首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the thermal behavior of membranes composed of mixtures of natural cerebrosides (from porcine brain) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with and without cholesterol, using differential scanning calorimetry, Fourier transform infrared spectroscopy, and confocal/multiphoton fluorescence microscopy. The POPC/cerebroside mixture display solid ordered/liquid disordered phase coexistence in a broad range of compositions and temperatures in agreement with previous results reported for POPC/(bovine brain)cerebrosides. The observed phase coexistence scenario consists of elongated, micrometer-sized cerebroside-rich solid ordered domains that span the bilayer, embedded in a POPC-rich liquid disordered phase. The data obtained from differential scanning calorimetry and Fourier transform infrared spectroscopy was in line with that obtained in the microscopy experiments for the binary mixture, except at very high cerebroside molar fractions (0.8-0.9) were some differences are observed. Cholesterol incorporation exerts strong changes on the lateral organization of POPC/porcine brain cerebroside membranes. At intermediate cholesterol concentrations (10-25 mol %) the solid ordered/liquid disordered phase coexistence scenario gradually transform to a solid ordered/liquid ordered one. Above 25 mol % of cholesterol two distinct regions with liquid ordered phase character are visualized in the membrane until a single liquid ordered phase forms at 40 mol % cholesterol. The observed cholesterol effect largely differs from that reported for POPC/porcine brain ceramide, reflecting the impact of the sphingolipids polar headgroup on the membrane lateral organization.  相似文献   

2.
Ganglioside GM1 and mixed brain gangliosides were mixed with 1-stearoyl-2-oleoyl lecithin (SOPC) and examined by differential scanning calorimetry as a function of ganglioside content and temperature. Low mole fractions of ganglioside GM1 and of mixed brain gangliosides are shown to be miscible with SOPC in the gel phase up to X = 0.3, with the possible exception of a small region of immiscibility for the mixed brain gangliosides system centered around X = 0.05. Above X = 0.3, the low-temperature phases demix into a (gel) phase of composition X = 0.3 and a (micellar) phase of composition X = 1.0. Above the endothermic phase transition temperature, no phase boundaries are discerned. It is pointed out that phase structures need to be determined in each domain delineated in the phase diagrams, and that cylindrical phases may exist at higher temperatures and intermediate compositions. The effects of addition of wheat germ agglutinin, which binds to ganglioside GM1, on a ganglioside GM1-SOPC mixture (X = 0.5), are described and interpreted in terms of partial demixing of ganglioside and lecithin. Behavior of the ganglioside-SOPC system is discussed with respect to the kinetics of cholera toxin action in lymphocytes, as well as to other physiological roles of gangliosides in membranes.  相似文献   

3.
The brain produces an image of the world outside on its own inner world and should by rights record temporal relationships whose sequence reproduces the sequence of events observed. As, however, visual, auditory and somatic sensory impulses reach the brain after latent periods of differing duration, marked phase differences occur. One way of producing linear phase characteristics with latent periods of 100-500 ms is by means of phase shift and time reversal, referred to in more detail later. With this model it can be shown that Libet's hypothesis of "antedating" (Libet et al., 1979) is consistent in itself, that is, that it contains no inner contradictions (Honderich, 1984). Although there is no sure proof that these mechanisms actually exist, there is in fact no other way of achieving linear phase than by phase shift and time reversal. It must therefore to be assumed that they are present in the brain.  相似文献   

4.
The relationship between the 24 h rhythm in 5-hydroxy-tryptamine (5HT) levels in rat brain, the availability of precursors of 5HT and the concentration of its major metabolite, 5-hydroxyindole acetic acid (5HIAA) has been investigated. Serum total and "free" tryptophan (TRY) levels and brain TRY levels all show a 24 h rhythm with highest concentrations in the middle of the dark phase i.e. 12 h displaced from that of the 5HT rhythm. No 24 h variation in either tryptophan-5-hydroxylase or monoamine oxidase activity was detected, nor did brain 5-hydroxytryptophan (5HTP) levels vary with clock hour. Changes in 5HIAA concentration paralleled those of 5Ht. The uptake of 14C-5HTP, 14C-TRY and 14C-5HT into homogenates of the septal region of rat brain did not display a circadian rhythm, although there was evidence that uptake of 14C-TRY in an isolated synaptosomal preparation from the same region was greater during the light phase, indicating the possibility that uptake of the precursor into the nerve ending may be, in part, responsible for the 24 h rhythm in brain 5HT. It is concluded that brain 5HT levels are independent of the serum or brain TRY concentrations measured. Since changes in 5HT with clock hour are paralleled by changes in 5HIAA, it also seems unlikely that the increase in brain 5HT during the light phase is caused by a decreased release of 5HT from nerve endings.  相似文献   

5.
The structure and thermotropic phase behaviour of aqueous dispersions of egg phosphatidylcholine, egg sphingomyelin, bovine brain sphingomyelin and binary mixtures of phosphatidylcholine and sphingomyelins have been examined by synchrotron X-ray diffraction methods. Small-angle lamellar Bragg peaks and wide-angle X-ray scattering bands have been subjected to peak fitting procedures to identify coexisting gel and fluid as well as fluid-fluid bilayer structures. Molecular species of egg phosphatidylcholine exhibit fluid-fluid immiscibility throughout heating scans from 20 ° to 50 °C. Egg and brain sphingomyelins exhibit gel-fluid bilayer coexistence at temperatures below the main phase transition temperature and fluid-fluid phase coexistence at higher temperatures. Binary mixtures of equimolar proportions of egg phosphatidylcholine and either of the sphingomyelins show gel-fluid phase coexistence at temperatures below the gel phase transition temperature of the respective sphingomyelin. Binary mixtures containing egg sphingomyelin show fluid-fluid immiscibility at all temperatures of the heating scans whereas the fluid phase of mixtures comprising brain sphingomyelin are apparently miscible at all temperatures. An analysis of binary mixtures containing egg sphingomyelin and egg phosphatidylcholine in molar ratios 50:50, 67:33 and 83:17 at 50 °C to identify the composition of the lamellar phases indicated that the two phospholipids are immiscible in bilayers in the fluid phase. The results are discussed in terms of the role of intermolecular hydrogen bonds and hydrocarbon chain composition of sphingomyelins in maintaining coupling across fluid bilayers.  相似文献   

6.
The balance of global integration and functional specialization is a critical feature of efficient brain networks, but the relationship of global topology, local node dynamics and information flow across networks has yet to be identified. One critical step in elucidating this relationship is the identification of governing principles underlying the directionality of interactions between nodes. Here, we demonstrate such principles through analytical solutions based on the phase lead/lag relationships of general oscillator models in networks. We confirm analytical results with computational simulations using general model networks and anatomical brain networks, as well as high-density electroencephalography collected from humans in the conscious and anesthetized states. Analytical, computational, and empirical results demonstrate that network nodes with more connections (i.e., higher degrees) have larger amplitudes and are directional targets (phase lag) rather than sources (phase lead). The relationship of node degree and directionality therefore appears to be a fundamental property of networks, with direct applicability to brain function. These results provide a foundation for a principled understanding of information transfer across networks and also demonstrate that changes in directionality patterns across states of human consciousness are driven by alterations of brain network topology.  相似文献   

7.
1. A method is presented for the determination of the di- and tri-phosphoinositide in animal tissues. 2. The polyphosphoinositides are quantitatively extracted into chloroform-methanol-hydrochloric acid solvent after a preliminary chloroform-methanol (1:1, v/v) extraction to remove the bulk of the other phospholipids. On washing this extract with n-hydrochloric acid the polyphosphoinositides pass completely into the lower chloroform-rich phase. Their concentrations in the lower phase are determined by chromatography on formaldehyde-treated paper or chromatography and ionophoresis of the acid hydrolysis products. 3. When guinea-pig brain is extracted by the method of Folch (1942), considerable hydrolysis of the triphosphoinositide and accumulation of diphosphoinositide occurs during the initial acetone extraction. 4. The tri- and di-phosphoinositide contents of rat and guinea-pig brain decline substantially within a few minutes after death. 5. The concentrations of tri- and di-phosphoinositide in rat brain are not changed by insulin-hypoglycaemia or electrical stimulation. 6. Examination of frozen rat tissues showed that the brain contained the highest concentration of polyphosphoinositides. Much smaller amounts are present in kidney, and only trace quantities in liver and lung. None could be detected in spleen, heart and skeletal muscle.  相似文献   

8.
谢琳  房萍  林金飞  潘洪超  张帆  申延琴 《遗传》2013,35(4):495-501
成年斑马鱼(Danio rerio)具有很强的脊髓损伤后自主修复的能力, 但目前其机制不明。为了研究斑马鱼中脑组织对脊髓再生的影响, 文章应用成年斑马鱼脊髓损伤模型, 采用实时定量PCR方法和原位杂交技术, 检测了斑马鱼脑中胶质细胞源性神经营养因子(gdnf)和一氧化氮合酶(nos)基因在脊髓损伤后4 h、12 h、6 d、11 d的表达情况, 展示了这两种基因在斑马鱼脑内不同核团的动态表达变化。结果显示, 成年斑马鱼脊髓损伤后, 神经营养因子gdnf基因在损伤急性期(4 h、12 h)和神经修复期(6 d、11 d)于斑马鱼脑内呈现显著性升高(P<0.05),而一氧化氮合酶基因nos的表达于损伤急性期显著性升高 (P<0.05), 随后下降, 并在修复期 (11 d)显著降低(P<0.05)。这表明, 脊髓损伤后, 高表达gdnf基因同时低表达nos基因的脑环境给脊髓损伤提供了良好的神经再生微环境, 从而可能促进轴突的再生长及运动能力的恢复。  相似文献   

9.
Developing methods characterizing the dynamics of synchronization in large ensemble of electromagnetic brain signals has become an important issue. In this article, we review a recently introduced method for analyzing multivariate phase synchronization in brain signals. The approach is based on the equivalence between phase locking and frequency locking in narrow band signals, which allows tracking multivariate phase synchronization in the time-frequency domain as periods of common frequency among multiple channels. The method is illustrated with simulations of multivariate phase dynamics in coupled oscillators and real multichannel electro- and magnetoencephalographic data recorded prior and during epileptic seizures. The reviewed results support the relevance of this method in the context of brain synchronization, in particular to track transient collective dynamics fluctuating in time, frequency and space.  相似文献   

10.
Diapause is a developmental arrest that allows an organism to survive unfavorable environmental conditions and is induced by environmental signals at a certain sensitive developmental stage. In Helicoverpa armigera, the larval brain receives the environmental signals for diapause induction and then regulates diapause entry at the pupal stage. Here, combined proteomic and metabolomic differential display analysis was performed on the H. armigera larval brain. Using two-dimensional electrophoresis, it was found that 22 proteins were increased and 27 proteins were decreased in the diapause-destined larval brain, 37 of which were successfully identified by MALDI-TOF/TOF mass spectrometry. RT-PCR and Western blot analyses showed that the expression levels of the differentially expressed proteins were consistent with the 2-DE results. Furthermore, a total of 49 metabolites were identified in the larval brain by GC-MS analysis, including 4 metabolites at high concentrations and 14 metabolites at low concentrations. The results gave us a clue to understand the governing molecular events of the prediapause phase. Those differences that exist in the induction phase of diapause-destined individuals are probably relevant to a special memory mechanism for photoperiodic information storage, and those differences that exist in the preparation phase are likely to regulate accumulation of specific energy reserves in diapause-destined individuals.  相似文献   

11.
Synchronised activity, differing in phase in different populations of neurons, plays an important role in existing theories on the function of brain oscillations (e.g., temporal correlation hypothesis). A prerequisite for this synchronisation is that stimuli are capable of affecting (resetting) the phase of brain oscillations. Such a change in the phase of brain waves is also assumed to underlie the Berger effect: when observers open their eyes, the amplitude of EEG oscillations in the alpha band (8–13 Hz) decreases significantly. This finding is usually thought to involve a desynchronisation of activity in different neurons. For functional interpretations of brain oscillations in the visual system, it therefore seems to be crucial to find out whether or not the phase of brain oscillations can be affected by visual stimuli. To answer this question, we investigated whether alpha waves are generated by a linear or a nonlinear mechanism. If the mechanism is linear – in contrast to nonlinear ones – phases cannot be reset by a stimulus. It is shown that alpha-wave activity in the EEG comprises both linear and nonlinear components. The generation of alpha waves basically is a linear process and flash-evoked potentials are superimposed on ongoing alpha waves without resetting their phase. One nonlinear component is due to light adaptation, which contributes to the Berger effect. The results call into question theories about brain-wave function based on temporal correlation or event-related desynchronisation.Electronic Supplementary Material: Supplementary material is available for this article at  相似文献   

12.
In the presence of either egg or bovine brain sphingomyelin, the spectral properties of glucagon undergo changes which are similar to those which occur in the presence of synthetic phosphatidylcholines. The fluorescence emission spectra are blue shifted about 10 nm in the presence of lipid and the peptide acquires an increased helical content, determined by circular dichroism. As with phosphatidylcholines, the changes in spectral properties do not occur above the phase transition temperature of the glucagon-lipid mixture. Freeze-fracture electron microscopy indicates that glucagon forms an ellipsoidal complex with bovine brain sphingomyelin, similar to the glucagon-dimyristoylphosphatidylcholine complex. However, the sphingomyelin complexes break down to vesicular structures both above and below the region of the phase transition. These results indicate that the dissociation of glucagon from the lipid at higher temperatures results from changes in the phase of the lipid rather than from a thermal denaturation of glucagon. The effect of glucagon on the phase transition behaviour of palmitoyl sphingosine phosphorylcholine was measured by differential scanning calorimetry. The major effect of glucagon on both this lipid and on dimyristoylphosphatidylcholine is to broaden the phase transition and to shift it to higher temperatures. Similar results are obtained for the effects of glucagon on an equimolar mixture of dimyristoylphosphatidylcholine and palmitoyl sphingosine phosphorylcholine. Glucagon is able to solubilize mixtures of bovine brain sphingomyelin with either dimyristoylphosphatidylcholine or egg lecithin. The lipid composition of the solubilized material is similar to that of the starting lipid film. These results together with those from the differential scanning calorimetry on the synthetic mixtures indicate that glucagon can bind to sphingomyelin-phosphatidylcholine mixtures and that it does not induce extensive lateral phase separation between the components. The maximal stability of the glucagon-lipid complex at the phase transition of the lipids indicates that the glucagon-lipid interaction is highly dependent on the structural organization of the lipid.  相似文献   

13.
Retinoic acid (RA) is essential for cellular growth and differentiation in developing and adult animals. The central nervous system (CNS) suffers developmental defects if embryonic levels of RA are too high or too low. The production and function of RA in adult brain are unclear. We report that RA is present throughout the brain and spinal cord of adult, vitamin A-deficient (VAD) rats treated with a physiological amount of all-trans-retinol. The hippocampus/cortex contained the highest proportion of RA in the brain (27.2 +/- 2.9% of the organic phase radioactivity, and 23.5 +/- 0.8% of the organic phase radioactivity extracted from spinal cord was RA). RA comprises a higher proportion of the retinoid pool in the CNS compared with amounts reported in other target tissues (E Werner and HF DeLuca. Arch Biochem Biophys 393: 262-270, 2001). However, RA is not preferentially transported from the blood to the brain. There were 2.90 +/- 0.20 fmol RA/g tissue transported to the brain of VAD rats treated with 2.00 nmol [20-(3)H]all-trans-retinoic acid, but higher amounts of RA were delivered to the liver, testis, and spleen. Because RA is not transported preferentially to brain, this tissue likely synthesizes RA more efficiently than other target tissues.  相似文献   

14.
Matrix metalloproteinases play a crucial role in the remodelling of the extracellular matrix through direct degradation of its structural proteins and control of extracellular signalling. The most common cause of ischemic brain damage is an atherothrombotic lesion in the supplying arteries. The progress of the atherosclerotic plaque development and the related thrombotic complications are mediated in part by matrix metalloproteinases. In addition to their role in the underlying disease, various members of this protease family are upregulated in the acute phase of ischemic brain damage as well as in the post-ischemic brain recovery following stroke. This review summarizes the current understanding of the matrix metalloproteinase-related molecular events at three stages of the ischemic cerebrovascular disease (in the atherosclerotic plaque, in the neurovascular unit of the brain and in the regenerating brain tissue).  相似文献   

15.
Mitotic mechanisms in Alzheimer's disease?   总被引:16,自引:0,他引:16       下载免费PDF全文
The mechanism(s) leading to widespread hyper-phosphorylation of proteins in Alzheimer's disease (AD) are unknown. We have characterized seven new monoclonal antibodies recognizing independent phospho- epitopes in the paired helical filament proteins (PHF) found in AD brain. These antibodies show pronounced immunoreactivity with cultured human neuroblastoma cells that are in the M phase of cell division, but have no discernible reactivity with interphase cells. Immunoreactivity with these antibodies does not localize to the microtubule spindles or chromosomes in M phase, but is confined to the surrounding cytoplasm. Similar staining in M phase is observed with cultured cells of various tissue types and species. Cells arrested in M phase with the microtubule depolymerizing agent, nocodazole, show marked increases in immunoreactivity with the antibodies by immunofluorescence staining, ELISA, and immunoblotting. In neuroblastoma cells, the appearance of the TG/MC phospho-epitopes coincides with activation of mitotic protein kinases, but not with the activity of the neuronal specific cyclin- dependent kinase, cdk5. These data suggest that the TG/MC epitopes are conserved mitotic phospho-epitopes produced as a result of increased mitotic kinase activity. To investigate this possibility in AD, we examined the staining of human brain tissue with MPM-2, a marker antibody for mitotic phospho-epitopes. It was found that MPM-2 reacts strongly with neurofibrillary tangles, neuritic processes, and neurons in AD but has no staining in normal human brain. Our data suggest that accumulation of phospho-epitopes in AD may result from activation of mitotic posttranslational mechanisms which do not normally operate in mature neurons of brain.  相似文献   

16.
The mode of free fatty acid (FFA) release from rat brain cortex was examined under various treatments prior to decapitation and at various times after decapitation. Brain FFA are comprised mainly of 16:0, 18:0, 18:1 and 20:4 with smaller amounts of 18:2, 22:4 and 22:6. A biphasic mode of FFA release is observed with respect to post-decapitative ischemic treatment. The initial rapid phase involves a 3-fold increase in 18:0 and 20:4 and this process occurs within the first min of decapitation. The second phase involves a less rapid increase of most fatty acids between 2 and 5 min after decapitation. Besides the ischemia-induced increase in brain FFA, the levels of individual fatty acids are also affected by factors such as handling stress and administration of anesthetic agents. Pentobarbital anesthesia, but not ketamine, caused a partial reduction in 18:0 and 20:4 levels in brain in vivo. Pentobarbital treatment also reduced the rapid phase of FFA increase commencing after decapitation. On the other hand, FFA level was higher in animals subjected to ketamine anesthesia, both during the non-ischemic and ischemic phase. Results obtained from this study indicate that the FFA pool in brain is regulated by a complex mechanism contributed by extrinsic and intrinsic factors.  相似文献   

17.
Brain metastases are common and devastating complications of both breast cancer and melanoma. Although mammary carcinoma brain metastases are more frequent than those originating from melanoma, this latter has the highest tropism to the brain. Using static and dynamic in vitro approaches, here we show that melanoma cells have increased adhesion to the brain endothelium in comparison to breast cancer cells. Moreover, melanoma cells can transmigrate more rapidly and in a higher number through brain endothelial monolayers than breast cancer cells. In addition, melanoma cells have increased ability to impair tight junctions of cerebral endothelial cells. We also show that inhibition of Rac or PI3K impedes adhesion of breast cancer cells and melanoma cells to the brain endothelium. In addition, inhibition of Rac or PI3K inhibits the late phase of transmigration of breast cancer cells and the early phase of transmigration of melanoma cells. On the other hand, the Rac inhibitor EHT1864 impairs the junctional integrity of the brain endothelium, while the PI3K inhibitor LY294002 has no damaging effect on interendothelial junctions. We suggest that targeting the PI3K/Akt pathway may represent a novel opportunity in preventing the formation of brain metastases of melanoma and breast cancer.  相似文献   

18.
α 2-Macroglobulin Synthesis in an Astrocyte Subpopulation   总被引:3,自引:1,他引:2  
The proteinase inhibitor alpha 2-macroglobulin (alpha 2-M) is an acute phase protein in the adult rat. During inflammatory events, it is synthesized in the liver and secreted into the bloodstream to remove proteases that are released on injury. Recently, its occurrence in fetal rat brain has been reported. Its cellular origin and biological function in the developing brain, however, remained obscure. In this article, it is shown that astroglial cells cultured from newborn rat brain synthesize and secrete alpha 2-M. Its synthesis markedly increases with time in culture. Immunocytochemical studies reveal that only a subpopulation of astrocytes is alpha 2-M positive, alpha 2-M synthesis in the developing brain by neuroectoderm-derived cells asks for a broader definition of its function in the body. Since interactions of proteases and protease inhibitors appear to play a crucial role in cell migration and neurite outgrowth, alpha 2-M expression in astrocytes is discussed not only in relation to its potential role in the acute phase response to injury in the adult brain but also in regard to its possible involvement in brain development.  相似文献   

19.
The behavioural demands of group living and foraging have been implicated in both evolutionary and plastic changes in brain size. Desert locusts show extreme phenotypic plasticity, allowing brain morphology to be related to very different lifestyles in one species. At low population densities, locusts occur in a solitarious phase that avoids other locusts and is cryptic in appearance and behaviour. Crowding triggers the transformation into the highly active gregarious phase, which aggregates into dense migratory swarms. We found that the brains of gregarious locusts have very different proportions and are also 30 per cent larger overall than in solitarious locusts. To address whether brain proportions change with size through nonlinear scaling (allometry), we conducted the first comprehensive major axis regression analysis of scaling relations in an insect brain. This revealed that phase differences in brain proportions arise from a combination of allometric effects and deviations from the allometric expectation (grade shifts). In consequence, gregarious locusts had a larger midbrain∶optic lobe ratio, a larger central complex and a 50 per cent larger ratio of the olfactory primary calyx to the first olfactory neuropile. Solitarious locusts invest more in low-level sensory processing, having disproportionally larger primary visual and olfactory neuropiles, possibly to gain sensitivity. The larger brains of gregarious locusts prioritize higher integration, which may support the behavioural demands of generalist foraging and living in dense and highly mobile swarms dominated by intense intraspecific competition.  相似文献   

20.
After a single injection,65Zn is slowly taken up by the brain of the rat to a maximum after 7 d, followed by a turnover phase, with a half-time of about 3 wk. In the brain of rats on a zinc-deficient diet, the65Zn content in the brain continued to increase up to 30 d after the injection. The uptake and turnover phases in six different subcellular fractions of the brain showed a pattern similar to that of the whole brain in both the control and zinc-deficient rats. There was no internal redistribution of65Zn in the brain under conditions of progressive zinc deficiency. The results are discussed in a model for zinc homeostasis in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号