首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationships among ant subfamilies were studied by phylogenetic analysis of rDNA sequences of 15 species from seven subfamilies. PCR primers were designed on the basis of the rDNA sequence of the Australian bulldog ant, Myrmecia croslandi, previously determined. Phylogenetic trees were constructed using sequences of a fragment of 18S rDNA (1.8 kb), a fragment of 28S rDNA (0.7 kb excluding variable regions) and a combination of the 18S and 28S rDNAs, by neighbor-joining (NJ), maximum parsimony (MP) and maximum likelihood (ML). rDNA sequences corresponding to the same fragments from three non-ant hymenopteran species (a sawfly, a bee and a wasp) were employed as outgroups. These trees indicated that the ant subfamilies were clustered singly, and, among the seven subfamilies examined, Ponerinae and six other subfamilies are in a sister-groups relationship. The relationship among the six subfamilies, however, was not clarified. The phylogenetic trees constructed in the present study are not in contradiction to the tree from cladistic analysis of morphological data by Baroni Urbani et al. (1992) and the tree from morphological and molecular data (Ward and Brady, 2003), but are inconsistent with the traditional phylogeny. The present results thus raise a question as to the status of some traditionally employed "key" morphological characters. The present results also call for a reexamination of Amblyopone traditionally treated as a member of Ponerinae as belonging to a new subfamily.  相似文献   

2.
The phylogeny of theDrosophila hydei subgroup, which is a member of theD. repleta species group, was inferred from 1,515 base pairs of mitochondrial DNA sequence of the cytochrome oxidase subunits I, II, and III. Four of the seven species in the subgroup were examined, which are placed into two taxonomic complexes: theD. bifurca complex (D. bifurca) andD. nigrohydei) and theD. hydei complex (D. hydei and (D. eohydei). Both complexes appear to be monophyletic, although theD. bifurca complex is only weakly supported. The evolution of chromosomal change, interspecific crossability, sperm gigantism, and divergence times of the subgroup is discussed in a phylogenetic context. Correspondence to: G. Spicer  相似文献   

3.
The phylogenetic relationships among worldwide species of genus Ochotona were investigated by sequencing mitochondrial cytochrome b and ND4 genes. Parsimony and neighbor-joining analyses of the sequence data yielded congruent results that strongly indicated three major clusters: the shrub-steppe group, the northern group, and the mountain group. The subgeneric classification of Ochotona species needs to be revised because each of the two subgenera in the present classification contains species from the mountain group. To solve this taxonomic problem so that each taxon is monophyletic, i.e. , represents a natural clade, Ochotona could be divided into three subgenera, one for the shrub-steppe species, a second for the northern species, and a third for the mountain species. The inferred tree suggests that the differentiation of this genus in the Palearctic Region was closely related to the gradual uplifting of the Tibet (Qinghai-Xizang) Plateau, as hypothesized previously, and that vicariance might have played a major role in the differentiation of this genus on the Plateau. On the other hand, the North American species, O. princeps, is most likely a dispersal event, which might have happened during the Pliocene through the opening of the Bering Strait. The phylogenetic relationships within the shrub-steppe group are worth noting in that instead of a monophyletic shrub-dwelling group, shrub dwellers and steppe dwellers are intermingled with each other. Moreover, the sequence divergence within the sister taxa of one steppe dweller and one shrub dweller is very low. These findings support the hypothesis that pikas have entered the steppe environment several times and that morphological similarities within steppe dwellers were due to convergent evolution.  相似文献   

4.
Previous molecular phylogenetic studies of Fabaceae indicated that species of Wisteria, an intercontinental disjunct genus between eastern Asia and eastern North America, formed a clade derived from within Callerya. However, interspecific relationships were not well resolved or supported. In this study, we used sequences of the nuclear ribosomal DNA internal transcribed spacer region and the chloroplast gene matK to examine interspecific relationships and explore implications of the phylogeny for the systematics and biogeography of Wisteria. Our results showed that Wisteria with deciduous leaves and racemose inflorescences formed a strongly supported clade derived from within the paraphyletic Callerya. Afgekia was also found to be included within Callerya. Therefore, our data support the merger ofAfgekia, Callerya, and Wisteria. The phylogenetic pattern suggested that the deciduousness in Wisteria may be a derived trait likely in response to temperate climate, and the racemose inflorescences in the Afgekia–Callerya–Wisteria clade may have evolved from panicles. Our study also provided strong support for the sister relationship of the North American and eastern Asian species of Wisteria. In the Asian clade, Wisteria brachybotrys Siebold & Zucc. of Japan was sister to the clade containing W. floribunda (Willd.) DC of Japan and Korea, and W. sinensis (Sims) Sweet of China. However, our data offered weak support for the sister relationship ofW. floribunda and W. sinensis. Our divergence time and biogeographic analyses suggested that the eastern Asian–North American disjunction in Wisteria may have occurred through a dispersal event in the middle Miocene (13.4 Mya) from the Old World to the New World across the Bering land bridge followed by vicariance in the late Miocene (6.8 Mya). This study added another example to the “out of Asia” migration for the eastern Asian–eastern North American disjunction.  相似文献   

5.
6.
A phylogenetic analysis of a combined data set for 560 angiosperms and seven outgroups based on three genes, 18S rDNA (1855 bp), rbcL (1428 bp), and atpB (1450 bp) representing a total of 4733 bp is presented. Parsimony analysis was expedited by use of a new computer program, the RATCHET. Parsimony jackknifing was performed to assess the support of clades. The combination of three data sets for numerous species has resulted in the most highly resolved and strongly supported topology yet obtained for angiosperms. In contrast to previous analyses based on single genes, much of the spine of the tree and most of the larger clades receive jackknife support 250%. Some of the noneudicots form a grade followed by a strongly supported eudicot clade. The early‐branching angiosperms are Amborellaceae, Nymphaeaceae, and a clade of Austrobaileyaceae, Illiciaceae, and Schi‐sandraceae. The remaining noneudicots, except Ceratophyllaceae, form a weakly supported core eumagnoliid clade comprising six well‐supported subclades: Chloranthaceae, monocots, WinteraceaeICanellaceae, Piperales, Laurales, and Magnoliales. Ceratophyllaceae are sister to the eudicots. Within the well‐supported eudicot clade, the early‐diverging eudicots (e.g. Proteales, Ranunculales, Trochodendraceae, Sabiaceae) form a grade, followed by the core eudicots, the monophyly of which is also strongly supported. The core eudicots comprise six well‐supported subclades: (1) Berberidopsidaceae/Aextoxicaceae; (2) Myrothamnaceae/ Gunneraceae; (3) Saxifragales, which are the sister to Vitaceae (including Leea) plus a strongly supported eurosid clade; (4) Santalales; (5) Caryophyllales, to which Dilleniaceae are sister; and (6) an asterid clade. The relationships among these six subclades of core eudicots do not receive strong support. This large data set has also helped place a number of enigmatic angiosperm families, including Podostemaceae, Aphloiaceae, and Ixerbaceae. This analysis further illustrates the tractability of large data sets and supports a recent, phylogenetically based, ordinal‐level reclassification of the angiosperms based largely, but not exclusively, on molecular (DNA sequence) data.  相似文献   

7.
基于部分18S rDNA, 28S rDNA和COI基因序列的索科线虫亲缘关系   总被引:1,自引:0,他引:1  
通过PCR扩增获得我国常见昆虫病原索科线虫6属10种18S rDNA、28S rDNA(D3区)和COI基因序列,结合来自GenBank中6属10种索科线虫的18S rDNA同源序列,用邻接法和最大简约法构建系统进化树。结果显示:12属索科线虫分为三大类群,第一大类群是三种罗索属线虫(Romanomermis)先聚在一起,再与两索属(Amphimermis)和蛛索属(Aranimermis)线虫聚为一支;在第二大类群中,六索属(Hexamermis)、卵索属线虫(Ovomermis)和多索属(Agamermis)亲缘关系最近,先聚在一起,再与八腱索属(Octomyomermis)和Thaumamermis线虫聚为一支。第三大类群由索属(Mermis)和异索属(Allomermis)线虫以显著水平的置信度先聚在一起,再与蠓索属(Heleidomermis)和施特克尔霍夫索属(Strelkovimermis)线虫聚为一支。从遗传距离看,基于3个基因的数据集均显示索科线虫属内种间差异明显小于属间差异,武昌罗索线虫(R.wuchangensis)和食蚊罗索线虫(R.culicivorax)同属蚊幼寄生罗索属线虫,其种间的遗传距离最小。  相似文献   

8.

Background  

Dinoflagellates represent a major lineage of unicellular eukaryotes with unparalleled diversity and complexity in morphological features. The monophyly of dinoflagellates has been convincingly demonstrated, but the interrelationships among dinoflagellate lineages still remain largely unresolved. Warnowiid dinoflagellates are among the most remarkable eukaryotes known because of their possession of highly elaborate ultrastructural systems: pistons, nematocysts, and ocelloids. Complex organelles like these are evolutionary innovations found only in a few athecate dinoflagellates. Moreover, the taxonomy of warnowiids is extremely confusing and inferences about the evolutionary history of this lineage are mired by the absence of molecular phylogenetic data from any member of the group. In this study, we provide the first molecular phylogenetic data for warnowiids and couple them with a review of warnowiid morphological features in order to formulate a hypothetical framework for understanding character evolution within the group. These data also enabled us to evaluate the evolutionary relationship(s) between warnowiids and the other group of dinoflagellates with complex organelles: polykrikoids.  相似文献   

9.
Lacazia loboi is a geographically restricted, uncultivated fungal pathogen of humans and dolphins. Previous investigations using 18S small unit rDNA, chitin synthase 2 and gp43 DNA sequences positioned L. loboi as a close relative of Paracoccidioides brasiliensis. However, given the few individuals of L. loboi studied and the high degree of genetic variation observed in P. brasiliensis, the existence of L. loboi as an independent species has been questioned. To investigate the phylogenetic position of this species, we conducted a phylogenetic analysis using 20 L. loboi collections (L. loboi was obtained from proven cases of lacaziosis and 14 collections were maintained in mice, the others were analyzed from DNA taken directly from infected human tissue.). L. loboi DNA sequence was compared to that from 17 P. brasiliensis strains that represented the known variation in this species, and outgroup taxa in the Onygenales (Ajellomyces and Coccidioides species). Our analyses used DNA sequence from ITS rRNA, and partial coding sequences of chitin synthase 4, ADP-ribosylation factor, and gp43. Nucleotide variation among strains of L. loboi was minor but numerous nucleotide mismatches and multiple gaps were found for these gene regions among members in the Ajellomycetaceae, including P. brasiliensis. Phylogenies inferred using neighbor-joining, maximum parsimony and Bayesian analyses showed no significant conflict and depicted L. loboi as a well-supported, monophyletic group that was sister to the Paracoccidioides clade. These results argue for maintaining L. loboi as a taxon independent from Paracoccidioides within the Ajellomycetaceae.  相似文献   

10.
Phylogenetic relationships of Rozites, Cuphocybe, and Rapacea were assessed using molecular phylogenetic approaches. These three genera are placed in Cortinariaceae and have been regarded as closely related to Cortinarius. Rozites includes more than 20 species, which are characterized by having both a membranaceous partial veil in the form of a persistent annulus and a membranaceous universal veil. Cuphocye (4 species) lacks an annulus or cortina, but has pigmented veil fibrils or scales. The monotypic genus Rapacea accommodates a distinct taxon with pale, nearly smooth and thick-walled basidiospores. We analyzed 56 sequences of the internal transcribed spacer region (ITS1, ITS2, and the intervening 5.8S rRNA gene) for nine species of Rozites, three species of Cuphocybe, 28 species of Cortinarius, Rapacea mariae and Protoglossum luteum. Two species of Hebeloma were used as outgroup. Large subunit (LSU) rDNA sequences from selected taxa were also analyzed. The results clearly demonstrate that Rozites species are nested within the clade/Cortinarius, and that Rozites is polyphyletic, suggesting that membranaceous veils have evolved several times in the genus Cortinarius. Also Rapacea and Cuphocybe are nested within Cortinarius, making the latter genus paraphyletic. Based on phylogenetic studies, Rozites, Cuphocybe and Rapacea are artificial genera and do not reflect natural relationships.  相似文献   

11.
Caryophyllaceae is a principally holarctic family including around 2200 species often classified into the three subfamilies Alsinoideae, Caryophylloideae, and Paronychioideae. Complex and possibly homoplasious morphological characters within the family make taxa difficult to delimit and diagnose. To explore part of the morphological evolution within the family, we investigated the phylogeny of the Caryophyllaceae by means of analyzing plastid and nuclear sequence data with parsimony and Bayesian methods. We describe a mode of tracing a stable phylogenetic signal in ITS sequences, and a significant common signal is shared with the plastid data. Parsimony and Bayesian analyses yield some differences in tree resolution. None of the subfamilies appear monophyletic, but the monophyly of the Caryophylloideae is not contradicted. Alsinoideae are paraphyletic, with Arenaria subg. Eremogone and Minuartia subg. Spergella more closely related to the Caryophylloideae. There is strong support for the inclusion of Spergula-Spergularia in an Alsinoideae-Caryophylloideae clade. Putative synapomorphies for these groupings are twice as many stamens as number of sepals and a caryophyllad-type of embryogeny. Paronychioideae form a basal grade, where tribe Corrigioleae are sister to the rest of the family. Free styles and capsules with simple teeth are possibly plesiomorphic for the family.  相似文献   

12.
Basal relationships of Coleoptera inferred from 18S rDNA sequences   总被引:5,自引:2,他引:3  
The basal relationships of the hyperdiverse insect order Coleoptera (beetles) have proven difficult to resolve. Examination of beetle suborder relationships using 18S ribosomal DNA reveals a previously unproposed relationship among the four major lineages: [(Archostemata(Myxophaga(Adephaga, Polyphaga)))]. Adding representatives of most other insect orders results in a non-monophyletic Coleoptera. However, constraining Coleoptera and its suborders to be monophyletic, in analyses of beetle and outgroup sequences, also results in the above beetle relationships, with the root placed between Archostemata and the remaining suborders.  相似文献   

13.
Ascidians exhibit two different modes of development. A tadpole larva is formed during urodele development, whereas the larval phase is modified or absent during anural development. Anural development is restricted to a small number of species in one or possibly two ascidian families and is probably derived from ancestors with urodele development. Anural and urodele ascidians constitute a model system in which to study the evolution of development, but the phylogeny of anural development has not been resolved. Classification based on larval characters suggests that anural species are monophyletic, whereas classification according to adult morphology suggests they are polyphyletic. In the present study, we have inferred the origin of anural development using rDNA sequences. The central region of 18S rDNA and the hypervariable D2 loop of 28S rDNA were amplified from the genomic DNA of anural and urodele ascidian species by the polymerase chain reaction and sequenced. Phylogenetic trees inferred from 18S rDNA sequences of 21 species placed anural developers into two discrete groups corresponding to the Styelidae and Molgulidae, suggesting that anural development evolved independently in these families. Furthermore, the 18S rDNA trees inferred at least four independent origins of anural development in the family Molgulidae. Phylogenetic trees inferred from the D2 loop sequences of 13 molgulid species confirmed the 18S rDNA phylogeny. Anural development appears to have evolved rapidly because some anural species are placed as closely related sister groups to urodele species. The phylogeny inferred from rDNA sequences is consistent with molgulid systematics according to adult morphology and supports the polyphyletic origin of anural development in ascidians. Correspondence to: W.R. Jeffery  相似文献   

14.
The phylogenetic relationships of Lactarius volemus and its relatives were investigated using the nucleotide sequences of the nuclear-encoded large subunit ribosomal DNA (LSU rDNA). Thirty-six sequences from L. volemus, L. corrugis, and L. hygrophoroides, including three sequences obtained from the GenBank database, were used in this study. Samples studied were divided into four major subclades (A–D) in both neighbor-joining (NJ) and maximum-parsimony (MP) trees. Lactarius volemus and L. corrugis formed one large clade in both NJ and MP trees (bootstrap value, 100%), which was divided into three subclades (A–C). Subclade A included three clusters of L. volemus strains, i.e., velvet, red, and Chinese types. Subclade B included the common and red types of L. corrugis. Subclade C included the common and yellow types of L. volemus. Subclade D included only one type of L. hygrophoroides. An analysis of the fatty acid composition supported the divisions found in the molecular analysis. Analyses of nucleotide sequence, fatty acid composition, morphological characteristics, and the taste of the fruiting bodies all led us to conclude that the common, velvet, red, and Chinese types of L. volemus, and the common and red types of L. corrugis, may each belong to different species, subspecies, or varieties. Further studies with more material from a wide range of regions are required to conduct taxonomic revision of these types. The LSU rDNA region may be a useful tool to investigate phylogenetic relationships within the section Dulces of the genus Lactarius.  相似文献   

15.
Evolutionary affiliations of eighteen families of Hemiptera (s.l.) are inferred using molecular phylogenetic analysis of nucleotide (nt) sequences of 18S rDNAs. Exemplar taxa include: Archaeorrhyncha (=Fulgoromorpha): flatid, issid, dictyopharid, cixiid and delphacid; Prosorrhyncha (=Heteropterodea): Peloridiomorpha (=Coleorhyncha) -peloridiid, Heteroptera gerrid, lygaeid and mirid; Clypeorrhyncha [=extant (monophyletic) cicadomorphs]: cicadid, cercopoids (cercopid, aphrophorid), membracid and cicadellids (deltocephaline and cicadelline); and Sternorrhyncha: psyllid, aleyrodid, diaspidid and aphid. Analysed sequences encompass a region beginning ?550 nucleotides (nts) from the 5'-end to ?200 nts upstream from the 3'-end of the gene [?1150 base pairs (bp) in euhemipteran to >1400 bp in sternorrhynchan taxa]. Maximum parsimony and bootstrap analyses (PAUP) identify four principal hemipteran clades, Stenorrhyncha, Clypeorrhyncha, Archaeorrhyncha and Prosorrhyncha. These lineages are identified by synapomorphies distributed throughout the gene. Sternorrhyncha is a sister group to all other Hemiptera (i.e. Euhemiptera sensu Zrzavy), rendering Homoptera paraphyletic. Within Euhemiptera, clades Clypeorrhyncha, Archaeorrhyncha, Prosorrhyncha and Heteroptera are supported by one, three, two and three synapomorphic sites, respectively. There is equitable parsimonious inference for Archaeorrhyncha as the sister group to Prosorrhyncha (Neoherriiptera sensu Sorensen et al.) or Clypeorrhyncha, in either case rendering Auchenorrhyncha paraphyletic. Neohemiptera is supported by one synapomorphy. Within Clypeorrhyncha, clade cicada + cercopoids is the sister group of the clade cicadellids + membracid (Membracoidea sensu Dietrich & Deitz). Among archaeorrhynchans, clade delphacid + cixiid is the sister group of the clade dictyopharid + flatid + issid. Within Prosorrhyncha, the peloridiid is sister to the Heteroptera. Within Heteroptera, gerrid is the sister group of the clade mirid + lygaeid (Panheteroptera sensu Schuh). Based on secondary structure of synonymous 18S rRNA, two synapomorphies each of Sternorrhyncha, Prosorrhyncha and Heteroptera are compensatory substitutions on stem substructures. All other synapomorphies identifying major lineages of Hemiptera are noncompensatory substitutions on either bulges or stems. Short basal internodal distances suggest radiation of hemipteran lineages at the suborder level occurred rapidly. Morphological, palaeoentomological and eco-evolutionary factors supporting the 18S rDNA-based phylogenetic tree are discussed.  相似文献   

16.
17.
SSU rDNA was sequenced from the lichenized fungiBunodophoron scrobiculatum andLeifidium tenerum (Sphaerophoraceae), andStereocaulon ramulosum andPilophorus acicularis (Stereocaulaceae) and analysed by maximum parsimony with 44 homologous ascomycete sequences in a cladistic study. A small insertion (c. 60 nt.) was found in the sequence ofLeifidium tenerum. Sphaerophoraceae constitutes a strongly supported monophyletic group which groups together withLecanora dispersa and theStereocaulaceae. Together withPorpidia crustulata, this larger group is a sistergroup to thePeltigerineae. This analysis thus supports theLecanorales as monophyletic, includingSphaerophoraceae and thePeltigerineae, but does not provide strong support for this monophyly. The analysis also suggests that the prototunicate ascus in theSphaerophoraceae is a reversion to the plesiomorphic state. Based on morphological, anatomical and chemical reasons,Sphaerophoraceae is proposed to belong to one of the groups presently included in the paraphyletic suborderCladoniineae within theLecanorales.  相似文献   

18.
The taxonomy and phylogeny of the Chinese species of the Barbinae (Cypriniformes) has a confusing history. In this study, partial sequences of four mitochondrial genes (cyt b, COI, ND4 and 16S rRNA) from 75 Barbinae species and 38 outgroup species were used to investigate the taxonomy and phylogeny within the Barbinae in China. The monophyly of Neolissochilus, Sikukia and Tor are not supported. Neolissochilus benasi might represent a new genus, and Tor hemispinus and Tor qiaojiensis should be moved into Neolissochilus. Sikukia flavicaudata is not Sikukia species. Puntius paucimaculatus might be a synonym of Puntius semifasciolatus. Puntius semifasciolatus does not belong to Puntius. Onychostoma barbatum might consist of more than one species. Our molecular results corroborate that Acrossocheilus stenotaeniatus is a synonym of Acrossocheilus longipinnis. Finally, Barbonymus gonionotus from Menglun, Yunnan should be Poropuntius huangchuchieni.  相似文献   

19.
Based on 18S, 5.8S, and 28S rDNA sequences, the phylogenetic position of Uncinula septata within the Erysiphales has been inferred. Although appendages of the ascomata are uncinula like, i.e., unbranched with curved-coiled apices, U. septata is situated at the very base of the large Erysiphales cluster, far away from the pseudoidium clade (Erysiphe emend., including Microsphaera and Uncinula). Morphologically, U. septata differs from the species of Erysiphe sect. Uncinula (Uncinula) in having terminal, pluriseptate ascoma appendages, curved ascospores, and the absense of an anamorph. This species is a basal, tree-inhabiting powdery mildew with some additional ancestral characteristics, viz., uncinula-like appendages and 8-spored asci. The new genus Parauncinula with U. septata as the type species is proposed. Uncinula curvispora (U. septata var. curvispora) is tentatively maintained as a separate species, which is also assigned to Parauncinula.  相似文献   

20.
A phylogeny of the tribe Neillieae (Rosaceae), which comprises Neillia, Stephanandra, and Physocarpus, was reconstructed based on nucleotide sequences of several regions of cpDNA, the ITS and ETS regions of rDNA, and the second intron of LEAFY, to elucidate relationships among genera and species in Neillieae and to assess the historical biogeography of the tribe. Phylogenetic analyses indicated that Physocarpus and Neillia-Stephanandra were strongly supported as monophyletic and suggested that Stephanandra may have originated by hybridization between two lineages of Neillia. Dispersal-vicariance analyses suggested that the most recent common ancestor of Neillieae may have occupied eastern Asia and western North America and that Physocarpus and Neillia-Stephanandra may have been split by an intercontinental vicariance event in the early Miocene. The biogeographic analyses also suggested that species of Neillia and Stephanandra diversified in eastern Asia, whereas in Physocarpus one dispersal event from western North America to eastern Asia occurred. Two divergent types of LEAFY sequences were found in the eastern North American species, P. opulifolius, but only one type was present in each plant. The two types of sequences may represent homeologous genes that originated by hybridization between P. capitatus and P. monogynus, both western North American species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号