共查询到20条相似文献,搜索用时 19 毫秒
1.
We have directly observed the oxyferryl group of ferryl myoglobin by resonance Raman spectroscopy. The FeIV = O stretching vibration is observed at 797 cm-1 and confirmed by an 18O-induced isotopic shift to 771 cm-1. The porphyrin center-to-nitrogen distance of ferryl myoglobin is significantly less than that previously observed for horseradish peroxidase compound II, which also contains an FeIV = O heme. The FeIII-CN- stretch of myoglobin (FeIII) cyanide is observed at 454 cm-1, which shifts to 449 cm-1 upon substitution with [13C]cyanide. 相似文献
2.
The structure and function of iron(II)-ruthenium(II) hybrid hemoglobins alpha(Ru-CO)2 beta(Fe)2 and alpha(Fe)2 beta(Ru-CO)2, which can serve as models for the intermediate species of the oxygenation step in native human adult hemoglobin, were investigated by measuring oxygen equilibrium curves and the Fe(II)-N epsilon (His F8) stretching resonance Raman lines. The oxygen equilibrium properties indicated that these iron-ruthenium hybrid hemoglobins are good models for the half-liganded hemoglobin. The pH dependence of the oxygen binding properties and the resonance Raman line revealed that the quaternary and tertiary structural transition was induced by pH changes. When the pH was lowered, both the iron-ruthenium hybrid hemoglobins exhibited relatively higher cooperativity and a Raman line typical of normal deoxy structure, suggesting that their structure is stabilized at a "T-like" state. However, the oxygen affinity of alpha(Fe)2 beta(Ru-CO)2 was lower than that of alpha(Ru-CO)2 beta(Fe)2, and the transition to the "deoxy-type" Fe-N epsilon stretching Raman line of alpha(Fe2)beta(Ru-CO)2 was completed at pH 7.4, while that of the complementary counterpart still remained in an "oxy-like" state under the same condition. These observations clearly indicate that the beta-liganded hybrid has more "T"-state character than the alpha-liganded hybrid. In other words, the ligation to the alpha subunit induces more pronounced changes in the structure and function in Hb than the ligation to the beta subunit. This feature agrees with our previous observations by NMR and sulfhydryl reactivity experiments. The present results are discussed in relation to the molecular mechanism of the cooperative stepwise oxygenation in native human adult hemoglobin. 相似文献
3.
A sensitive method for the nonisotopic in vitro labeling of proteins under physiological conditions using photobiotin, a compound originally developed for labeling nucleic acids (Forster et al. (1985) Nucleic Acids Res. 13, 745), has been developed. Using sheep brain tubulin as a model protein it was shown that labeling with photobiotin resulted in detection limits below 10 pg when avidin-alkaline phosphatase was used in the final step. No significant loss of tubulin polymerization, colchicine binding, recognition by antitubulin antibodies, or changes in electrophoretic behavior were observed. In addition, photobiotinylation of antitubulin antibodies did not affect their recognition of unlabeled tubulin. The use of photobiotin labeling with avidin-alkaline phosphatase detection for electrophoretic separations of molecular weight standards, crude protein supernatants, and tubulin gave a 64 to 1024-fold increase in sensitivity over Coomassie blue staining. 相似文献
4.
Resonance Raman spectroscopy can provide details of molecular structure via the enhancement of specific vibrational bands in the spectrum of the scattered light when the laser excitation is tuned to electronic absorption wavelengths of the molecule. The availability of lasers operating in the deep ultraviolet region makes it possible to apply this technique to problems of protein structure. The backbone conformation and the environments of aromatic side chains can be probed via appropriate enhancement of selected vibrational modes. In this article we investigate ultraviolet resonance Raman (UVRR) spectra from the coat protein of the filamentous bacteriophage, fd, in the intact virus and in sodium dodecyl sulfate (SDS) suspension. The results indicate that 1) the protein is completely alpha-helical in the mature virus, but loses a large fraction of its helix content in the SDS micelles. 2) The two tyrosine residues appear to behave as H-bond acceptors in the intact phage but this interaction is lost in the micelles. 3) The tryptophan residue is not solvent-exposed in either protein conformation, although in SDS it is accessible to H/D exchange with the solvent. 4) The three phenylalanine residues are involved in stacking interactions in the intact virus; these are disrupted in the SDS micelles. 5) The single proline residue appears to be in a trans conformation both in the virus and in the micelles. 相似文献
5.
Since 2,3-diphosphoglyeerate preferentially binds to deoxygenated hemoglobin A, this binding reaction can be used to detect the change in quaternary conformation of hemoglobin associated with the change in ligand state of the hemes. We have studied the binding to two M hemoglobins (MHydePark, MMilwaukee-1) that have the substituted chains in the ferric state, as well as to the mixed liganded hybrids α12β2 and α2β12 (1 heme in cyanmet form) prepared from hemoglobins A and H. The studies demonstrate that when these hemoglobin variants and derivatives are deoxygenated, they bind the organic phosphate to an extent similar, but not identical, to that for fully deoxygenated hemoglobin A. The results indicate that removal of ligand from only two of the four hemes results in a change in quaternary structure to a deoxy-like conformation. 相似文献
6.
Hemoglobins have been discovered in organisms from virtually all kingdoms. Their presence in unicellular organisms suggests that the gene for hemoglobin is very ancient and that the hemoglobins must have functions other than oxygen transport, in view of the fact that O2 delivery is a diffusion-controlled process in these organisms. Based on sequence alignment, three groups of hemoglobins have been characterized in unicellular organisms. The group-one hemoglobins, termed truncated hemoglobins, consist of proteins with 110-140 amino acid residues and a novel two-over-two alpha-helical sandwich motif. The group-two hemoglobins, termed flavohemoglobins, consist of a hemoglobin domain, with a classical three-over-three alpha-helical sandwich motif, and a flavin-containing reductase domain that is covalently attached to it. The group-three hemoglobins consist of myoglobin-like proteins that have high sequence homology and structural similarity to the hemoglobin domain of flavohemoglobins. In this review, recent resonance Raman studies of each group of these proteins are presented. Their implications are discussed in the context of the structural and functional properties of these novel hemoglobins. 相似文献
7.
Hybrid hemoglobins, containing mesoheme in one type of subunit and protoheme in the partner subunits, have been studied by resonance Raman spectroscopy. These hybrids have been studied in both the met hybrid and fully reduced, deoxy forms. Judicious choice of laser excitation frequency permits selective enhancement of modes associated with each type of subunit; i.e., either meso- or protoheme-containing subunit. The assignments of low-frequency modes of meso- and protoheme are briefly discussed with special reference to the iron-histidine linkage. Despite functional differences between the hybrids, no significant changes in the strength of the iron-histidine linkages are detected by resonance Raman spectroscopy. These results are discussed with reference to recent high-resolution NMR studies of these same hybrids. 相似文献
8.
An allosteric modulator of oxygen release in human erythrocytes is 2,3-diphosphoglycerate, but bovine erythrocytes apparently utilize chloride for this purpose since they contain little, if any, 2,3-diphosphoglycerate. In order to identify the sites to which these anions bind, the site-specific acetylating agent, methyl acetyl phosphate, has been employed to compete with these allosteric modulators and to mimic their effects on hemoglobin function. With human hemoglobin A, methyl acetyl phosphate competes with 2,3-diphosphoglycerate and acetylates only Val-1(beta), Lys-82(beta), and Lys-144(beta) within or near the cleft that binds this organic phosphate (Ueno, H., Pospischil, M. A., Manning, J. M., and Kluger, R. (1986) Arch Biochem. Biophys. 244, 795). With bovine hemoglobin, the acetylation is competitive with chloride ion. The sites of acetylation in oxy bovine hemoglobin are Met-1(beta) and Lys-81(beta) and for deoxy bovine hemoglobin, they are Val-1(alpha) and Lys-81(beta). Thus, these sites are expected to be involved in the binding of chloride to bovine hemoglobin. Treatment of either human or bovine hemoglobins with methyl acetyl phosphate under anaerobic conditions leads to a lowering of their oxygen affinity and hence the covalent modifier has the same effect on hemoglobin function as the non-covalent regulators, 2,3-diphosphoglycerate and chloride. The Hill's coefficient of hemoglobin is unaffected by treatment with methyl acetyl phosphate. Under aerobic conditions, specifically acetylated bovine hemoglobin also has a lowered oxygen affinity, and human hemoglobin A shows a slight change in its oxygen affinity. In general, bovine hemoglobin is more responsive than human hemoglobin to both chloride and methyl acetyl phosphate; the latter agent results in a permanent covalent labeling of the protein. Therefore, the results support the idea that methyl acetyl phosphate may be a useful probe for deciphering the sites of binding of anions to proteins. 相似文献
9.
The circular dichroism spectra at pH 6.5 of a number of hemoglobins and modified hemoglobins have been recorded in the 280 nm region and interpreted in terms of shifts of the R?T allosteric transformation. Inositol hexaphosphate converts aquomet hemoglobin A(S) to the T form but the carbamlyated derivatives are unaffected by inositol hexaphosphate and remain in the R form. Fluorodinitrobenzene and dimethyl adipimidate modified hemoglobins are locked in an intermediate form, and inositol hexaphosphate has little or no effect. The circular dichroism in the 280 nm region is shown to be a useful diagnostic tool for chemical agents that affect the R?T allosteric transformation. 相似文献
10.
J M Friedman D L Rousseau G Navon S Rosenfeld P Glynn K B Lyons 《Archives of biochemistry and biophysics》1979,193(1):14-21
We have observed substantial changes in the resonance Raman spectrum of ruthenium red when it is added to calcium ion binding molecules and organelles, including proteins, phospholipids, chelating agents, and intact mitochondria. The addition of Ca2+ ions can reverse these observed spectral changes. In the case of cytochrome c, ruthenium red binding varies with oxidation state in a manner parallel to that for Ca2+ binding. The resonance Raman spectrum of a ruthenium red-phospholipid complex shows differences from that of a ruthenium red-protein complex, enabling us to distinguish between binding to these different classes of molecules. Our studies suggest that the primary constituent of the low-affinity Ca2+ binding sites in mitochondria is cardiolipin. 相似文献
11.
M R Ondrias S D Carson S C Wood J A Shelnutt 《Comparative biochemistry and physiology. B, Comparative biochemistry》1984,79(4):637-642
Using resonance Raman difference spectroscopy, the Raman-active vibrational modes of hemoglobins from adult, neotenic, and larval forms of the salamander, Ambystoma tigrinum have been compared to each other and to human hemoglobin. The local heme environment of the adult and neotenic proteins were identical and differed from that of the larval protein. Differences were observed in modes sensitive to porphyrin pi electron density and axial ligation. Systematic differences were also observed between human and adult salamander hemoglobins particularly in modes sensitive to the heme vinyl environment. The relationship between these environmental differences, oxygen binding affinity, and the effects of allosteric modulators are discussed. 相似文献
12.
Heme-linked ionization of horseradish peroxidase compound II monitored by the resonance Raman Fe(IV)=O stretching vibration 总被引:1,自引:0,他引:1
Fe(IV)=O resonance Raman stretching vibrations were recently identified by this laboratory for horseradish peroxidase compound II and ferryl myoglobin. In the present report it is shown that Fe(IV)=O stretching frequency for horseradish peroxidase compound II will switch between two values depending on pH, with pKa values corresponding to the previously reported compound II heme-linked ionizations of pKa = 6.9 for isoenzyme A-2 and pKa = 8.5 for isoenzyme C. Similar pH-dependent shifts of the Fe(IV)=O frequency of ferryl myoglobin were not detected above pH 6. The Fe(IV)=O stretching frequencies of compound II of the horseradish peroxidase isoenzymes at pH values above the transition points were at a high value approaching the Fe(IV)=O stretching frequency of ferryl myoglobin. Below the transition points the horseradish peroxidase frequencies were found to be 10 cm-1 lower. Frequencies of the Fe(IV)=O stretching vibrations of horseradish peroxidase compound II for one set of isoenzymes were found to be sensitive to deuterium exchange below the transition point but not above. These results were interpreted to be indicative of an alkaline deprotonation of a distal amino acid group, probably histidine, which is hydrogen bonded to the oxyferryl group below the transition point. Deprotonation of this group at pH values above the pKa disrupts hydrogen bonding, raising the Fe(IV)=O stretching frequency, and is proposed to account for the lowering of compound II reactivity at alkaline pH. The high value of the Fe(IV)=O vibration of compound II above the transition point appears to be identical in frequency to what is believed to be the Fe(IV)=O vibration of compound X. 相似文献
13.
14.
A new and highly sensitive resonance Rayleigh scattering assay for lysozyme using aptamer–nanogold as a probe 下载免费PDF全文
Gold nanoparticles (GN), 10 nm in size, were modified by using lysozyme aptamer (Apt) to obtain a stable Apt–GN probe in pH 8.05 Tris/HCl buffer solutions containing 0.04 mol/L NaCl. Upon addition of lysozyme (LYS), it reacted with the Apt of the probe to form a very stable Apt–LYS complex and to release GNs, which aggregated to form large clusters with a resonance Rayleigh scattering (RRS) peak at 368 nm. The enhanced peak intensity, ΔI, was linear to the LYS concentration in the range 0.2–5.2 nmol/L, with a detection limit of 0.05 nmol/L. The influence of foreign substance was tested, and the results showed that this RRS method has high selectivity. This Apt–GN RRS method was applied to the analysis of LYS in a real sample, with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
15.
S D Carson I Constantinidis J Mintorovitch J D Satterlee M R Ondrias 《The Journal of biological chemistry》1986,261(5):2246-2255
The hemoglobin of the marine annelid Glycera dibranchiata possesses several unique features: the hemoglobin consists of multiple monomeric and polymeric components, quaternary structure is lacking, the distal histidine is replaced by leucine in at least one monomeric constituent, and 4) the protein exhibits extremely rapid ligand binding kinetics. The effect of these structural modifications on the ligand binding process has been evaluated using resonance Raman spectroscopy to examine the vibrational modes of the porphyrin macrocycle in deoxy and carbonmonoxy equilibrium species of hemoglobin G. dibranchiata in both the unseparated monomeric and polymeric forms and in a single monomeric component designated Fraction II. Significant differences relative to hemoglobin were found in porphyrin pi electron density, vinyl environment, low frequency vibrational modes, and, in particular, the Fe-proximal histidine stretching mode. Spectra of the deoxy heme transients generated within 10 ns of ligand photolysis have also been examined. These clearly indicate large differences in the heme pocket dynamics subsequent to CO photolysis in G. dibranchiata hemoglobins relative to other hemoglobins. The significance of these results in terms of the kinetics and thermodynamics of ligand binding is discussed. 相似文献
16.
The haem-rotational disorder (insertion of haem into globin rotated about the alpha, gamma-meso axis by 180 degrees) has been investigated in the cyano-Met form of the monomeric allosteric insect haemoglobins, CTT III and CTT IV, by resonance Raman spectroscopy. The effect of haem disorder on the resonance Raman spectra has been observed in proto-IX, deutero-IX, and meso-IX CTTs. Most importantly, in the absence of overlapping vinyl vibrations, we have identified two Fe-C-N bending vibrations at 401 cm-1 and 422 cm-1 (pH 9.5) for 57Fe deutero-IX CTT IV ligated with 13C15N-, which are attributed to the two haem-rotational components. One Fe-C-N bending mode at 422 cm-1 shows a pH-induced shift to 424 cm-1 (pH 5.5) indicating the t----r conformational transition, whereas the other bending mode is pH-insensitive, representing a non-allosteric component. By replacing the unsymmetrical porphyrins with the "symmetrical" protoporphyrin-III we eliminate the haem disorder. Then, sharpening of the Fe-N epsilon(His) (at 313 cm-1) and Fe-CN (at 453 cm-1) stretching modes is observed and a single Fe-C-N bending mode (at 412 cm-1) appears. In cyano-Met proto-IX CTT III two vinyl bending vibrations at 412 cm-1 and 591 cm-1 assigned by deuteration of the vinyl groups also reflect the haem disorder. The 412 cm-1 vinyl vibration is intensity-enhanced via through-space coupling with one of the Fe-C-N bending modes (at 412 cm-1). In the cyano-Met form of proto-III CTT III this vinyl vibration is shifted to 430 cm-1 resulting in a dramatic drop in intensity. It is most likely that the specific vinyl-protein interaction at position 4 in one of the haem-rotational components is the origin of the coupling between the Fe-C-N and vinyl bending modes. The Fe-N epsilon(proximal His) and the Fe-CN stretching vibrations as well as the Fe-C-N bending vibration have been identified by 54Fe/57Fe and 13C15N/12C15N/13C14N/12C14N isotope exchange. 相似文献
17.
D H Peyton G N La Mar S Ramaprasad S W Unger S Sankar K Gersonde 《Journal of molecular biology》1991,221(3):1015-1026
The 1H nuclear magnetic resonance spectral characteristics of the cyano-Met form of Chironomus thummi thummi monomeric hemoglobins I, III and IV in 1H2O solvent are reported. A set of four exchangeable hyperfine-shifted resonances is found for each of the two heme-insertion isomers in the hyperfine-shifted region downfield of ten parts per million. An analysis of relaxation, exchange rates and nuclear Overhauser effects leads to assignments for all these resonances to histidine F8 and the side-chains of histidine E7 and arginine FG3. It is evident that in aqueous solution, the side-chain from histidine E7 does not occupy two orientations, as found for the solid state, rather the histidine E7 side-chain adopts a conformation similar to that of sperm whale myoglobin or hemoglobin A, oriented into the heme pocket and in contact with the bound ligand. Evidence is presented to show that the allosteric transition in the Chironomus thummi thummi hemoglobins arises from the "trans effect". An analysis of the exchange with bulk solvent of the assigned histidine E7 labile proton confirms that the group is completely buried within the heme pocket in a manner similar to that found for sperm whale cyano-Met myoglobin, and that the transient exposure to solvent is no more likely than in mammalian myoglobins with the "normal" distal histidine orientation. Finally, a comparison of solvent access to the heme pocket of the three monomeric C. thummi thummi hemoglobins, as measured from proton exchange rates of heme pocket protons, is made and correlated to binding studies with the diffusible small molecules such as O2. 相似文献
18.
Jin L Shang L Guo S Fang Y Wen D Wang L Yin J Dong S 《Biosensors & bioelectronics》2011,26(5):1965-1969
In this work, biomolecule-stabilized Au nanoclusters were demonstrated as a novel fluorescence probe for sensitive and selective detection of glucose. The fluorescence of Au nanoclusters was found to be quenched effectively by the enzymatically generated hydrogen peroxide (H(2)O(2)). By virtue of the specific response, the present assay allowed for the selective determination of glucose in the range of 1.0×10(-5) M to 0.5×10(-3) M with a detection limit of 5.0×10(-6) M. The absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and fluorescence decay studies were then performed to discuss the quenching mechanism. In addition, we demonstrated the application of the present approach in real serum samples, which suggested its great potential for diagnostic purposes. 相似文献
19.
K Gersonde E Kerr N T Yu D W Parish K M Smith 《The Journal of biological chemistry》1986,261(19):8678-8685
The resonance Raman spectra of the two affinity states of the CO-ligated monomeric insect hemoglobins, Chironomus thummi thummi (CTT) III ad IV, have been investigated. We have identified (via 54Fe/57Fe and 13C18O/12C16O isotope exchange) the Fe-N epsilon(His) stretching mode at approximately 317 cm-1. This stretching mode changes from 329 (pH 5.5) to 317 cm-1 (pH 9.5) reflecting the pH-induced t in equilibrium with r conformational transition. The Fe-CO stretching mode is also pH-sensitive changing from 483 (pH 5.2) to 485 cm-1 (pH 9.2) in 57Fe CTT III . 13C18O complex. However the C-O stretching mode is pH-insensitive. The nonallosteric monomeric insect hemoglobin CTT I does not exhibit a pH-dependence of these vibrational modes. pH-Induced effects were also observed for a vinyl bending mode at 379 cm-1 (pH 9.5) in CTT III deuterated at the beta-carbons of the vinyls in position 2 and 4. It shifts to 390 cm-1 at pH 5.5. The other vinyl vibration at 573 cm-1 exhibits intensity enhancement via through-space coupling with the Fe-C-O bending mode. Our resonance Raman data provide the first direct evidence that the trans-effect is operative as a trigger mechanism for ligand-binding in monomeric allosteric insect hemoglobins. In going from the low-affinity to the high-affinity state, the Fe-N epsilon(His) bond becomes weaker, whereas the Fe-CO bond becomes stronger. 相似文献