首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The giant extracellular hemoglobin of the earthworm Pheretima sieboldi is mainly composed of two heme-containing subunits: a monomer; chain I and a disulfide-bonded trimer of chains II, III and IV. Both subunits can be separated easily by gel filtration under alkaline conditions. The amino acid sequence of chain I has been determined. It is composed of 141 residues, has two half-cystine residues forming a intrachain disulfide bridge, and has a molecular mass of 16911 Da including a heme group. Heterogeneity was found at position 37 (His or Ser). The amino acid sequence of Pheretima chain I showed 30-50% identity with those of eight heme-containing chains of Lumbricus and Tylorrhynchus hemoglobins. The sequences of nine chains of annelid giant hemoglobins were compared separately in the functionally essential central exonic region and structurally essential side exonic regions, and a phylogenetic tree was constructed. The amino acid substitution rate for the central exon was found to be about 1.5 times slower than that for the side exons.  相似文献   

2.
Primary structure of a linker subunit of the tube worm 3000-kDa hemoglobin   总被引:1,自引:0,他引:1  
The deep-sea tube worm Lamellibrachia contains two giant extracellular hemoglobins, a 3000-kDa hemoglobin and a 440-kDa hemoglobin. The former consists of four heme-containing chains (AI-AIV) and two linker chains (AV and AVI) for the assembly of the heme-containing chains. The 440-kDa hemoglobin consists of only four heme-containing chains (Suzuki, T., Takagi, T., and Ohta, S. (1988) Biochem. J. 255, 541-545). The complete amino acid sequence of a linker subunit (chain AV) has been determined by automated Edman sequencing of the peptides derived by digestions with lysyl endopeptidase and endoproteinase Asp-N. The chain is composed of 224 amino acid residues, and the molecular mass for the protein moiety was calculated to be 24,894 Da. An Asn-X-Thr sequence which is possible as a glycosylation site was suggested at positions 108-110. A computer-assisted homology search showed that the sequence shows no notable homology with any other globins and proteins. However a careful alignment of the linker sequence with a heme-containing chain sequence suggested that there is a slight, but significant homology between the two sequences. The alignment also suggested that the linker resulted from gene duplication of a heme-containing chain with a three exon-two intron structure, and that the first exon of domain 1 and the last exon of domain 2 had been lost during evolution. In our alignment, domain 1 has the heme-binding proximal histidine, but domain 2 does not. This is the first linker subunit to be sequenced completely.  相似文献   

3.
Tylorrhynchus cyanomethemoglobin reduced with dithiothreitol was separated by chromatofocusing into four heme-containing polypeptide chains (I, IIA, IIB, and IIC) and a non-heme chain (N). The molecular weights of chains IIA-C and N were confirmed to be the same by polyacrylamide gel electrophoresis in sodium dodecyl sulfate on a 10-20% gradient gel. The molecular weight of chain IIC was determined to be 17,415 (including heme) from the amino acid sequence. Chain N constitutes less than 5% of the total protein and has the same NH2-terminal sequence, suggesting that it is derived from chain IIA during the isolation procedure. Tylorrhynchus hemoglobin consists of two types of subunit with molecular weights of 16,327 (chain I) and approximately 50,000, and the latter splits into chains IIA-C in the presence of a reducing agent. On the basis of the accurate value obtained for the molecular mass of chain IIC, it was concluded that the subunit of approximately 50,000 daltons is a trimer of heme-containing chains IIA, IIB, and IIC linked by disulfide bonds. The cysteine residue at position 5 and the arginine at position 10 are conserved in the four heme-containing chains of Tylorrhynchus hemoglobin. The complete sequence of 149 residues of Tylorrhynchus chain IIC was determined. This sequence shows high homology with Tylorrhynchus chain I (Suzuki, T., Takagi, T., and Gotoh, T. (1982) Biochem. Biophys. Acta 708, 253-258) and Lumbricus chain AIII (Garlick, R. L., and Riggs, A. F. (1982) J. Biol. Chem. 257, 9005-9015).  相似文献   

4.
The extracellular hemoglobin from the polychaete Tylorrhynchus heterochaetus is a "giant," multisubunit protein with an apparent molecular weight of 3.37 X 10(6), and consists of two types of subunits: a "monomeric" chain (chain I) and a disulfide-bonded "trimer" of chains IIA, IIB, and IIC. We reported the amino acid sequences of chains I, IIB, and IIC previously (Suzuki, T., Yasunaga, H., Furukohri, T., Nakamura, K., and Gotoh, T. (1985) J. Biol. Chem. 260, 11481-11487). The sequence of chain IIA has now been determined. Chain IIA consists of 146 amino acid residues with a heme group and has a molecular weight of 17,236. All of the constituent chains of Tylorrhynchus hemoglobin appear to be homologous with those of vertebrate hemoglobins and contain heme. Distal (E7) His, distal (E11) Val, and proximal (F8) His are all conserved in the four chains. Phylogenetically, chain IIA appears more closely related to the monomeric chain I than to either of the other "trimeric" chains IIB and IIC. This is the first giant extracellular hemoglobin to be sequenced completely.  相似文献   

5.
The giant extracellular hemoglobin from the polychaete Tylorrhynchus heterochaetus consists of two types of subunits: a "monomeric" chain (chain I) and a disulfide-bonded trimer of chains IIA, IIB, and IIC. The complete amino acid sequence of chain IIB was determined. This chain has 148 amino acid residues and a molecular weight of 17,236 including a heme group. Of the residues in chain IIB, 74 (50%) and 34 (30%) were found to be identical with those in the corresponding positions in Tylorrhynchus chains IIC and I, respectively (Suzuki, T., Furukohri, T., and Gotoh, T. (1985) J. Biol. Chem. 260, 3145-3154). Marked differences were found between the chains of Tylorrhynchus and Lumbricus in the COOH-terminal regions. Significant differences were predicted between the monomeric chain I and the "trimeric" chains (IIB and IIC) in the hydropathy profiles and alpha-helical contents.  相似文献   

6.
The giant extracellular hemoglobin (3,800 kDa) of the oligochaete Lumbricus terrestris consists of four subunits: a monomer (chain I), two subunits each of about 35 kDa (chains V and VI), and a disulfide-bonded trimer (50 kDa) of chains II, III, and IV. The complete amino acid sequence of chain I was determined: it consists of 142 amino acid residues and has a molecular weight of 16,750 including a heme group. Fifty-nine residues (42%) were found to be identical with those in the corresponding positions in Lumbricus chain II (Garlick, R. L., and Riggs, A. F. (1982) J. Biol. Chem. 257, 9005-9015); 45 (32%), 56 (40%), 44 (31%), and 45 (32%) residues were found to be in identical positions in the sequences of chains I, IIA, IIB, and IIC, respectively, of Tylorrhynchus heterochaetus hemoglobin (Suzuki, T., and Gotoh, T. (1986) J. Biol. Chem. 261, 9257-9267). When the sequences of all six annelid chains are compared, 18 invariant residues are found in the first 104 residues of the molecule; very little homology exists among the annelid chains in the carboxyl-terminal 38-residue region. Nine of the 18 invariant residues are also found in the human beta-globin chain.  相似文献   

7.
The extracellular hemoglobin of the aquatic oligochaete Tubifex tubifex consists of four subunits: a monomer of 16.5 kDa, a disulfide-bonded trimer of about 50 kDa and at least two subunits of about 30 kDa. The complete amino acid sequence of the monomeric subunit was determined: it consists of 141 amino acid residues and has a molecular mass of 16,286 Da including a heme group. 39 residues (28%) were found to be identical with those in the corresponding positions in the monomeric globin chains from Lumbricus terrestris, Pheretima sieboldi, and Tylorrhynchus heterochaetus. Tubifex and Lumbricus are most similar, with 75 amino acid identities (53%). There are eight invariant residues amongst these monomeric globins and the intracellular monomeric globin of Glycera and the human beta-globin. The monomeric globin from Tubifex aligns best with those of group A, globins which have a Cys in their second position and an invariant Lys-Val-Lys at positions 9-11 [Gotoh et al. (1987) Biochem. J. 241, 441-445]. The two cysteine residues, at positions 2 and 131, appear to be disulfide-bonded.  相似文献   

8.
The extracellular hemoglobin (Hb) of the earthworm, Lumbricus terrestris, has four major kinds of globin chains: a, b, c, and d, present in equimolar proportions, and additional non-heme, non-globin scaffolding chains called linkers that are required for the calcium-dependent assembly of the full-sized molecule. The amino acid sequences of all four of the globin chains and one of the linkers (L1) have previously been determined. The amino acid sequences via cDNA of each of the three remaining linkers, L2, L3, and L4, have been determined so that the sequences of all constituent polypeptides of the hemoglobin are now known. Each linker has a highly conserved cysteine-rich segment of approximately 40 residues that is homologous with the seven ligand-binding repeats of the human low-density lipoprotein receptor (LDLR). Analysis of linker L1 shows that the connectivity of the three disulfide bonds is exactly the same as in the LDLR ligand-binding repeats. The presence of a calcium-binding site comprising one glutamyl and three aspartyl residues in both the LDLR repeats and in the linkers supports the suggestion that calcium is required for the folding and disulfide connectivity of the linkers as in the LDLR repeats. Linker L2 is markedly heterogeneous and contains unusual glycine-rich sequences near the NH2-terminus and a polar zipper-like sequence with imperfect repeats of Asp-Asp-His at the carboxyl terminus. Similar Asp-Asp-His repeats have been found in a protein homologous to superoxide dismutase in the hemolymph of certain mussels. These repeats may function as metal-binding sites.  相似文献   

9.
The extracellular hemoglobin of Lumbricus terrestris comprises four major heme-containing chains, a, b, c, and d in equal proportions. We have determined the amino acid sequences of chains a, b, and c which form a disulfide-linked trimer. Chains a, b, and c have 151, 145, and 153 residues and calculated molecular weights of 17,525, 16,254, and 17,289, respectively. The sequence of chain b, reported previously (Garlick, R. L., and Riggs, A. F. (1982) J. Biol. Chem. 287, 9005-9015) has been completely redetermined and found to contain 12 fewer residues than originally reported. Chains a and c both contain unusual, highly polar NH2-terminal extensions of 7 residues before the A helix. These segments must be close together because they are joined by a disulfide bond. We suggest that this structure, with seven negatively charged groups, may be part of a functionally important Ca2+-binding site in the trimer. Comparison of the sequences of chains a, b, and c with those of chain d (Shishikura, F., Snow, J. W., Gotoh, T., Vinogradov, S. N., and Walz, D. A. (1987) J. Biol. Chem. 262, 3123-3131) and the four chains of the hemoglobin of Tylorrhynchus heterochaetus (Suzuki, T., and Gotoh, T. (1986) J. Biol. Chem. 261, 9257-9267) shows that the number and positions of the cysteinyl residues are all conserved. This suggests that the extracellular hemoglobins from both the Oligochaeta and Polychaeta have the same number and configuration of disulfide bonds within the molecule. Phylogenetic analysis suggests that gene duplication first generated an intracellular hemoglobin branch and an extracellular hemoglobin branch. DNA coding for a signal peptide would have been acquired by the extracellular globin gene after this event. At least two further gene duplications are required to account for the present four polypeptide chains.  相似文献   

10.
Novel S-S loops in the giant hemoglobin of Tylorrhynchus heterochaetus   总被引:2,自引:0,他引:2  
The extracellular hemoglobin of the polychaete Tylorrhynchus heterochaetus is a "giant" multisubunit protein consisting of two types of subunits: a "monomeric" chain (chain I) and a disulfide bonded "trimer" of chains IIA, IIB, and IIC. We have reported the complete amino acid sequences of all four chains (Suzuki, T., and Gotoh, T. (1986) J. Biol. Chem. 261, 9257-9267). The sites of disulfide bonds in the trimer have now been determined. In the trimer, there are two interchain disulfide bonds between chains IIA and IIC, and IIB and IIC, respectively. In addition, each of the four chains, I, IIA, IIB, IIC, has an intrachain disulfide bond. Thus, according to our "192-chain" model (Suzuki, T., and Gotoh, T. (1986) J. Mol. Biol. 190, 119-123), there are 288 disulfide bonds in Tylorrhynchus hemoglobin. Digital image processing of scanning transmission electron micrographs of negatively stained Tylorrhynchus hemoglobin indicated dimensions of 28 x 18 nm.  相似文献   

11.
The subunit assembly of the giant haemoglobin of the polychaete Tylorrhynchus heterochaetus is presented. Tylorrhynchus haemoglobin consists of two types of subunits: a "monomeric" chain I and a disulphide-bonded "trimer" of chains IIA, IIB and IIC. The molar ratio of the four constituent chains was determined by statistical comparison of the accurate amino acid composition calculated from the sequence of each chain and the observed composition measured by amino acid analysis of the whole molecule. On the basis of the molar ratio and the molecular weight of each chain, deduced from the amino acid sequence, a symmetrical model for the molecular assembly of the haemoglobin was constructed. The proposed model consists of four species of chains of 192 polypeptides and has a molecular weight of 3,275,808. The minimum structural entity is a "tetramer" consisting of the "monomeric" chain and the disulphide-bonded "trimer". Each chain contains one haem.  相似文献   

12.
The mammalian cytochrome c oxidase is a complex of 13 different subunits. We present the full amino acid sequence of the one remaining uncharacterized subunit, subunit IHQ in the nomenclature used here, VIIb in the numbering system of Kadenbach and colleagues (e.g. Kadenbach, B., and Merle, P. (1981) FEBS Lett. 135, 1-11). A partial protein sequence was obtained from the purified subunit isolated by gel filtration procedures. This information was used to synthesize an oligonucleotide probe which was then used to isolate a cDNA clone encoding the subunit. This cDNA for subunit IHQ is 480 base pairs long and encodes a polypeptide which is either 83 or 88 amino acids long, including an N-terminal leader sequence of either 27 or 32 residues. The molecular weight of the mature subunit IHQ is 6350 based on the amino acid sequence deduced from the gene. The leader sequence is typical of other mitochondrial target sequences in having several positively charged residues but no negatively charged side chains.  相似文献   

13.
Bispecific single-chain diabodies (scDb) consist of the variable heavy and light chain domains of two antibodies connected by three linkers. The structure of an scDb in the V(H)-V(L) orientation is V(H)A-linkerA-V(L)B-linkerM-V(H)B-linkerB-V(L)A, with linkers A and B routinely chosen to be 5-6 residues and linker M 15-20 residues. Here, we applied display of scDb on filamentous phage to analyse the composition of optimal linker sequences. The three linkers were randomized in length and sequence using degenerated triplets coding for only six hydrophilic or aliphatic amino acids (Thr, Ser, Asp, Asn, Gly, Ala). Antigen-binding clones were then isolated by one to two rounds of selection on the two different antigens recognized by the bispecific scDb. Using an scDb directed against carcinoembryonic antigen (CEA) and beta-galactosidase (Gal), we found that monomeric scDb had a preferred length of 15 or more amino acid residues for the middle linker M and of 3-6 residues for the linkers A and B. No obvious bias towards a preferred linker sequence was observed. Reduction of the middle linker below 13 residues led to the formation of dimeric scDb, which most likely results from interchain pairing between all the V(H) and V(L) domains. Dimeric scDb were also formed by fragments possessing a long linker M and linkers A and B of 0 or 1 residue. We assume that these dimeric scDb are formed by intrachain pairing of the central variable domains and interchain pairing of the flanking variable domains. Thus, the latter molecules represent a novel format of bispecific and tetravalent molecules. The described strategy allows for the isolation of both optimized and minimal linker sequences for the assembly of monomeric or dimeric single-chain diabodies.  相似文献   

14.
The amino acid sequence of tauropine dehydrogenase (EC 1.5.1.23) from the polychaete Arabella iricolor was determined by automated sequencing of fragments obtained by cleavage with lysyl endopeptidase, endoproteinase Glu-C, and cyanogen bromide. The purified enzyme contained two isoforms that differ only in the 41st amino acid residue (Thr or Ile). Although the sequence contained eight Cys residues, intrachain disulfide bonds were not found. Two possible N-linked glycosylation sites occur in the sequences, but the enzyme does not appear to contain bound carbohydrates. Based on these data, the two isoforms of Arabella tauropine dehydrogenase are simple proteins consisted of 396 amino acid residues with calculated molecular masses of 43,085.7 Da (Thr41 isoform) and 43,097.8 Da (Ile41 isoform).  相似文献   

15.
The deep-sea tube worm Riftia pachyptila Jones possesses a multi-hemoglobin system with three different extracellular Hbs: two dissolved in the vascular blood, V1 (ca. 3,500 kDa) and V2 (ca. 400 kDa), and one in the coelomic fluid, C1 (ca. 400 kDa). V1 Hb consists of four heme-containing, globin chains (b–e) and four linker chains (L1–L4). V2 and C1 Hbs are exclusively built from globin chains, six for V2 (a–f) and five for C1 (a–e). The complete amino acid sequence of the isolated monomeric globin chain b, common to all Riftia Hbs, has been determined by automated Edman degradation sequencing of the peptides derived by digestion with trypsin, chymotrypsin, thermolysin, and CNBr. This polypeptide chain is composed of 144 amino acid residues, providing a Mr of 16, 135.0 Da. Moreover, the primary sequence of chain b revealed 3 Cys residues at position 4, 75, and 134. Cys-4 and Cys-134 are located at positions where an intra-chain disulfide bridge is formed in all annelid, vestimentiferan, or pogonophoran chains, but Cys-75 is located at a unique position only found in three globin chains belonging to Lamellibrachia and Oligobrachia, a vestimentiferan and a pogonophoran. In both groups, Hbs can bind sulfide reversibly to fuel the chemosynthetic process of the symbiotic bacteria they harbor. Sulfide-binding experiments performed on purified Hb fractions (i.e., V1, V2, and C1 Hbs) suggest that free Cys residues on globin chains, and the numerous Cys found in linker chains, as determined previously by ESI-MS, may be the sulfide binding-sites. Blocking the free Cys by N-ethylmaleimide, we confirmed that free cysteines were involved in sulfide-binding but did not account for the whole sulfide-binding capacity of V1 Hb. Furthermore, a phylogenetic tree was constructed from 18 globin-like chains of annelid, vetimentiferan, and pogonophoran extracellular Hbs to clarify the systematic position of tubeworms. Riftia chain b clearly belongs to the “strain A” family with 30 to 80% identity with the other sequences analyzed. Its position in the tree confirmed a close relationship between vestimentiferan, pogonophoran, and annelid Hbs. Proteins 29:562–574, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
cDNA clones for two subunits (designated subunits K and L) of rat liver multicatalytic proteinase (MCP) were isolated using oligonucleotide probes synthesized according to their partial amino acid sequences. The encoded polypeptides of subunits K and L consisted of 255 and 261 amino acid residues with calculated molecular mass of 28.3 kDa and 29.5 kDa, respectively. Northern blot analysis revealed that subunits K and L were expressed in all tissues examined and their expression patterns were almost identical. The deduced amino acid sequences showed no similarities to known protein sequences other than the recently reported sequences of rat and Drosophila MCP subunits. Sequence comparison of MCP subunits of rat and Drosophila revealed that the N-terminal two-thirds of the sequence (especially the N-terminal approximately 20 residues) is conserved, but the C-terminal third of the sequence shows no similarity, suggesting functional and structural roles for both regions. Implications for the structural and functional aspects of MCP subunits are discussed based on the sequence similarity.  相似文献   

17.
Branched-chain alpha-keto acid dehydrogenase complex is a macromolecule comprising three catalytic components: a dehydrogenase (E1) with alpha(2)beta(2) structure, an acyltransferase (E2) and a dihydrolipoamide dehydrogenase (E3). In the mammalian complex, the E2 component with 24 identical subunits forms a structural core, to which multiple copies of E1 and E3 bind noncovalently. We isolated cDNA clones encoding E1 alpha, E1 beta and E2 subunits from a chicken-liver cDNA library and performed nucleotide sequencing. Amino-acid sequences deduced from the nucleotide sequences revealed that chicken E1 alpha and E1 beta chains had substantially homologous sequences with the corresponding mammalian polypeptides, except for the N-terminus. Chicken E2 conserved three functional domains, a lipoyl-bearing domain, an E1/E3 binding domain and an inner-core domain, but contrasted strongly with mammalian E2 in respect of containing 11 additional residues in two interdomain linkers: nine sequential residues in one linker and two residues in the other. Replacement of many residues was also observed in the chicken linkers. When E2 activity for catalyzing the overall reaction was measured by activity reconstitution in combination with E1 and E3, chicken E2 was markedly less effective than mammalian E2. The capability of chicken E2 for binding E1 was also reduced when determined by the binding assay using sucrose density gradient centrifugation. Chicken E1 was functionally as well as structurally indistinguishable from mammalian E1. Thus the reduced catalytic activity of chicken E2 must arise from its reduced E1-binding capacity, which results from the characteristic structure of interdomain linkers in chicken E2.  相似文献   

18.
The complete amino acid sequence of the alpha chain of the main hemoglobin of the Antarctic fish Notothenia coriiceps neglecta (family Nototheniidae) has been determined. It consists of 142 residues; an acetylated seryl residue is at the amino terminal. The molecular mass is 15,519 Da. In comparison with alpha-chain sequences of non-Antarctic poikilothermic fish hemoglobins, the homology appears to be significantly lower than that existing among the latter species. A higher homology has been found with the alpha-chain sequence of the non-poikilothermic bluefin tuna.  相似文献   

19.
The carboxyl-terminal sequences of the two polypeptide chains of the Saccharomyces cerevisiae K1 killer toxin were determined by protein sequencing and amino acid analysis of peptide fragments generated from the mature, secreted toxin. The COOH-terminal amino acid of the beta chain is histidine 316, the final residue encoded by the precursor gene. The COOH terminus of the alpha chain is at alanine 147 of the preprotoxin. Amino acid composition data for the purified toxin are consistent with that predicted from the gene sequence of the preprotoxin where the alpha and beta subunits consist of amino acid residues 45-147 and 234-316, respectively. The molecular weight of the mature alpha beta dimer is about 20,658. The COOH-terminal sequence determination completes the location of the toxin subunits in the precursor, and its configuration may be represented as prepropeptide-Pro-Arg-alpha-Arg-Arg-gamma-Lys-Arg-beta, where gamma represents the interstitial glycosylated peptide. The COOH terminal side of the paired basic residues (Arg-148 Arg-149 and Lys-232 Arg-233 of preprotoxin) are endoproteolytic processing sites for the product of the KEX2 gene (Julius, D., Brake, A., Blair, L., Kunisawa, R., and Thorner, J. (1984) Cell 37, 1075-1089), and thus maturation of the alpha subunit of killer toxin apparently requires a carboxypeptidase B-like activity. A possible candidate for this activity is the product of the KEX1 gene (Dmochowska, A., Dignard, D., Henning, D., Thomas, D.Y., and Bussey, H. (1987) Cell, in press).  相似文献   

20.
The rabbit Acrosome Stabilizing Factor (ASF) is a glycoprotein synthesized in the corpus epididymis that demonstrates the ability to reversibly decapacitate sperm. Separation of the molecule into its individual subunits (92,000 Da and 38,000 Da) was accomplished via electroelution from polyacrylamide gels or via gel filtration on a Sephadex G-200 column in the presence of 0.1% sodium dodecyl sulfate. Column separation of the subunits revealed an entity of low molecular mass (500 daltons) associated with the ASF molecule. Amino acid compositional analysis of the subunits revealed the lack of cysteine and high glycine in the small subunit (38,000 Da) and high proline and glycine in the large subunit (92,000 Da). Lysine and aspartic acid were identified as the N-terminal amino acids for the large and small subunits, respectively. Identification of a 20 amino acid N-terminal sequence was accomplished for both of the subunits. Carbohydrate compositional analysis demonstrated that the small subunit contained N-asparagine-linked high mannose sugar chains while the large subunit contained N-asparagine-linked complex sugar chains. Endoglycosidase-H and N-Glycanase treatment of ASF indicated that the small subunit appears to contain four high mannose chains and the large subunit contains three complex chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号