- or 1-propanol-utilizing bacteria were trophically associated with H2-utilizing methanogens. A total of 109 anaerobes and 107 hydrogenotrophic methanogens per g (dry weight) of bog peat were enumerated by cultivation techniques. A stable methanogenic enrichment was obtained with an acidic, H2-CO2-supplemented, fatty acid-enriched defined medium. CH4 production rates by the enrichment were similar at pH 4.5 and 6.5, and acetate inhibited methanogenesis at pH 4.5 but not at pH 6.5. A total of 27 different archaeal 16S rRNA gene sequences indicative of Methanobacteriaceae, Methanomicrobiales, and Methanosarcinaceae were retrieved from the highest CH4-positive serial dilutions of bog peat and methanogenic enrichments. A total of 10 bacterial 16S rRNA gene sequences were also retrieved from the same dilutions and enrichments and were indicative of bacteria that might be responsible for the production of H2 that could be used by hydrogenotrophic methanogens. These results indicated that in this acidic bog peat, (i) H2 is an important substrate for acid-tolerant methanogens, (ii) interspecies hydrogen transfer is involved in the degradation of organic carbon, (iii) the accumulation of protonated volatile fatty acids inhibits methanogenesis, and (iv) methanogenesis might be due to the activities of methanogens that are phylogenetic members of the Methanobacteriaceae, Methanomicrobiales, and Methanosarcinaceae.  相似文献   

8.
This study experimentally tested the impact of peat bog habitat loss and isolation on the invertebrate community associated with Sporadanthus ferrugineus (Restionaceae), a dominant indigenous plant species in peat bogs. Potted S. ferrugineus plants were exposed to invertebrates at various distances up to 800 m from an intact habitat (the source population) over 18 weeks. Invertebrates rapidly colonized the experimental plants, with all major orders and trophic groups present on S. ferrugineus within 6 weeks. However, with increasing distance away from the undisturbed habitat, there was a significant decrease in total species richness and abundance of invertebrates associated with the potted plants. Of the total taxa captured, only 38% were found on potted S. ferrugineus plants at 800 m compared with 62% found on potted plants 30 m from the intact peat bog. Predator species richness and the predator–prey ratio changed significantly with time available for colonization of potted plants but, more importantly, prey (herbivores and detritivores) and predator (including parasitoids) species richness, as well as the predator–prey ratio, declined significantly with increasing isolation from the peat bog. Thus, the degree of isolation of restoration areas from undisturbed habitat has a major impact on the rate and patterns of recovery in invertebrate community structure. The current recommended practice of restoring the mined area by establishing raised "habitat islands" 30 m apart should result in colonization by most invertebrates associated with S. ferrugineus , but only if the restoration islands are placed as stepping stones outward from existing areas of intact habitat.  相似文献   

9.
Ecosystem respiration (ER) is an important but poorly understood part of the carbon (C) budget of peatlands and is controlled primarily by the thermal and hydrologic regimes. To establish the relative importance of these two controls for a large ombrotrophic bog near Ottawa, Canada, we analyzed ER from measurements of nighttime net ecosystem exchange of carbon dioxide (CO2) determined by eddy covariance technique. Measurements were made from May to October over five years, 1998 to 2002. Ecosystem respiration ranged from less than 1 μmol CO2 m−2 s−1 in spring (May) and fall (late October) to 2–4 μmol CO2 m−2 s−1 during mid-summer (July-August). As anticipated, there was a strong relationship between ER and peat temperatures (r2 = 0.62). Q10 between 5° to 15°C varied from 2.2 to 4.2 depending upon the choice of depth where temperature was measured and location within a hummock or hollow. There was only a weak relationship between ER and water-table depth (r2 = 0.11). A laboratory incubation of peat cores at different moisture contents showed that CO2 production was reduced by drying in the surface samples, but there was little decrease in production due to drying from below a depth of 30 cm. We postulate that the weak correlation between ER and water table position in this peatland is primarily a function of the bog being relatively dry, with water table varying between 30 and 75 cm below the hummock tops. The dryness gives rise to a complex ER response to water table involving i) compensations between production of CO2 in the upper and lower peat profile as the water table falls and ii) the importance of autotrophic respiration, which is relatively independent of water-table position.  相似文献   

10.
11.
The molecular diversity of rumen methanogens in sheep in Australia was investigated by using individual 16S rRNA gene libraries prepared from the rumen contents obtained from six merino sheep grazing pasture (326 clones), six sheep fed an oaten hay-based diet (275 clones), and five sheep fed a lucerne hay-based diet (132 clones). A total of 733 clones were examined, and the analysis revealed 65 phylotypes whose sequences (1,260 bp) were similar to those of cultivated methanogens belonging to the order Methanobacteriales. Pasture-grazed sheep had more methanogen diversity than sheep fed either the oaten hay or lucerne hay diet. Methanobrevibacter strains SM9, M6, and NT7 accounted for over 90% of the total number of clones identified. M6 was more prevalent in grazing sheep, and SM9, despite being found in 16 of the 17 sheep, was more prevalent in sheep fed the lucerne-based diet. Five new species were identified. Two of these species exhibited very little sequence similarity to any cultivated methanogens and were found eight times in two of the six sheep that were grazing pasture. These unique sequences appear to represent a novel group of rumen archaea that are atypical for the rumen environment.  相似文献   

12.
Peat cores (15 cm diam X 30 cm deep) from Ellergower Moss, New Galloway, Scotland were kept and monitored at constant temperature (10 ± 0.1ºC) for gas production using a 1.6 mm diam stainless steel probe fitted with a membrane inlet and connected to a quadrupole mass spectrometer. In the headspace, O2, CO2 and CH4 (measured at m/z values 32, 44 and 15 respectively) showed diurnal fluctuations in low-intensity natural daylight and under a light-dark (LD, 12:12) regime. Over the first few cycles O2 and CO2 increased together in the dark and decreased in the light, whereas CH4 showed variations in antiphase with the other two gases. CO2 and CH4 also showed diurnal oscillations at 15 cm depth, but these decreased together in the light whereas argon (m/z = 40) was not varying. A highly-damped free-run of the oscillations in gas concentrations at 15cm depth was evident for only 3 cycles in complete darkness and at constant temperature. This might suggest desynchronization between individual plants with different free-running periods. A hydrocarbon signal (m/z = 26) at 15 cm depth also showed diurnal cycles but out of phase with CO 2 and CH 4. We postulate a circadian control of microbiological activities imposed by the vascular plants (Carex, Eriophorum, Molinia, Calluna, Erica). Under natural conditions the pronounced temperature sensitivity of CO2 and CH4 emission results in entrainment to daily temperature cycles. The amplitudes of the rhythms are greatest when temperature and light intensity changes are most pronounced, i.e. when the fluctuations in environmental factors are most potent as synchronizers (zeitgebers) and as masking factors.  相似文献   

13.
Peat cores (15 cm diam X 30 cm deep) from Ellergower Moss, New Galloway, Scotland were kept and monitored at constant temperature (10 ± 0.1ºC) for gas production using a 1.6 mm diam stainless steel probe fitted with a membrane inlet and connected to a quadrupole mass spectrometer. In the headspace, O2, CO2 and CH4 (measured at m/z values 32, 44 and 15 respectively) showed diurnal fluctuations in low-intensity natural daylight and under a light-dark (LD, 12:12) regime. Over the first few cycles O2 and CO2 increased together in the dark and decreased in the light, whereas CH4 showed variations in antiphase with the other two gases. CO2 and CH4 also showed diurnal oscillations at 15 cm depth, but these decreased together in the light whereas argon (m/z = 40) was not varying. A highly-damped free-run of the oscillations in gas concentrations at 15cm depth was evident for only 3 cycles in complete darkness and at constant temperature. This might suggest desynchronization between individual plants with different free-running periods. A hydrocarbon signal (m/z = 26) at 15 cm depth also showed diurnal cycles but out of phase with CO 2 and CH 4 . We postulate a circadian control of microbiological activities imposed by the vascular plants (Carex, Eriophorum, Molinia, Calluna, Erica). Under natural conditions the pronounced temperature sensitivity of CO2 and CH4 emission results in entrainment to daily temperature cycles. The amplitudes of the rhythms are greatest when temperature and light intensity changes are most pronounced, i.e. when the fluctuations in environmental factors are most potent as synchronizers (zeitgebers) and as masking factors.  相似文献   

14.
Abstract Methanogens were identified and quantified using antibody probes and the antigenic fingerprinting method in five different kinds of granular sludge taken from five Uplow Anaerobic Sludge Blanket (UASB) bioreactors maintained on different substrates. The methanogenic flora present in each bioreactor was elucidated and expressed in cells per garm dry weight. Autofluorescence, phase-contrast and bright field-microscopy of unstained and Gram-stained preparations were used in parallel with immunotechnology to characterize each methanogenic subpopulation. Ten different methanogens were prevalent in the five bioreactor systems. Methanogens antigenically related to Methanobacterium formicicum MF, Methanobrevibacter arboriphilus AZ and Methanothrix soehngenii Opfikon were found in all five granules, while other methanogens were present in only some. A trend was observed towards a wider diversity of methanogenic subpopulations parallelling an increase in the complexity of the bioreactor's substrate.  相似文献   

15.
The 16S rRNA and pmoA genes from natural populations of methane-oxidizing bacteria (methanotrophs) were PCR amplified from total community DNA extracted from Lake Washington sediments obtained from the area where peak methane oxidation occurred. Clone libraries were constructed for each of the genes, and approximately 200 clones from each library were analyzed by using restriction fragment length polymorphism (RFLP) and the tetrameric restriction enzymes MspI, HaeIII, and HhaI. The PCR products were grouped based on their RFLP patterns, and representatives of each group were sequenced and analyzed. Studies of the 16S rRNA data obtained indicated that the existing primers did not reveal the total methanotrophic diversity present when these data were compared with pure-culture data obtained from the same environment. New primers specific for methanotrophs belonging to the genera Methylomonas, Methylosinus, and Methylocystis were developed and used to construct more complete clone libraries. Furthermore, a new primer was designed for one of the genes of the particulate methane monooxygenase in methanotrophs, pmoA. Phylogenetic analyses of both the 16S rRNA and pmoA gene sequences indicated that the new primers should detect these genes over the known diversity in methanotrophs. In addition to these findings, 16S rRNA data obtained in this study were combined with previously described phylogenetic data in order to identify operational taxonomic units that can be used to identify methanotrophs at the genus level.  相似文献   

16.
At Big Run Bog, aSphagnum-dominated peatland in the unglaciated Appalachian Plateau of West Virginia, significant spatial variation in the physical and chemical properties of the peat and in surface and subsurface (30 cm deep) water chemistry was characterized. The top 40 cm of organic peat at Big Run Bog had average values for bulk density of 0.09 g · cm–3, organic matter concentration of 77%, and volumetric water content of 88%. Changes in physical and chemical properties within the peat column as a function of depth contributed to different patterns of seasonal variation in the chemistry of surface and subsurface waters. Seasonal variation in water chemistry was related to temporal changes in plant uptake, organic matter decomposition and element mineralization, and to varying redox conditions associated with fluctuating water table levels. On the average, total Ca, Mg, and N concentrations in Big Run Bog peat were 33, 15, and 1050 mol · g–1, respectively; exchangeable Ca and Mg concentrations were 45 and 14 eq · g–1 , respectively. Surface water pH averaged 4.0 and Ca++ concentrations were less than 50 eq · L–1 . These chemical variables have all been used to distinguish bogs from fens. Physiographically, Big Run Bog is a minerotrophic fen because it receives inputs of water from the surrounding forested upland areas of its watershed. However, chemically, Big Run Bog is more similar to true ombrotrophic bogs than to minerotrophic fens.  相似文献   

17.
Molecular diversity of deep-sea hydrothermal vent aerobic methanotrophs was studied using both 16S ribosomalDNA and pmoA encoding the subunit A of particulate methane monooxygenase (pMOA). Hydrothermal vent plume and chimney samples were collected from back-arc vent at Mid-Okinawa Trough (MOT), Japan, and the Trans-Atlantic Geotraverse (TAG) site along Mid-Atlantic Ridge, respectively. The target genes were amplified by polymerase chain reaction from the bulk DNA using specific primers and cloned. Fifty clones from each clone library were directly sequenced. The 16S rDNA sequences were grouped into 3 operational taxonomic units (OTUs), 2 from MOT and 1 from TAG. Two OTUs (1 MOT and 1 TAG) were located within the branch of type I methanotrophic ?-Proteobacteria. Another MOT OTU formed a unique phylogenetic lineage related to type I methanotrophs. Direct sequencing of 50 clones each from the MOT and TAG samples yielded 17 and 4 operational pmoA units (OPUs), respectively. The phylogenetic tree based on the pMOA amino acid sequences deduced from OPUs formed diverse phylogenetic lineages within the branch of type I methanotrophs, except for the OPU MOT-pmoA-8 related to type X methanotrophs. The deduced pMOA topologies were similar to those of all known pMOA, which may suggest that the pmoA gene is conserved through evolution. Neither the 16S rDNA nor pmoA molecular analysis could detect type II methanotrophs, which suggests the absence of type II methanotrophs in the collected vent samples.  相似文献   

18.
Phylogenetic Analysis of Methanogens in the Pig Feces   总被引:2,自引:0,他引:2  
Mao SY  Yang CF  Zhu WY 《Current microbiology》2011,62(5):1386-1389
In order to assess methanogen diversity in feces of pigs, archaeal 16S rRNA gene clone libraries were constructed from feces of the pig. After the amplification by PCR using primers Met86F and Met1340R, equal quantities of PCR products from each of the five pigs were mixed together and used to construct the library. Sequence analysis showed that the 74 clones were divided into ten phylotypes as defined by RFLP analysis. Phylogenetic analysis showed that three phylotypes were most closely affiliated with the genus Methanobrevibacter (46% of clones). The library comprised 55.4% unidentified euryarchaeal clones. Three phylotypes (LMG4, LMG6, LMG8) were not closely related to any known Euryarchaeota sequences. The phylogenetic analysis indicated that the archaea found in the libraries were all clustered into the Euryarchaeota. The data from the phylogenetic tree showed that those sequences belonged to three monophyletic groups. Phylotypes LGM2 and LGM7 grouped within the genus Methanobrevibacter. Phylotypes LGM4, LGM6, LGM8 and LGM9 grouped within the genus Methanosphaera. Other phylotypes grouped together, and formed a distantly related sister group to Aciduliprofundum boonei and species of the Thermoplasmatales including Thermoplasma volcanium and Thermoplasm acidophilum. Our results showed that methanogens belonging to the genus Methanobrevibacter were predominant in pig feces, and that many unique unknown archaea sequences were also found in the library. Nevertheless, whether these unique sequences represent new taxonomic groups and their role in the pig gut need further investigation.  相似文献   

19.
20.
Acidic peat bog soils produce CH4 and although molecular biological studies have demonstrated the presence of diverse methano-genic populations in them, few studies have sustained methanogenesis by adding the CH4 precursors H2/CO2 or acetate, and few indigenous methanogens have been cultured. McLean Bog is a small (ca. 70 m across), acidic (pH 3.4–4.3) Sphagnum -dominated bog in upstate New York. Although addition of H2/CO2 or 10 mM acetate stimulated methanogenesis in soils from a nearby circumneutral-pH fen, neither of these substrates led to sustained methanogenesis in McLean Bog soil slurries. After a brief period of stimulation by H2/CO2, methanogenesis in McLean Bog soil declined, which could be attributed to buildup of large amounts of acetic acid produced from the H2/CO2 by acetogens. Addition of the antibiotic rifampicin inhibited acetogenesis (carried out by Bacteria) and allowed methanogenesis (carried out by Archaea) to continue. Using rifampicin, we were able to study effects of temperature, pH, and salts on methanogenesis from H2/CO2 in McLean Bog soil samples. The enriched H2/CO2-utilizing methanogens showed an optimum for activity near pH 5, and a temperature optimum near 35°C. Methanogenesis was not stimulated by addition of 10 mM acetate, but it was stimulated by 1 mM acetate, and multiple additions were consumed at increasing rates and nearly stoichiometrically converted to CH4. In conclusion, we have found that both hydrogentrophic and aceticlastic methanogens are present in McLean Bog soils, and that methanogenic activity can be stimulated using H2/CO2 in the presence of rifampicin, or using low concentrations of acetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号