首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Saccharomyces cerevisiae glutamine synthetase is inactivated in vivo by the addition of glutamine or ammonia. Inactivation is characterized by a specific loss of synthetase activity; transferase activity remains stable. Several physiological perturbations cause inactivation, such as carbon starvation or limitation for a required amino acid, which could cause a buildup of glutamine. The kinetics of reappearance of synthetase activity after inactivation suggest that the process is reversible in vivo. No change in the native size of the enzyme was associated with inactivation but there appears to be a change in the immunological properties of the enzyme subunit.  相似文献   

5.
Mutants of the yeast Saccharomyces cerevisiae have been isolated which fail to derepress glutamine synthetase upon glutamine limitation. The mutations define a single nuclear gene, GLN3, which is located on chromosome 5 near HOM3 and HIS1 and is unlinked to the structural gene for glutamine synthetase, GLN1. The three gln3 mutations are recessive, and one is amber suppressible, indicating that the GLN3 product is a positive regulator of glutamine synthetase expression. Four polypeptides, in addition to the glutamine synthetase subunit are synthesized at elevated rates when GLN3+ cultures are shifted from glutamine to glutamate media as determined by pulse-labeling and one- and two-dimensional gel electrophoresis. The response of all four proteins is blocked by gln3 mutations. In addition, the elevated NAD-dependent glutamate dehydrogenase activity normally found in glutamate-grown cells is not found in gln3 mutants. Glutamine limitation of gln1 structural mutants has the opposite effect, causing elevated levels of NAD-dependent glutamate dehydrogenase even in the presence of ammonia. We suggest that there is a regulatory circuit that responds to glutamine availability through the GLN3 product.  相似文献   

6.
Nitrogen starvation has been shown to increase the cytosolic arginine concentration and to accelerate protein turnover in mycelia of Neurospora crassa. The cytosolic arginine is derived from a metabolically inactive vacuolar pool. Redistribution of arginine between cytosolic and vacuolar compartments is the result of mobilization of this metabolite in response to nitrogen starvation. Mobilization of arginine (and purines) also occurred in response to glutamine limitation, but arginine accumulated upon proline starvation. These observations indicate that mobilization is a consequence of glutamine limitation rather than a general response to amino acid starvation (or limitation). Analysis of the amino acid pools in mycelia subjected to starvation or limitation suggests that glutamine (or a metabolite derived from glutamine) provides a signal which determines the metabolic fate of vacuolar arginine. The results are consistent with the hypothesis that vacuolar compartmentation provides a readily available store of nitrogen-rich compounds to be utilized during differentiation or under conditions of nutritional stress.  相似文献   

7.
Enterobacterial mutants defective in the nitrogen control regulatory system (Ntr) generally display a pleiotropic phenotype with regard to expression and regulation of several enzymes and transport systems involved in the assimilation of N sources. This report describes the isolation and characterization of similar pleiotropic mutants ofKlebsiella pneumoniae that cannot be complemented byntr genes. The strains excreted ammonia, were unable to grow on a number of N sources, and contained low glutamine:2-oxoglutarate amino transferase and normal, but unmodifiable glutamine synthetase activities and a nitrogenase level largely unaffected by ammonium, but still repressible by an amino acid mixture. Genetic studies suggested that this phenotype is due to overexpression of an unknown regulatory protein.Abbreviations GS Glutamine synthetase - GOGAT Glutamate synthase - ATase Adenylyl transferase - Ntr Nitrogen regulatory system  相似文献   

8.
Phosphoribosylpyrophosphate (PRPP) synthetase participates in the biosynthesis in bacteria of purine nucleotides, pyrimidine nucleotides, tryptophan, and histidine. The regulation of the synthesis of PRPP synthetase in Salmonella typhimurium was studied. Addition of end products to the growth medium, singly or in combination, resulted in small decreases in the specific activity of PRPP synthetase, but levels of the enzyme were never decreased to less than half of those found when the bacteria were grown on minimal medium. Growth of the bacteria on several different carbon sources or starvation for phosphate had little effect on the specific activity of PRPP synthetase. Over-production of histidine in a histidine regulatory mutant, which would be expected to result in a depletion of intracellular PRPP pools, did not alter PRPP synthetase specific activity. PRPP synthetase levels were examined in auxotrophic strains of S. typhimurium that had been starved for the end products of PRPP. In each case derepression of an enzyme in the biosynthetic pathway for the limiting end product was demonstrated. However, only alterations in the levels of pyrimidine bases in the culture medium brought about derepression and repression of PRPP synthetase. Excess pyrimidines do not completely repress the enzyme. Deprivation of exponentially growing cells for pyrimidines by growth of an auxotrophic mutant on media containing orotic acid, which enters the cells slowly, resulted in a 10-fold derepression of PRPP synthetase. Derepression of PRPP synthetase during uracil starvation was prevented by chloramphenicol. The PRPP synthetase activities of extracts from repressed and derepressed cells responded in identical fashion to heat inactivation, cellulose acetate electrophoresis at several pH values, and in kinetic experiments.  相似文献   

9.
In Saccharomyces cerevisiae, many amino acid biosynthetic pathways are coregulated by a complex general control system: starvation for a single amino acid results in the derepression of amino acid biosynthetic genes in multiple pathways. Derepression of these genes is mediated by positive (GCN) and negative (GCD) regulatory genes. In this paper we describe the isolation and characterization of a previously unreported negative regulatory gene, GCD3. A gcd3 mutation is recessive to wild type, confers resistance to multiple amino acid analogs, and results in overproduction and partially constitutive elevation of mRNA levels for amino acid biosynthetic genes. Furthermore, a gcd3 mutation can overcome the derepression-deficient phenotype of mutations in the positive regulatory GCN1, GCN2, and GCN3 genes. However, the gcd3 mutation cannot overcome the derepression-deficient phenotype of a gcn4 mutation, suggesting that GCD3 acts as a negative regulator of the important GCN4 gene. Northern blot analysis confirmed this conclusion, in that the steady-state levels of GCN4 mRNA are greatly increased in a gcd3 mutant. Thus, the negative regulatory gene GCD3 plays a central role in derepression of amino acid biosynthetic genes.  相似文献   

10.
The activities of alanine-, aspartate- and branched-chain amino-acid transaminases, glutamine synthetase, glutamate dehydrogenase and adenylate deaminase in white adipose tissue of adult male rats have been determined in animals submitted to 12-h cold exposure (4 degrees C) or to 24-h food deprivation. Starvation resulted in small changes in glutamate dehydrogenase and alanine transaminase when expressed per unit of protein weight, inducing an increase in branched-chain amino-acid transaminase and glutamine synthetase. Cold exposure showed the same effects as starvation with respect to glutamate dehydrogenase and alanine transaminase, but induced increases in glutamine synthetase and aspartate transaminase. It is concluded that starvation increases the handling of some amino acids by white adipose tissue and the detoxification of the ammonia thus evolved. The changes observed suggest a different pattern of amino-acid metabolism enzyme changes with either cold or starvation.  相似文献   

11.
Adenylylation of glutamine synthetase was suppressed during derepression of nitrogenase synthesis in the presence of methionine sulfone and an excess of NH4+. Deadenylylation of glutamine synthetase was also promoted during nitrogenase derepression under the same conditions. These results are consistent with the hypothesis that the unadenylylated form of glutamine synthetase is required for derepression of nitrogenase.  相似文献   

12.
13.
Nitrogen control in Salmonella typhimurium is not limited to glutamine synthetase but affects, in addition, transport systems for histidine, glutamine, lysine-arginine-ornithine, and glutamate-aspartate. Synthesis of both glutamine synthetase and transport proteins is elevated by limitation of nitrogen in the growth medium or as a result of nitrogen (N)-regulatory mutations. Increases in the amounts of these proteins were demonstrated by direct measurements of their activities, by immunological techniques, and by visual inspection of cell fractions after gel electrophoresis. The N-regulatory mutations are closely linked on the chromosome to the structural gene for glutamine synthetase, glnA: we discuss the possibility that they lie in a regulatory gene, glnR, which is distinct from glnA. Increases in amino acid transport in N-regulatory mutant strains were indicated by increased activity in direct transport assays, improved growth on substrates of the transport systems, and increased sensitivity to inhibitory analogs that are trnasported by these systems. Mutations to loss of function of individual transport components (hisJ, hisP, glnH, argT) were introduced into N-regulatory mutant strains to determine the roles of these components in the phenotype and transport behavior of the strains. The structural gene for the periplasmic glutamine-binding protein, glnH, was identified, as was a gene argT that probably encodes the structure of the lysine-arginine-ornithine-binding protein. Genes encoding the structures of the histidine- and glutamine-binding proteins are not linked to glnA or to each other by P22-mediated transduction; thus, nitrogen control is exerted on several unlinked genes.  相似文献   

14.
15.
Previous studies of purine nucleotide synthesis de novo have suggested that major regulation of the rate of the pathway is affected at either the phosphoribosylpyrophosphate (PP-Rib-P) synthetase reaction or the amidophosphoribosyltransferase (amido PRT) reaction, or both. We studied control of purine synthesis de novo in cultured normal, hypoxanthine-guanine phosphoribosyltransferase (HGPRT)-deficient, and PP-Rib-P synthetase-superactive human fibroblasts by measuring concentrations and rates of synthesis of PP-Rib-P and purine nucleotide end products, proposed effectors of regulation, during inhibition of the pathway. Incubation of cells for 90 min with 0.1 mM azaserine, a glutamine antagonist which specifically blocked the pathway at the level of conversion of formylglycinamide ribotide, resulted in a 5-16% decrease in purine nucleoside triphosphate concentrations but no consistent alteration in generation of PP-Rib-P. During this treatment, however, rates of the early steps of the pathway were increased slightly (9-15%) in normal and HGPRT-deficient strains, more markedly (32-60%) in cells with catalytically superactive PP-Rib-P synthetases, and not at all in fibroblasts with purine nucleotide feedback-resistant PP-Rib-P synthetases. In contrast, glutamine deprivation, which inhibited the pathway at the amido PRT reaction, resulted in time-dependent nucleoside triphosphate pool depletion (26-43% decrease at 24 h) accompanied by increased rates of PP-Rib-P generation and, upon readdition of glutamine, substantial increments in rates of purine synthesis de novo. Enhanced PP-Rib-P generation during glutamine deprivation was greatest in cells with regulatory defects in PP-Rib-P synthetase (2-fold), but purine synthesis in these cells was stimulated only 1.4-fold control rates by glutamine readdition. Stimulation of these processes in normal and HGPRT-deficient cells and in cells with PP-Rib-P synthetase catalytic defects was, respectively: 1.5 and 2.0-fold; 1.5 and 1.7-fold; and 1.6 and 4.1-fold. These studies support the following concepts. 1) Rates of purine synthesis de novo are regulated at both the PP-Rib-P synthetase and amido PRT reactions by end products, with the latter reaction more sensitive to small changes in purine nucleotide inhibitor concentrations. 2) PP-Rib-P exerts its role as a major regulator of purine synthetic rate by virtue of its interaction with nucleotide inhibitors to determine the activity of amido PRT. 3) Activation of amido PRT by PP-Rib-P is nearly maximal at base line in fibroblasts with regulatory defects in PP-Rib-P synthetase.  相似文献   

16.
W Xiao  G H Rank 《Génome》1988,30(6):984-986
The yeast ILV2 gene encodes acetolactate synthase, the first enzyme in the biosynthesis of isoleucine and valine. Its multiple regulation has precluded the clear demonstration of whether ILV2 is under general amino acid control. Nonderepressible gcn4 strains were used as recipients for transformation with a YCp plasmid carrying GCN4. Parental gcn4 cells and their isogenic GCN4 transformants were evaluated for ALS derepression following induced amino acid starvation. GCN4 cells showed 1.5- to 1.7-fold derepression but no derepression was observed in isogenic control gcn4 strains. A similar depression of ILV2 mRNA was also observed. Genetic evidence for general amino acid control was the gcn4 suppression of high level resistance to sulfometuron methyl by the SMRI-410 allele of ILV2.  相似文献   

17.
18.
Ammonia-nitrogen-limited continuous cultures of Escherichia coli and Klebsiella aerogenes contain induced levels of glutamine synthetase that is deadenylyated (i.e., fully active). In the presence of excess ammonia or glutamate in glucose-limited cultures of E. coli, glutamine synthetase is repressed and adenylylated (inactive). The average state of adenylylation (n) is a linear function of the specific growth rate. At low specific growth rates, glutamine synthetase is adenylylated; as the specific growth rate increases, n decreases, approaching 0 to 2 at rapid growth rates. The average state of adenylylation correlates well with the intracellular concentrations and ratios of alpha-ketoglutarate and glutamine, which are key effectors in the adenylylation-deadenylylation systems. E. coli and K. aerogenes differ markedly in their growth yields, growth rates, and enzymatic composition during nitrogen limitation. The data suggest that, unlike K. aerogenes, E. coli W uses glutamate dehydrogenase to incorporate ammonia during nitrogen limitation. In E. coli, glutamate dehydrogenase is progressively induced during nitrogen limitation when mu (growth rate) approaches mumax. In contrast, in K. aerogenes glutamate dehydrogenase is repressed during nitrogen limitation, whereas glutamate synthase, an alternative supplier of glutamate to the cell, is induced. Data are presented that support the regulatory schemes proposed for the control of glutamine synthetase activity by induction-repression phenomena and adenylylation-deadenylylation reaction. We propose that the intracellular ratio of alpha-ketoglutarate to glutamine may be the most important physiological parameter in determining the activity of glutamine synthetase.  相似文献   

19.
A mutation of Klebsiella aerogenes causing production of an altered PII regulatory protein which stimulates overadenylylation of glutamine synthetase and also prevents its derepression was combined with mutations abolishing the activity of adenylyltransferase. The results support the idea that PII plays a role in the regulation of the level of glutamine synthetase which is independent of its interaction with adenylyltransferase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号