首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The varicella-zoster virus (VZV) open reading frame 10 (ORF10) protein is the homolog of the herpes simplex virus type 1 (HSV-1) protein VP16. These are two virion tegument proteins that have extensive amino acid sequence identity in their amino-terminal and middle domains. ORF10, however, lacks the acidic carboxy terminus which is critical for transactivation by VP16. Earlier studies showed that VZV ORF10 does not form a tertiary complex with the TAATGARAT regulatory element (where R is a purine) with which HSV-1 VP16 interacts, suggesting that ORF10 may not have transactivating ability. Using transient-expression assays, we show that VZV ORF10 is able to transactivate VZV immediate-early (IE) gene (ORF62) and HSV-1 IE gene (ICP4 and ICP0) promoters. Furthermore, cell lines stably expressing ORF10 complement the HSV-1 mutant in1814, which lacks the transactivating function of VP16, and enhance the de novo synthesis of infectious virus following transfection of HSV-1 virion DNA. These results indicate that ORF10, like its HSV-1 homolog VP16, is a transactivating protein despite the absence of sequences similar to the VP16 carboxy-terminal domain. The transactivating function of the VZV ORF10 tegument protein may be critical for efficient initiation of viral infection.  相似文献   

2.
3.
4.
5.
The equine herpesvirus 1 (EHV-1) alpha-trans-inducing factor homologue (ETIF; VP16-E) is a 60-kDa virion component encoded by gene 12 (ORF12) that transactivates the immediate-early gene promoter. Here we report on the function of EHV-1 ETIF in the context of viral infection. An ETIF-null mutant from EHV-1 strain RacL11 (vL11deltaETIF) was constructed and analyzed. After transfection of vL11deltaETIF DNA into RK13 cells, no infectious virus could be reconstituted, and only single infected cells or small foci containing up to eight infected cells were detected. In contrast, after transfection of vL11deltaETIF DNA into a complementing cell line, infectious virus could be recovered, indicating the requirement of ETIF for productive virus infection. The growth defect of vL11deltaETIF could largely be restored by propagation on the complementing cell line, and growth on the complementing cell line resulted in incorporation of ETIF in mature and secreted virions. Low- and high-multiplicity infections of RK13 cells with phenotypically complemented vL11deltaETIF virus resulted in titers of virus progeny similar to those used for infection, suggesting that input ETIF from infection was recycled. Ultrastructural studies of vL11deltaETIF-infected cells demonstrated a marked defect in secondary envelopment at cytoplasmic membranes, resulting in very few enveloped virions in transport vesicles or extracellular space. Taken together, our results demonstrate that ETIF has an essential function in the replication cycle of EHV-1, and its main role appears to be in secondary envelopment.  相似文献   

6.
The incorporation of tegument proteins into the herpes simplex virus 1 (HSV-1) virion during virion assembly is thought to be a complex, multistage process occurring via numerous interactions between the tegument and the capsid, within the tegument, and between the tegument and the envelope. Here, we set out to examine if the direct interaction between two essential tegument proteins VP1/2 and VP16 is required for connecting the inner tegument with the outer tegument. By using glutathione S-transferase (GST) pulldowns, we identified an essential role of lysine 343 in VP16, mutation of which to a neutral amino acid abrogated the interaction between VP1/2 and VP16. When the K343A substitution was inserted into the gene encoding VP16 (UL48) of the viral genome, HSV-1 replicated successfully although its growth was delayed, and final titers were reduced compared to titers of wild-type virus. Surprisingly, the mutated VP16 was incorporated into virions at levels similar to those of wild-type VP16. However, the analysis of VP16 on cytoplasmic capsids by fluorescence microscopy showed that VP16 associated with cytoplasmic capsids less efficiently when the VP16-VP1/2 interaction was inhibited. This implies that the direct interaction between VP1/2 and VP16 is important for the efficiency/timing of viral assembly but is not essential for HSV-1 replication in cell culture. These data also support the notion that the incorporation of tegument proteins into the herpesviruses is a very complex process with significant redundancy.  相似文献   

7.
A gene in equine herpesvirus 1 (EHV-1, equine abortion virus) homologous to the glycoprotein H gene of herpes simplex virus (HSV) was identified and characterised by its nucleotide and derived amino acid sequence. The EHV-1 gH gene is located at 0.47-0.49 map units and contains an open reading frame capable of specifying a polypeptide of 848 amino acids, including N- and C-terminal hydrophobic domains consistent with signal and membrane anchor regions respectively, and 11 potential sites for N-glycosylation. Alignment of the amino acid sequence with those published for HSV gH, varicella zoster virus gpIII, Epstein Barr virus gp85 and human cytomegalovirus p86 shows similarity of the EHV gene with the 2 other alpha-herpesviruses over most of the polypeptide, but only the C-terminal half could be aligned for all 5 viruses. The identical positioning of 6 cysteine residues and a number of highly conserved amino acid motifs supports a common evolutionary origin of this gene and is consistent with its role as an essential glycoprotein of the herpesvirus family. An origin of replication is predicted to occur at approximately 300 nucleotides downstream of the EHV-1 gH coding region, on the basis of similarity to other herpesvirus origins.  相似文献   

8.
9.
Experiments to analyze the function of the equine herpesvirus 1 (EHV-1) glycoprotein gM homolog were conducted. To this end, an Rk13 cell line (TCgM) that stably expressed EHV-1 gM was constructed. Proteins with apparent M(r)s of 46,000 to 48,000 and 50,000 to 55,000 were detected in TCgM cells with specific anti-gM antibodies, and the gM protein pattern was indistinguishable from that in cells infected with EHV-1 strain RacL11. A viral mutant (L11deltagM) bearing an Escherichia coli lacZ gene inserted into the EHV-1 strain RacL11 gM gene (open reading frame 52) was purified, and cells infected with L11deltagM did not contain detectable gM. L11deltagM exhibited approximately 100-fold lower titers and a more than 2-fold reduction in plaque size relative to wild-type EHV-1 when grown and titrated on noncomplementing cells. Viral titers were reduced only 10-fold when L11deltagM was grown on the complementing cell line TCgM and titrated on noncomplementing cells. L11deltagM also exhibited slower penetration kinetics compared with those of the parental EHV-1 RacL11. It is concluded that EHV-1 gM plays important roles in the penetration of virus into the target cell and in spread of EHV-1 from cell to cell.  相似文献   

10.
J I Cohen  K Seidel 《Journal of virology》1994,68(12):7850-7858
Varicella-zoster virus (VZV) open reading frame 10 (ORF10) protein in the homolog of the herpes simplex virus type 1 (HSV-1) protein VP16. VZV ORF10 transactivates the VZV IE62 gene and is a tegument protein present in the virion. HSV-1 VP16, a potent transactivator of HSV-1 immediate-early genes and tegument protein, is essential for HSV-1 replication in vitro. To determine whether VZV ORF10 is required for viral replication in vitro, we constructed two VZV mutants which were unable to express ORF10. One mutant had a stop codon after the 61st codon of the ORF10 gene, and the other mutant was deleted for all but the last five codons of the gene. Both VZV mutants grew in cell culture to titers similar to that of the parental virus. To determine whether HSV-1 VP16 alters the growth of VZV, we constructed a VZV mutant in which VP16 was inserted in place of ORF10. Using immune electron microscopy, we found that HSV-1 VP16 was present in the tegument of the recombinant VZV virions. The VZV VP16 substitution mutant produced smaller plaques and grew to a lower titer than parental virus. Thus, VZV ORF10 is not required for growth of the virus in vitro, and substitution of HSV-1 VP16 for VZV ORF10 impairs the growth of VZV.  相似文献   

11.
12.
13.
We describe the nucleotide sequence of a herpes simplex virus type 1 DNA fragment containing the intron of the immediate-early mRNA-5 (IE mRNA-5) gene. The location of the intron within this fragment was determined by a Berk & Sharp nuclease S1 protection analysis, and by cloning and sequencing cDNA containing sequences overlapping t he IE mRNA-5 splice point. We found that the 149 base pair (bp) intron contained four copies of an identical 23 bp GC rich tandem repeat followed by a further reiteration consisting of the first 15 bp only.  相似文献   

14.
The bovine herpesvirus 1 (BHV-1) UL49 gene encodes a viral tegument protein termed VP22. UL49 homologs are conserved among alphaherpesviruses. Interestingly, the BHV-1 VP22 deletion mutant virus is asymptomatic and avirulent in infected cattle but produces only a slight reduction in titer in vitro. Attenuation of the BHV-1 VP22 deletion mutant virus in vivo suggests that VP22 plays a functional role in BHV-1 replication. In herpes simplex virus type 1, the VP22 homolog was previously shown to interact with another tegument protein,VP16, the alpha-transinducing factor in vitro. In this report, we show that (i) the nuclear targeting of VP22 is independent of other viral factors, (ii) the carboxyl terminus of VP22 is required for its nuclear localization, (iii) VP22 associates with histones and nucleosomes, (iv) an antihistone monoclonal antibody cross-reacts with VP22, and (v) acetylation of histone H4 is decreased in VP22-expressing cells as well as virus-infected cells. Our data suggest that VP22 may have a modulatory function during BHV-1 infection.  相似文献   

15.
16.
The promoter-regulatory regions from the herpes simplex virus type 1 (HSV-1) gene for the immediate-early, 175,000-molecular-weight (175K) protein and the HSV-2 delayed-early gene for a 38K protein were linked to the readily assayable bacterial gene for the enzyme chloramphenicol acetyltransferase (CAT). Unexpectedly, in measurements of the constitutive expression of the recombinant genes 40 to 50 h after transfection of Vero cells, enzyme levels expressed from the delayed-early 38K-promoter-CAT construct (p38KCAT) were at least as high as those from the immediate-early 175K-promoter-CAT construct (p175KCAT). In contrast, enzyme levels expressed after transfection of a similar recombinant gene containing a second delayed-early promoter region, that of the HSV-1 thymidine kinase gene, were ca. 20-fold lower. The amounts of enzyme expressed from both p38KCAT and p175KCAT could be increased by up to 20- to 40-fold after infection of the transfected cells with HSV. In comparison, virus infection had no significant effect on enzyme levels expressed from recombinant CAT genes containing the simian virus 40 early promoter region, with or without the 72-base-pair enhancer element. Experiments with the temperature-sensitive mutants HSV-1 tsB7 and HSV-1 tsK indicate that induction of expression from p175KCAT was mediated by components of the infecting virus particle, whereas that from p38KCAT required de novo expression of virus immediate-early proteins. In addition, we show that functions required to induce expression from both p175KCAT and p38KCAT could also be provided by infection with pseudorabies virus and cytomegalovirus.  相似文献   

17.
18.
19.
20.
The v-Abl protein tyrosine kinase encoded by Abelson murine leukemia virus (Ab-MLV) induces transformation of pre-B cells in vivo and in vitro and can transform immortalized fibroblast cell lines in vitro. Although the kinase activity of the protein is required for these events, most previously studied mutants encoding truncated v-Abl proteins that lack the extreme carboxyl terminus retain high transforming capacity in NIH 3T3 cells but transform lymphocytes poorly. To understand the mechanisms responsible for poor lymphoid transformation, mutants expressing a v-Abl protein lacking portions of the COOH terminus were compared for their ability to transform pre-B cells. Although all mutants lacking sequences within the COOH terminus were compromised for lymphoid transformation, loss of amino acids in the central region of the COOH terminus, including those implicated in JAK interaction and DNA binding, decreased transformation twofold or less. In contrast, loss of the extreme COOH terminus rendered the protein unstable and led to rapid proteosome-mediated degradation, a feature that was more prominent when the protein was expressed in Ab-MLV-transformed lymphoid cells. These data indicate that the central portion of the COOH terminus is not essential for lymphoid transformation and reveal that one important function of the COOH terminus is to stabilize the v-Abl protein in lymphoid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号