首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Treatment of L929 fibroblasts by the topoisomerase II inhibitor etoposide killed 50% of the cells within 72 h. The cell killing was preceded by the release of cytochrome c from the mitochondria. Simultaneous treatment of the cells with wortmannin, cycloheximide, furosemide, cyclosporin A, or decylubiquinone prevented the release of cytochrome c and significantly reduced the loss of viability. Etoposide caused the phosphorylation of p53 within 6 h, an effect prevented by wortmannin, an inhibitor of DNA-dependent protein kinase (DNA-PK). The activation of p53 by etoposide resulted in the up-regulation of the pro-apoptotic protein Bax, a result that was prevented by the protein synthesis inhibitor cycloheximide. The increase in the content of Bax was followed by the translocation of this protein from the cytosol to the mitochondria, an event that was inhibited by furosemide, a chloride channel inhibitor. Stably transfected L929 fibroblasts that overexpress Akt were resistant to etoposide and did not translocate Bax to the mitochondria or release cytochrome c. Bax levels in these transfected cells were comparable with the wild-type cells. The release of cytochrome c upon translocation of Bax has been attributed to induction of the mitochondrial permeability transition (MPT). Cyclosporin A and decylubiquinone, inhibitors of MPT, prevented the release of cytochrome c without affecting Bax translocation. These data define a sequence of biochemical events that mediates the apoptosis induced by etoposide. This cascade proceeds by coupling DNA damage to p53 phosphorylation through the action of DNA-PK. The activation of p53 increases Bax synthesis. The translocation of Bax to the mitochondria induces the MPT, the event that releases cytochrome c and culminates in the death of the cells.  相似文献   

2.
3.
MCF-7 and ZR-75 breast cancer cells infected with an adenovirus constitutively expressing high levels of cyclin D1 demonstrated widespread mitochondrial translocation of Bax and cytochrome c release that was approximately doubled after the addition of all-trans retinoic acid (RA) or Bcl-2 antisense oligonucleotide. By comparison, the percentage of cells in Lac Z virus-infected cultures containing translocated Bax and cytoplasmic cytochrome c was markedly less even after RA treatment. Despite this, RA-treated Lac Z and untreated cyclin D1 virus-infected cultures contained similarly low proportions of cells with active caspase or cells that were permeable to propidium iodide. Bax activation was p53-dependent and accompanied by arrest in G(2) phase. Although constitutive Bcl-2 expression prevented Bax activation, it did not alter cyclin D1-induced cell cycle arrest, illustrating the independence of these events. Both RA and antisense Bcl-2 oligonucleotide decreased Bcl-2 protein levels and markedly increased caspase activity and apoptosis in cyclin D1-infected cells. Thus amplified cyclin D1 expression initiates an apoptotic signal inhibited by different levels of cellular Bcl-2 at two points. Whereas high cellular levels of Bcl-2 prevent mitochondrial Bax translocation, lower levels can prevent apoptosis by inhibition of caspase activation.  相似文献   

4.
The pro-apoptotic protein, Bax, has been reported to translocate from cytosol to mitochondria following exposure of cells to apoptotic stresses including cytokine withdrawal and treatment with glucocorticoids and cytotoxic drugs. These observations, coupled with reports showing that Bax causes the release of mitochondrial cytochrome c, implicate Bax as a central mediator of the apoptotic process. In this report we demonstrate by subcellular fractionation a significant shift in Bax localization from cytosol to cellular membranes in two human tumor cell lines exposed to staurosporine or etoposide. Immunofluorescence studies confirmed that Bax specifically relocalized to the mitochondria. This redistribution of Bax occurred in concert with, or just prior to, proteolytic processing of procaspase-3, activation of DEVD-specific cleavage activity and degradation of poly(ADP-ribose) polymerase. However, Bax membrane translocation was independent of caspase activity as determined using the broad-range caspase inhibitor z-VAD-fmk. High level overexpression of the anti-apoptotic protein Bcl-2 prevented Bax redistribution to the mitochondria, caspase activation and apoptosis following exposure to staurosporine or etoposide. These data confirm the role of Bax in mitochondrial cytochrome c release, and indicate that prevention of Bax translocation to the mitochondrial membrane represents a novel mechanism by which Bcl-2 inhibits drug-induced apoptosis.  相似文献   

5.
Changes at the mitochondria are an early, required step in apoptosis in various cell types. We used western blot analysis to demonstrate that the proapoptotic protein Bax translocated from the cytosolic to the mitochondrial fraction in SH-SY5Y human neuroblastoma cells undergoing staurosporine- or EGTA-mediated apoptosis. Levels of mitochondrial Bax increased 15 min after staurosporine treatment. In EGTA-treated cells, increased levels of mitochondrial Bax were seen at 4 h, consistent with a slower onset of apoptosis in EGTA versus staurosporine treatments. We also demonstrate the concomitant translocation of cytochrome c from the mitochondrial to the cytosolic fractions. We correlated these translocations with changes in caspase-3-like activity. An increase in caspase-3-like activity was evident 2 h after staurosporine treatment. Inhibition of the mitochondrial permeability transition had no effect on Bax translocation or caspase-3-like activity in staurosporine-treated SH-SY5Y cells. In primary cultures of cerebellar granule neurons undergoing low K(+)-mediated apoptosis, Bax translocation to the mitochondrial fraction was evident at 3 h. Cytochrome c release into the cytosol was not significant until 8 h after treatment. These data support a model of apoptosis in which Bax acts directly at the mitochondria to allow the release of cytochrome c.  相似文献   

6.
N-(4-hydroxyphenyl)retinamide (4-HPR) is a synthetic apoptosis-inducing retinoid with cancer chemopreventive properties and lower toxicity than all-trans retinoic acid. BAG-1 is an antiapoptotic gene that is overexpressed in cervical and other cancers. In this study, we examined whether BAG-1 can inhibit 4-HPR-induced apoptosis in the C33A cervical carcinoma cell line. Surprisingly, although it inhibited apoptosis induced by five different apoptotic stimuli, overexpression of BAG-1 enhanced apoptosis induced by 4-HPR, producing a 2.5-fold lower IC(50) of 4-HPR. The effects of BAG-1 on 4-HPR-induced apoptosis were mediated by enhancing the caspase-3 activation pathway. Deletion mutation experiments showed that the central ubiquitin homology domain of BAG-1 protein was necessary for its promotion of 4-HPR-induced apoptosis, whereas its C-terminal Hsp70/Hsc70-interacting domain was required for its inhibition of staurosporine-induced apoptosis. These in vitro results suggest that the effectiveness of 4-HPR against the development of malignancy may be due to the overexpression of BAG-1 in cancer cells.  相似文献   

7.
Previous studies have demonstrated that curcumin induces mitochondria-mediated apoptosis. However, understanding of the molecular mechanisms underlying curcumin-induced cell death remains limited. In this study, we demonstrate that curcumin treatment of cancer cells caused dose- and time-dependent caspase-3 activation, which is required for apoptosis as confirmed using the pan caspase inhibitor, z-VAD. Knockdown experiments and knockout cells excluded a role of caspase-8 in curcumin-induced caspase-3 activation. In contrast, Apaf-1 deficiency or silencing inhibited the activity of caspase-3, pointing to a requisite role of Apaf-1 in curcumin-induced apoptotic cell death. Curcumin treatment led to Apaf-1 upregulation both at the protein and mRNA levels. Cytochrome c release from mitochondria to the cytosol in curcumin-treated cells was associated with upregulation of proapoptotic proteins such as Bax, Bak, Bid, and Bim. Crosslinking experiments demonstrated Bax oligomerization during curcumin-induced apoptosis, suggesting that induced expression of Bax, Bid, and Bim causes Bax-channel formation on the mitochondrial membrane. The release of cytochrome c was unaltered in p53-deficient cells, whereas absence of p21 blocked cytochrome c release, caspase activation, and apoptosis. Importantly, p21-deficiency resulted in reduced expression of Apaf-1 during curcumin treatment, indicating a requirement of p21 in Apaf-1 dependent caspase activation and apoptosis. Together, our findings demonstrate that Apaf-1, Bax, and p21 as novel potential targets for curcumin or curcumin-based anticancer agents.  相似文献   

8.
p53, one of the most commonly mutated genes in human cancers, is thought to be associated with cancer development. Hence, screening and identifying natural or synthetic compounds with anti-cancer activity via p53-independent pathway is one of the most challenging tasks for scientists in this field. Compound JKA97 (methoxy-1-styryl-9H-pyrid-[3,4-b]-indole) is a small molecule synthetic anti-cancer agent, with unknown mechanism(s). In this study we have demonstrated that the anti-cancer activity of JKA97 is associated with apoptotic induction via p53-independent mechanisms. We found that co-incubation of human colon cancer HCT116 cells with JKA97 inhibited HCT116 cell anchorage-independent growth in vitro and tumorigenicity in nude mice and also induced a cell apoptotic response, both in the cell culture model and in a tumorigenesis nude mouse model. Further studies showed that JKA97-induced apoptosis was dramatically impaired in Bax knock-out (Bax(-/-)) HCT116 cells, whereas the knock-out of p53 or PUMA did not show any inhibitory effects. The p53-independent apoptotic induction by JKA97 was confirmed in other colon cancer and hepatocarcinoma cell lines. In addition, our results showed an induction of Bax translocation and cytochrome c release from the mitochondria to the cytosol in HCT116 cells, demonstrating that the compound induces apoptosis through a Bax-initiated mitochondria-dependent pathway. These studies provide a molecular basis for the therapeutic application of JKA97 against human cancers with p53 mutations.  相似文献   

9.
N-(4-hydroxyphenyl)retinamide (4-HPR) is a synthetic apoptosis-inducing retinoid with cancer chemopreventive properties and lower toxicity than all-trans retinoic acid. BAG-1 is an antiapoptotic gene that is overexpressed in cervical and other cancers. In this study, we examined whether BAG-1 can inhibit 4-HPR-induced apoptosis in the C33A cervical carcinoma cell line. Surprisingly, although it inhibited apoptosis induced by five different apoptotic stimuli, overexpression of BAG-1 enhanced apoptosis induced by 4-HPR, producing a 2.5-fold lower IC50 of 4-HPR. The effects of BAG-1 on 4-HPR-induced apoptosis were mediated by enhancing the caspase-3 activation pathway. Deletion mutation experiments showed that the central ubiquitin homology domain of BAG-1 protein was necessary for its promotion of 4-HPR-induced apoptosis, whereas its C-terminal Hsp70/Hsc70-interacting domain was required for its inhibition of staurosporine-induced apoptosis. These in vitro results suggest that the effectiveness of 4-HPR against the development of malignancy may be due to the overexpression of BAG-1 in cancer cells.  相似文献   

10.
The goal of cancer chemotherapy to induce multi-directional apoptosis as targeting a single pathway is unable to decrease all the downstream effect arises from crosstalk. Present study reports that Withanolide D (WithaD), a steroidal lactone isolated from Withania somnifera, induced cellular apoptosis in which mitochondria and p53 were intricately involved. In MOLT-3 and HCT116p53+/+ cells, WithaD induced crosstalk between intrinsic and extrinsic signaling through Bid, whereas in K562 and HCT116p53-/- cells, only intrinsic pathway was activated where Bid remain unaltered. WithaD showed pronounced activation of p53 in cancer cells. Moreover, lowered apoptogenic effect of HCT116p53-/- over HCT116p53+/+ established a strong correlation between WithaD-mediated apoptosis and p53. WithaD induced Bax and Bak upregulation in HCT116p53+/+, whereas increase only Bak expression in HCT116p53-/- cells, which was coordinated with augmented p53 expression. p53 inhibition substantially reduced Bax level and failed to inhibit Bak upregulation in HCT116p53+/+ cells confirming p53-dependent Bax and p53-independent Bak activation. Additionally, in HCT116p53+/+ cells, combined loss of Bax and Bak (HCT116Bax-Bak-) reduced WithaD-induced apoptosis and completely blocked cytochrome c release whereas single loss of Bax or Bak (HCT116Bax-Bak+/HCT116Bax+Bak-) was only marginally effective after WithaD treatment. In HCT116p53-/- cells, though Bax translocation to mitochondria was abrogated, Bak oligomerization helped the cells to release cytochrome c even before the disruption of mitochondrial membrane potential. WithaD also showed in vitro growth-inhibitory activity against an array of p53 wild type and null cancer cells and K562 xenograft in vivo. Taken together, WithaD elicited apoptosis in malignant cells through Bax/Bak dependent pathway in p53-wild type cells, whereas Bak compensated against loss of Bax in p53-null cells.  相似文献   

11.
Activation of p53 induces apoptosis in various cell types. However, the mechanism by which p53 induces apoptosis is still unclear. We reported previously that the activation of a temperature-sensitive mutant p53 (p53(138Val)) induced activation of caspase 3 and apoptosis in Jurkat cells. To elucidate the pathway linking p53 and downstream caspases, we examined the activation of caspases 8 and 9 in apoptotic cells. The results showed that both caspases were activated during apoptosis as judged by the appearance of cleavage products from procaspases and the caspase activities to cleave specific fluorogenic substrates. The significant inhibition of apoptosis by a tetrapeptide inhibitor of caspase 8 and caspase 9 suggested that both caspases are required for apoptosis induction. In addition, the membrane translocation of Bax and cytosolic release of cytochrome c, but not loss of mitochondrial membrane potential, were detected at an early stage of apoptosis. Moreover, Bax translocation, cytochrome c release, and caspase 9 activation were blocked by the broad-spectrum caspase inhibitor, Z-VAD-fmk and the caspase 8-preferential inhibitor, Ac-IETD-CHO, suggesting that the mitochondria might participate in apoptosis by amplifying the upstream death signals. In conclusion, our results indicated that activation of caspase 8 or other caspase(s) by p53 triggered the membrane translocation of Bax and cytosolic release of cytochrome c, which might amplify the apoptotic signal by activating caspase 9 and its downstream caspases.  相似文献   

12.
Human cytochrome c oxidase subunit VIa polypeptide 1 (COX6A1) was identified as a novel suppressor of Bcl-2-associated X protein (Bax)-mediated cell death using yeast-based functional screening of a mammalian cDNA library. The overexpression of COX6A1 significantly suppressed Bax- and N-(4-hydroxyphenyl)retinamide (4-HPR)-induced apoptosis in yeast and human glioblastoma-derived U373MG cells, respectively. The generation of reactive oxygen species (ROS) in response to Bax or 4-HPR was inhibited in yeast and U373MG cells that expressed COX6A1, indicating that COX6A1 exerts a protective effect against ROS-induced cell damage. 4-HPR-induced mitochondrial translocation of Bax, release of mitochondrial cytochrome c, and activation of caspase-3 were markedly attenuated in U373MG cells that stably expressed COX6A1. Our results demonstrate that yeast-based functional screening of human genes for inhibitors of Bax-sensitivity in yeast identified a protein that not only suppresses the toxicity of Bax in yeast, but also has a potential role in protecting mammalian cells from 4-HPR-induced apoptosis.  相似文献   

13.
14.
HIV-1 induces apoptosis and leads to CD4+ T-lymphocyte depletion in humans. It is still unclear whether HIV-1 kills infected cells directly or indirectly. To elucidate the mechanisms of HIV-1-induced apoptosis, we infected human CD4+ T cells with HIV-1. Enzymatic analysis with fluorometric substrates showed that caspase 2, 3, and 9 were activated in CD4+ T cells with peak levels 48 h after infection. Immunoblotting analysis confirmed the cleavage of pro-caspase 3 and 9, and of specific caspase substrates. Release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria was observed in HIV-infected cells. The cytochrome c and AIF release preceded the reduction of the mitochondrial transmembrane potential and nuclear chromatin condensation. H IV infection led to phosphorylation of p53 at the Ser15 residue, detectable as early as 24 h after infection. The p53 phosphorylation was followed by increased mRNA and protein expression of p21, Bax, HDM2, and p53. Up-regulation of surface FasL expression, accompanied by a down-regulation of Fas-associated proteins (FADD, DAXX, and RIP), was observed 72 h after infection. Our results suggest that HIV activates the p53 pathway, leading to cytochrome c and AIF release with ensuing caspase activation.  相似文献   

15.
16.
Upon apoptosis induction, the proapoptotic protein Bax is translocated from the cytosol to mitochondria, where it promotes release of cytochrome c, a caspase‐activating protein. However, the molecular mechanisms by which Bax triggers cytochrome c release are unknown. Here we report that before the initiation of apoptotic execution by etoposide or staurosporin, an active calpain activity cleaves Bax at its N‐terminus, generating a potent proapoptotic 18‐kDa fragment (Bax/p18). Both the calpain‐mediated Bax cleavage activity and the Bax/p18 fragment were found in the mitochondrial membrane‐enriched fraction. Cleavage of Bax was followed by release of mitochondrial cytochrome c, activation of caspase‐3, cleavage of poly(ADP‐ribose) polymerase, and fragmentation of DNA. Unlike the full‐length Bax, Bax/p18 did not interact with the antiapoptotic Bcl‐2 protein in the mitochondrial fraction of drug‐treated cells. Pretreatment with a specific calpain inhibitor calpeptin inhibited etoposide‐induced calpain activation, Bax cleavage, cytochrome c release, and caspase‐3 activation. In contrast, transfection of a cloned Bax/p18 cDNA into multiple human cancer cell lines targeted Bax/p18 to mitochondria, which was accompanied by release of cytochrome c and induction of caspase‐3‐mediated apoptosis that was not blocked by overexpression of Bcl‐2 protein. Therefore, Bax/p18 has a cytochrome c–releasing activity that promotes cell death independent of Bcl‐2. Finally, Bcl‐2 overexpression inhibited etoposide‐induced calpain activation, Bax cleavage, cytochrome c release, and apoptosis. Our results suggest that the mitochondrial calpain plays an essential role in apoptotic commitment by cleaving Bax and generating the Bax/p18 fragment, which in turn mediates cytochrome c release and initiates the apoptotic execution. J. Cell. Biochem. 80:53–72, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

17.
Key role of mitochondria in cerulenin-mediated apoptosis   总被引:2,自引:0,他引:2  
Cerulenin, a fungal metabolite, is known to be a specific inhibitor of fatty acid synthase. Here we report that cerulenin is an effective inducer of apoptosis in different wild-type p53 and mutant p53 tumor cell lines, whereas normal human keratinocytes and fibroblasts are resistant to the apoptotic effect. To get more insight into the mechanisms of how cerulenin induces apoptosis we investigated several signal transduction molecules, including p53, p73, p21/WAF1, Bax, cytochrome c, and caspases 3 and 9. Our data strongly indicate that mitochondria play a key role in the cerulenin-mediated pathway. Bax overexpression correlated with the extent of apoptosis and appears to be regulated in a p53-independent manner. The significance of the mitochondrial pathway for the cerulenin-mediated apoptosis was confirmed by the rapid mitochondrial release of cytochrome c both in wild-type p53 and mutant cell lines. Interestingly, the rapid release of cytochrome c was not accompanied by a breakdown of the mitochondrial potential. Instead, the complete disruption of the mitochondrial function coincided with the appearance of a p18 kDa cleavage product of Bax.  相似文献   

18.
19.
During many forms of apoptosis, Bax, a pro-apoptotic protein of the Bcl-2 family, translocates from the cytosol to the mitochondria and induces cytochrome c release, followed by caspase activation and DNA degradation. Both Bcl-X(L) and the protein phosphatase inhibitor calyculin A have been shown to prevent apoptosis, and here we investigated their impact on Bax translocation. ML-1 cells incubated with either anisomycin or staurosporine exhibited Bax translocation, cytochrome c release, caspase 8 activation, and Bid cleavage; only the latter two events were caspase-dependent, confirming that they are consequences in this apoptotic pathway. Both Bcl-X(L) and calyculin A prevented Bax translocation and cytochrome c release. Bcl-X(L) is generally thought to heterodimerize with Bax to prevent cytochrome c release and yet they remain in different cellular compartments, suggesting that their heterodimerization at the mitochondria is not the primary mechanism of Bcl-X(L)-mediated protection. Using chemical cross-linking agents, Bax appeared to exist as a monomer in undamaged cells. Upon induction of apoptosis, Bax formed homo-oligomers in the mitochondrial fraction with no evidence for cross-linking to Bcl-2 or Bcl-X(L). Considering that both Bcl-X(L) and calyculin A inhibit Bax translocation, we propose that Bcl-X(L) may regulate Bax translocation through modulation of protein phosphatase or kinase signaling.  相似文献   

20.
Nutlins, the newly developed small molecule antagonists of MDM2, activate p53 and induce apoptosis in cancer cells, offering a novel strategy of chemotherapy. Recent studies have further suggested synergistic effects of nutlins with other chemotherapeutic drugs. However, it is unclear whether nutlins increase or decrease the side effects of these drugs in normal non-malignant cells or tissues. Cisplatin is a widely used chemotherapy drug, which has a major side effect of kidney injury. Here we show that Nutlin-3 protected kidney cells against cisplatin-induced apoptosis. The cytoprotective effects of Nutlin-3 were not related to its regulation of p53 or consequent gene expression during cisplatin treatment. Moreover, the protective effects were shown in MDM2-, MDM4-, or p53-deficient cells. On the other hand, Nutlin-3 suppressed mitochondrial events of apoptosis during cisplatin incubation, including Bax activation and cytochrome c release. Nutlin-3 attenuated cisplatin-induced oligomerization of Bax and Bak but not their interactions with Bcl-XL. In isolated mitochondria, Nutlin-3 inhibited cytochrome c release induced by Ca2+, Bim peptide, and recombinant tBid. Importantly, it blocked both Bax and Bak oligomerization under these conditions. Together, the results have uncovered a new pharmacological function of nutlins, i.e. suppression of Bax and Bak, two critical mediators of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号