首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously demonstrated that repeated, but not acute, methamphetamine (METH) treatment increases tissue plasminogen activator (tPA) activity in the brain, which is associated with the development of behavioral sensitization to METH. In this study, we investigated whether the tPA-plasmin system is involved in the development of sensitization in METH-induced dopamine release in the nucleus accumbens (NAc). There was no difference in acute METH-induced increase in extracellular dopamine levels in the NAc between wild-type and tPA-deficient (tPA−/−) mice. Repeated METH treatment resulted in a significant enhancement of METH- induced dopamine release in wild-type mice, but not tPA−/− mice. Microinjection of exogenous tPA or plasmin into the NAc of wild-type mice significantly potentiated acute METH- induced dopamine release. Degradation of laminin was evident in brain tissues incubated with tPA plus plasminogen or plasmin in vitro although tPA or plasminogen alone had no effect. Immunohistochemical analysis revealed that microinjection of plasmin into the NAc reduced laminin immunoreactivity without neuronal damage. Our findings suggest that the tPA-plasmin system participates in the development of behavioral sensitization induced by repeated METH treatment, by regulating the processes underlying the sensitization of METH-induced dopamine release in the NAc, in which degradation of laminin by plasmin may play a role.  相似文献   

2.
人组织型纤溶酶原激活剂突变体微小基因的构建   总被引:3,自引:0,他引:3  
tPA基因全长约36kb,至少由13个内含子分隔为14个外显子。根据tPA的第一、二外显子的编码情况,考虑建立从第二至第六外显子序列在内的tPA微小基因。即将tPA的部分基因组序列与LAtPA cDNA的序列在第六外显子的NarI位点处相连。  相似文献   

3.
The sensitive assay method of tissue plasminogen activator was established by an enzyme-immunoassay method, and discriminates tissue (nonurokinase) type plasminogen activator from urokinase. The sensitivity was 0.1 ng/assay tube, and the plasma concentration of tissue plasminogen activator in normal healthy subjects was 1.22 +/- 0.25 ng/ml. Distribution of tissue plasminogen activator was examined in normal tissue. A melanoma cell line was employed as cell culture medium for determination of tissue plasminogen activator.  相似文献   

4.
New data are provided to show that (i) rat Sertoli cells produce two types of plasminogen activators, tissue type (tPA) and urokinase type (uPA), and a plasminogen activator inhibitor type-1 (PAI-1); (ii) both tPA (but not uPA) and PAI-1 secretion in the culture are modified by FSH, forskolin, dbcAMP, GnRH, PMA and growth factors (EGF and FGF), but not by hCG and androstenedione (△4); (iii) in vitro secretion of tPA and PA-PAI-1 complexes of Sertoli cells are greatly enhanced by presence of Leydig cells which produce negligible tPA but measurable PAI-1 activity;(iv) combination culture of Sertoli and Leydig cells remarkably increases FSH-induced PAI-1 activity and decreases hCG- and forskolin-induced inhibitor activity as compared with that of two cell types cultured alone. These data suggest that rat Sertoli cells, similar to ovarian granulosa cells, are capable of secreting both tPA and uPA, as well as PAI-1. The interaction of Sertoli cells and Leydig cells is essential for the cells to response to  相似文献   

5.
Egg-laying hens are important candidate bioreactors for pharmaceutical protein production because of the amenability of their eggs for protein expression. In this study, we constructed an oviduct-specific vector containing tissue plasminogen activator (tPA) protein and green fluorescent protein (pL-2.8OVtPAGFP) and assessed its expression in vitro and in vivo. Oviduct epithelial and 3T3 cells were cultured and transfected with pL-2.8OVtPAGFP and pEGP-N1 (control vector), respectively. The pL-2.8OVtPAGFP vector was administered to laying hens via a wing vein and their eggs and tissues were examined for tPA expression. The oviduct-specific vector pL-2.8OVtPAGFP was expressed only in oviduct epithelial cells whereas pEGP-N1 was detected in oviduct epithelial and 3T3 cells. Western blotting detected a 89 kDa band corresponding to tPA in egg white and oviduct epithelial cells, thus confirming expression of the protein. The amount of tPAGFP in eggs ranged 9 to 41 ng/mL on the third day after vector injection. The tPA expressed in egg white and oviduct epithelial cells showed fibrinolytic activity, indicating that the protein was expressed in active form. GFP was observed only in oviducts, with no detection in heart, muscle, liver and intestine. This is the first study to report the expression of tPA in egg white and oviduct epithelial cells using an oviduct-specific vector.  相似文献   

6.
Production of tissue plasminogen activator (t-PA) in Aspergillus niger   总被引:1,自引:0,他引:1  
A protease-deficient strain of Aspergillus niger has been used as a host for the production of human tissue plasminogen activator (t-PA). In defined medium, up to 0.07 mg t-PA (g biomass)(-1) was produced in batch and fed-batch cultures and production was increased two- to threefold in two-phase batch cultures in which additional glucose was provided as a single pulse at the end of the first batch growth phase. Production was increased [up to 1.9 mg t-PA (g biomass)(-1)] by the addition of soy peptone to the defined medium. The rate of t-PA production in batch cultures supplemented with soy peptone (0.2 to 0.6 mg t-PA L(-1) h(-1)) was comparable to rates observed previously in high-producing mammalian or insect cell cultures. In glucose-limited chemostat culture supplemented with soy peptone, t-PA was produced at a rate of 0.7 mg t-PA L(-1) h(-1). Expression of t-PA in A. niger resulted in increased expression of genes (bipA, pdiA, and cypB) involved in the unfolded protein response (UPR). However, when cypB was overexpressed in a t-PA-producing strain, t-PA production was not increased. The t-PA produced in A. niger was cleaved into two chains of similar molecular weight to two-chain human melanoma t-PA. The two chains appeared to be stable for at least 16 h in culture supernatant of the host strain. However, in general, <1% of the t-PA produced in A. niger was active, and active t-PA disappeared from the culture supernatant during the stationary phase of batch cultures, suggesting that the two-chain t-PA may have been incorrectly processed or that initial proteolytic cleavage occurred within the proteolytic domain of the protein. Total t-PA (detected by enzyme-linked immunoassay) also eventually disappeared from culture supernatants, confirming significant extracellular proteolytic activity, even though the host strain was protease-deficient.  相似文献   

7.
Liu YX  Liu HZ  Chen YJ  Tor NY 《生理学报》1998,50(1):11-18
本文主要是观察促乳素(PRL)是否曩体外培养的大鼠颗粒细胞中,组织纤溶酶原激活因子(tPA)和I型纤溶酶原激活因子抑制因子(PAI-I)基因表达间的协调作用。我们采用了多种方法,例如SDS-PAGE、免疫印迹等,来检测PRL对tPA和PAI-I基因表达的作用。结果证实:(1)在离体条件下促乳素(PRL)能刺激颗粒细胞(GC)中PAI-I mRNA的合成,而FSH无此作用。但FSH可与PRL协同增加  相似文献   

8.
Matrix metalloproteinases (MMPs) and its inhibitors (TIMPs) function to remodel the pericellular environment. We have demonstrated that methamphetamine (METH)-induced behavioral sensitization and reward were markedly attenuated in MMP-2- and MMP-9 deficient [MMP-2-(-/-) and MMP-9-(-/-)] mice compared with those in wild-type mice, suggesting that METH-induced expression of MMP-2 and MMP-9 in the brain plays a role in the development of METH-induced sensitization and reward. In the present study, we investigated the changes in TIMP-2 expression in the brain after repeated METH treatment. Furthermore, we studied a role of MMP/TIMP system in METH-induced behavioral changes and dopamine neurotransmission. Repeated METH treatment induced behavioral sensitization, which was accompanied by an increase in TIMP-2 expression. Antisense TIMP-2 oligonucleotide (TIMP-AS) treatment enhanced the sensitization, which was associated with the potentiation of METH-induced dopamine release in the nucleus accumbens (NAc). On the other hand, MMP-2/-9 inhibitors blocked the METH-induced behavioral sensitization and conditioned place preference, a measure of the rewarding effect, and reduced the METH-increased dopamine release in the NAc. Dopamine receptor agonist-stimulated [(35)S]GTPgammaS binding was reduced in the frontal cortex of sensitized rats. TIMP-AS treatment potentiated, while MMP-2/-9 inhibitor attenuated, the reduction of dopamine D2 receptor agonist-stimulated [(35)S]GTPgammaS binding. Repeated METH treatment also reduced dopamine D2 receptor agonist-stimulated [(35)S]GTPgammaS binding in wild-type mice, but such changes were significantly attenuated in MMP-2-(-/-) and MMP-9-(-/-) mice. These results suggest that the MMP/TIMP system is involved in METH-induced behavioral sensitization and reward, by regulating dopamine release and receptor signaling.  相似文献   

9.
mRNA levels for urokinase type plasminogen activator (uPA), tissue type plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and plasminogen activator inhibitor-2 (PAI-2) were examined in human diploid (neonatal foreskin) fibroblasts grown in 200-ml microcarrier suspension culture. Four different substrates were used. These included gelatin-coated polystyrene plastic, DEAE-dextran, glass-coated polystyrene plastic and uncoated polystyrene plastic. Our previous studies have shown that culture fluids from diploid fibroblasts grown on DEAE-dextran contained higher levels of plasminogen-dependent fibrinolytic activity than culture fluids from the same cells grown on other substrates. The increased plasminogen activator activity was due largely to elevated amounts of tPA (In Vitro Cell. Develop. Biol. 22: 575–582, 1986). The present study shows that there is a corresponding elevation of tPA mRNA in diploid fibroblasts cultured on DEAE-dextran relative to the other substrates. There does not appear to be any difference in uPA mRNA or in mRNA for PAI-1 or PAI-2 produced by the same cells on the four substrates. These data suggest that the influence of the substrate on plasminogen activator production is mediated at the genetic level.  相似文献   

10.
The extracellular serine protease tissue plasminogen activator (tPA) that converts plasminogen into plasmin is abundantly expressed throughout the central nervous system. We have recently demonstrated that the tPA-plasmin system participates in the rewarding and locomotor-stimulating effects of morphine by acutely regulating morphine-induced dopamine release in the nucleus accumbens (NAc). In the present study, we examined the effects of microinjections of plasminogen activator inhibitor-1 (PAI-1), tPA or plasmin into the NAc on morphine-induced dopamine release, hyperlocomotion and anti-nociceptive effects in ICR mice. A single morphine treatment resulted in an increase in protein levels of PAI-1 in the NAc. Microinjection of PAI-1 into the NAc dose-dependently reduced morphine-induced dopamine release and hyperlocomotion. In contrast, microinjection of tPA into the NAc significantly potentiated morphine-induced dopamine release and hyperlocomotion without affecting basal levels. Furthermore, microinjection of plasmin enhanced morphine-induced dopamine release, but did not modify the hyperlocomotion induced by morphine. The intracerebroventricular injection of PAI-1, tPA and plasmin at high doses had no effect on the anti-nociceptive effects of morphine. These results suggest that the tPA-plasmin system is involved in the regulation of morphine-induced dopamine release and dopamine-dependent behaviors but not the anti-nociceptive effects of morphine.  相似文献   

11.
We showed, using the method of lysis of fibrin plates and five substrate proteins in a thin layer of agar gel, that inorganic orthophosphate (0.001–0.06 M) enhances by 50–250% the activatory functions of streptokinase, urokinase, and tissue plasminogen activator and, in general, by 1.2–12.0 times enhances protein lysis by trypsin, α-chymotrypsin, subtilisin, papain, bacterial metalloprotease, and even pepsin at a concentration < 4 mM. At higher concentrations, phosphate sharply inhibited pepsin activity and inhibited by 40–50% gelatin lysis by papain and gelatin (at a peak concentration) and casein lysis by metalloprotease. Inorganic pyrophosphate ions at concentrations of 10?8–10?1 M enhanced the cleavage of a number of proteins by serine proteinases and, at concentrations of 10?5–10?3 M, the activities of pepsin, plasminogen tissue activator, and streptokinase by 100 and 40%, respectively. The pyrophosphate concentrations of >10?3 and >10?4 M inhibited pepsinand metalloproteinase-catalyzed lysis of vritually all proteins. ATP increased casein lysis by serine proteinases, metalloproteinase, and pepsin by 20–60% at concentration of >10?3 M and by 30–260% at 10?2 M concentration. At concentrations of 10?2 M, it inhibited the cleavage of some proteins by trypsin, chymotrypsin, papain, and metalloproteinase by 20–100%, and, at concentrations of 10?3 M, lysis of albumin by pepsin and other proteins (except for fibrinogen) by metalloproteinase. A GTP concentration of 10?7–10?2 M increased protein degradation by serine proteinases, papain, and gelatin lysis by pepsin by 20–90%, whereas albumin lysis was inhibited by 40–70%. The presence of 10?6–10?5 M GTP led to a slightly increased degradation of hemoglobin and casein by bacterial metalloproteinase, while ≥10?3 M GTP induced a drop in the activity of the metalloproteinase by 20–50%. ADP enhanced gelatin lysis by trypsin, casein lysis by pepsin and papain, and inhibited metalloproteinase activity by 20–100% (at ≥10?3 M). Peculiarities of the effects of AMP and GD(M)P on gelatin lysis were found.  相似文献   

12.
Alcohol exposure affects neuronal plasticity in the adult and developing brain. Astrocytes play a major role in modulating neuronal plasticity and are a target of ethanol. Tissue plasminogen activator (tPA) is involved in modulating neuronal plasticity by degrading the extracellular matrix proteins including fibronectin and laminin and is up‐regulated by ethanol in vivo. In this study we explored the hypothesis that ethanol affects DNA methylation in astrocytes thereby increasing expression and release of tPA. It was found that ethanol increased tPA mRNA levels, an effect mimicked by an inhibitor of DNA methyltransferase (DNMT) activity. Ethanol also increased tPA protein expression and release, and inhibited DNMT activity with a corresponding decrease in DNA methylation levels of the tPA promoter. Furthermore, it was observed that protein levels of DNMT3A, but not DNMT1, were reduced in astrocytes after ethanol exposure. These novel studies show that ethanol inhibits DNA methylation in astrocytes leading to increased tPA expression and release; this effect may be involved in astrocyte‐mediated inhibition of neuronal plasticity by alcohol.

  相似文献   


13.
Thrombolytic agents are being employed clinically in increasing numbers of patients in the attempt to eliminate occlusive coronary thrombi in patients with evolving myocardial infarction. When administered by the intracoronary route, streptokinase lyses is successful in coronary thrombi in more than two-thirds of patients, but when administered intravenously is successful in only one-third. Since streptokinase is a nonselective plasminogen activator, it induces fibrinogenolysis when administered selectively or systematically with an attendant marked reduction in plasma fibrinogen levels and significant bleeding complications. In contrast, the action of tissue plasminogen activator (t-Pa) is relatively selective for fibrinolysis (as opposed to fibrinogenolysis). It induces coronary thrombolysis in at least 60% of patients when administered either into a coronary ostium or a peripheral vein without producing substantial reductions in circulating fibrinogen. Bleeding complications are modest and usually related to high administered doses and concomitant heparinization, and occur primarily at sites of vascular access. Thus, t-Pa appears to be a promising agent for thrombolytic treatment of patients with evolving acute myocardial infarction.  相似文献   

14.
15.
16.
Urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are extracellular proteases that play a role in synaptic plasticity and remodeling. Psychostimulants induce both tPA and uPA in acute and chronic drug delivery, but cocaine induces preferentially uPA, whereas morphine and amphetamine induce preferentially tPA. Specific doxycline-regulatable lentiviruses expressing these extracellular proteases have been prepared and stereotaxically injected into the nucleus accumbens. We show that tPA-overexpressing animals show greater locomotor activity and behavioral sensitization upon morphine and amphetamine treatments. These effects could be fully suppressed by doxycycline or when tPA had been silenced using small interfering RNAs (siRNAs)-expressing lentiviruses. Furthermore, animals infected with lentiviruses expressing uPA show enhanced conditional place preference for cocaine compared with tPA-overexpressing animals. In contrast, tPA-overexpressing animals when administered amphetamine or morphine showed greater place preference compared with uPA-overexpressing animals. The effects are suppressed when tPA has been silenced using specific siRNAs-expressing vectors. Tissue-type plasminogen activator and uPA possibly induce distinct behaviors, which may be interpreted according to their differential pattern of activation and downstream targets. Taken together, these data add further evidence for a significant function of extracellular proteases tPA and uPA in addiction and suggest a differential role of plasminogen activators in this context.  相似文献   

17.
The effects of constant osmolarity, between 300 and500 mOsm/kg, on the metabolism of Chinese HamsterOvary (CHO) cells producing tissue plasminogenactivator (tPA) were compared between adhesion andsuspension cultures. In both suspension and adhesionculture, the specific rates of glucose consumption(G), lactate production (qL), and tPAproduction (qtPA) increased as osmolarityincreased, while these rates decreased when osmolaritywas higher than the respective critical levels. However, specific growth rate () decreased withincrease in osmolarity and this slope grew steeper inthe osmolarity range higher than the critical level. The decrease in in the adhesion culture was morerapid than that in the suspension culture. Thecritical osmolarity for adhesion culture (400 mOsm/kg)was lower than that for suspension culture (450 mOsm/kg). These results indicated that the adhesionculture was more sensitive to increase of osmolaritythan the suspension culture, while the specific ratesobtained from the adhesion cultures were in general1.5- to 3-fold higher than those obtained from thesuspension cultures. Cell volume increased asosmolarity increased in both the suspension andadhesion cultures, as reported previously forsuspension culture of hybridoma cells, but there wasno morphological change in the suspension culture. Incontrast, cell height decreased and cell adhesion areamarkedly increased as osmolarity increased in theadhesion culture. This morphological change inadhesion cultures may be one reason for the highersensitivity of adherent cells to the increase ofosmolarity than suspended cells.  相似文献   

18.
猕猴精浆纤溶酶原激活因子的来源及在精子获能中的作用   总被引:13,自引:0,他引:13  
Zheng P  Zou RJ  Liu YX 《生理学报》2001,53(1):45-50
我们的前期工作表明,不育症人精液中纤溶酶原激活因子(plasminogen activator;PA)活性明显升高;给成年办和猕猴注射长效睾酮诱发无精过程中,精液PA含量也伴随上升,为进一步查明PA的来源和对精子的作用,原位杂交检测组织型PA(tPA),尿激酶型PA(uPA)及PA抑制因子-1(PAI-1)泊mRNAs在成年健康猕附睾、前列腺和精囊中的表达。体外培养猕猴精子,培液中加入uPA、tPA及其底物纤溶酶原(plasminogen),测试PA对精子活力、顶体反应及激活卵子的影响。结果表明,猕猴附睾、前列腺和精囊均表达tPA、uPA和PAI-1 mRNAs。加入uPA能维持精子的活力,使精子产生超激活运动,诱导顶体反应的发生,并使精子获得激活卵子的能力,这说明猕猴精浆PA除来源于睾丸外,可能主要来源于附睾及附性腺;在体外,uPA,而不是tPA,可能诱导精子获能。  相似文献   

19.
Glutamate is the main excitatory neurotransmitter of the CNS. Tissue-type plasminogen activator (tPA) is recognized as a modulator of glutamatergic neurotransmission. This attribute is exemplified by its ability to potentiate calcium signaling following activation of the glutamate-binding NMDA receptor (NMDAR). It has been hypothesized that tPA can directly cleave the NR1 subunit of the NMDAR and thereby potentiate NMDA-induced calcium influx. In contrast, here we show that this increase in NMDAR signaling requires tPA to be proteolytically active, but does not involve cleavage of the NR1 subunit or plasminogen. Rather, we demonstrate that enhancement of NMDAR function by tPA is mediated by a member of the low-density lipoprotein receptor (LDLR) family. Hence, this study proposes a novel functional relationship between tPA, the NMDAR, a LDLR and an unknown substrate which we suspect to be a serpin. Interestingly, whilst tPA alone failed to cleave NR1, cell-surface NMDARs did serve as an efficient and discrete proteolytic target for plasmin. Hence, plasmin and tPA can affect the NMDAR via distinct avenues. Altogether, we find that plasmin directly proteolyses the NMDAR whilst tPA functions as an indirect modulator of NMDA-induced events via LDLR engagement.  相似文献   

20.
The aim of this study was to investigate the possibility of enhancing the yield of tissue plasminogen activator (tPA) from two epithelial cell lines of normal (non-malignant) derivation grown in tissue culture. The three agents used in this investigation were chosen because of their proven enhancing effect on analogous cells or products. The anabolic hormone stanozolol was found to have no significant stimulatory effect on these cell lines. A phorbol acetate (12-O-tetradecanoylphorbol 13-acetate) caused a twofold enhancement in tPA yield but the most significant results were obtained with 5-azacytidine. This agent increased the yield by up to fourfold in small stationary cultures and threefold in large-scale microcarrier cultures. A combination of azacytidine and phorbol acetate did not have an additive effect on total yield but did alter the kinetics of tPA expression with time. Indications were that the maximum yield with these types of potentiating agents was achieved as it could not be increased by using a combination of two different agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号