首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Translation of the stationary phase sigma factor RpoS is stimulated by at least two small RNAs, DsrA and RprA. DsrA disrupts an inhibitory secondary structure in the rpoS leader mRNA by pairing with the upstream RNA. Mutations in rprA and compensating mutations in the rpoS leader demonstrate that RprA interacts with the same region of the RpoS leader as DsrA. This is the first example of two different small RNAs regulating a common target. Regulation of these RNAs differs. DsrA synthesis is increased at low temperature. We find that RprA synthesis is regulated by the RcsC/RcsB phosphorelay system, previously found to regulate capsule synthesis and promoters of ftsZ and osmC. An rcsB null mutation abolishes the basal level, whereas mutations in rcsC that activate capsule synthesis also activate expression of the rprA promoter. An essential site with similarity to other RcsB-regulated promoters was defined in the rprA promoter. Activation of the RcsC/RcsB system leads to increased RpoS synthesis, in an RprA-dependent fashion. This work suggests a new signal for RpoS translation and extends the global regulation effected by the RcsC/RcsB system to coregulation of RpoS with capsule and FtsZ.  相似文献   

7.
Synthesis of the small regulatory RNA DsrA is under temperature control. The minimal dsrA promoter of 36 bp contains sufficient information to ensure such regulation. In vivo, we have analyzed the critical elements responsible for the temperature control of dsrA by using a collection of chimeric promoters combining various elements of the dsrA promoter and the lacUV5 promoter, which does not respond to temperature. Our results favor an RNA polymerase-DNA interaction model instead of a trans-acting factor for temperature regulation. While all of the elements of the dsrA promoter contribute to temperature-sensitive expression, the sequence of the -10 box and the spacer region are the essential elements for the thermal response of the dsrA promoter. The proper context for these promoter elements, including at least one of the flanking elements, the -35 region or the start site region, is also required. Point mutations demonstrate that the sequence of the -10 box imposes constraints on the length and the sequence of the spacer and/or its AT richness, even at low temperature. These results show a complex interdependence of different regions in the promoter for temperature regulation.  相似文献   

8.
Cell free extracts were prepared from E. coli CRT266 9 min after infection with T3 phages. RNA synthesis in these extracts is almost entirely due to T3 RNA polymerase. The inactivation of T3 RNA polymerase in these extracts proceeds rapidly at 42 degrees C. 90% of the activity is lost within 10 min at this temperature. Under conditions where the formation of a stable initiation complex with T3 DNA is possible, i.e., in the presence of GPT, APT, and UTP the T3 RNA polymerase becomes protected against heat inactivation losing only )0% of its activity during an exposure to 42 degrees C for 10 min. Studies on the time course of RNA synthesis have shown that reinitiation is still possible at 37 degrees C and 42 degrees C. At 44 degrees C, however, RNA synthesis stops abruptly after 3 min indicating that reinitiation does no longer take place. The elongation of already initiated T3 RNA chains is rather resistant to heat. At 44 degrees C the same elongation rates are observed as at 37 degrees C and 42 degrees C, respectively.  相似文献   

9.
Translational regulation of the stationary phase sigma factor RpoS is mediated by the formation of a double-stranded RNA stem-loop structure in the upstream region of the rpoS messenger RNA, occluding the translation initiation site. The interaction of the rpoS mRNA with a small RNA, DsrA, disrupts the double-strand pairing and allows high levels of translation initiation. We screened a multicopy library of Escherichia coli DNA fragments for novel activators of RpoS translation when DsrA is absent. Clones carrying rprA (RpoS regulator RNA) increased the translation of RpoS. The rprA gene encodes a 106 nucleotide regulatory RNA. As with DsrA, RprA is predicted to form three stem-loops and is highly conserved in Salmonella and Klebsiella species. Thus, at least two small RNAs, DsrA and RprA, participate in the positive regulation of RpoS translation. Unlike DsrA, RprA does not have an extensive region of complementarity to the RpoS leader, leaving its mechanism of action unclear. RprA is non-essential. Mutations in the gene interfere with the induction of RpoS after osmotic shock when DsrA is absent, demonstrating a physiological role for RprA. The existence of two very different small RNA regulators of RpoS translation suggests that such additional regulatory RNAs are likely to exist, both for regulation of RpoS and for regulation of other important cellular components.  相似文献   

10.
11.
12.
13.
The synthesis of a major heat shock protein (HSP 70) was measured in HeLa cells incubated at 42.5 degrees C and then transferred to 37 degrees C or 30 degrees C. After 90 min, synthesis of HSP 70 decreased by 54 and 85%, respectively, whereas HSP 70 mRNA was reduced at most by 20%. Therefore, the reduced synthesis of HSP 70 could not be accounted for by mRNA turnover. HSP 70 was associated with large polyribosomes (6-10 ribosomes) in cells kept at 42.5 degrees C, but with medium or small polyribosomes in cells transferred to 37 degrees C or 30 degrees C (5-6 or 2-3 ribosomes, respectively). Addition of puromycin to these cells resulted in the release of all ribosomes from HSP 70 mRNA, indicating that they were translationally active. The regulation of HSP 70 synthesis was investigated in cell-free systems prepared from heat-shocked or control cells and incubated at 30 degrees C and 42 degrees C. After 5 min at 42 degrees C, the cell-free system from heat-shocked cells synthesized protein at 3 times the rate of the control cell-free system. This difference was in large part due to synthesis of HSP 70. Addition of HSP mRNA to the control cell-free system stimulated protein synthesis at 42 degrees C, but not at 30 degrees C. These findings suggest that translation of HSP 70 mRNA is specifically promoted at high temperature and repressed during recovery from heat shock by regulatory mechanisms active at the level of initiation.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号