首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of human recombinant lipocortin I (annexin I) and bovine lung calpactin I (annexin II) on porcine pancreatic phospholipase A2 (PLA2) activity in phosphatidylcholine (PC)/deoxycholate (DOC) mixtures were investigated. Annexin-associated decreases in PLA2 activity were observed under some conditions, for example, at high DOC/PC molar ratios; however, activation was observed under other conditions. NaCl, which lowers the non-critical micellar concentration (NCMC) of deoxycholate, caused significant decreases in control PLA2 activity in the absence of annexins, and greater decreases in PLA2 activity in annexin-containing samples, resulting in an apparent increase in inhibition. The PC/DOC substrate mixtures themselves appeared unstable. Despite a large excess of detergent, precipitates were, at times, observed upon incubation of some PC/DOC mixtures at 37 degrees C. Such behavior is of interest in view of the numerous reports of PLA2 inhibition by annexins and annexin-derived peptides in the PC/DOC system. The influence of the annexins on activity in this system is consistent with effects on the phase behavior of the PC/DOC mixture and/or competition with the enzyme for available Ca2+. These results caution against use of the PC/DOC system for analysis of potential PLA2 inhibitors unless the phase behavior of the system is more fully delineated.  相似文献   

2.
F Ghomashchi  T O'Hare  D Clary  M H Gelb 《Biochemistry》1991,30(29):7298-7305
The kinetics of hydrolysis of phospholipid vesicles by phospholipase A2 (PLA2) in the scooting mode can be described by the Michaelis-Menten formalism for the action of the enzyme in the interface (E*). E* + S in equilibrium E*S in equilibrium E*P in equilibrium E* + Products The values of the interfacial rate constants cannot be obtained by classical methods because the concentration of the substrate within the lipid bilayer is not easily manipulated. In the present study, carbonyl-carbon heavy atom isotope effects for the hydrolysis of phospholipids have been measured in both vesicles and in mixed micelles in which the phospholipid was present in the nonionic detergent Triton X-100. A large [14C]carbonyl carbon isotope effect of 1.12 +/- 0.02 was measured for the cobra venom PLA2-catalyzed hydrolysis of dipalmitoylphosphatidylcholine in Triton X-100. In contrast, no isotope effect (1.01 +/- 0.01) was measured for the action of the porcine pancreatic and cobra venom enzymes on vesicles of dimyristoylphosphatidylmethanol in the scooting mode. In a second experiment, the hydrolysis of vesicles was carried out in oxygen-18 enriched water. Analysis of the released fatty acid product by mass spectrometry showed that it contained only a single oxygen-18. All of these results were used to estimate both the forward and reverse commitments to catalysis. The lack of doubly labeled fatty acid demonstrated that the product is released from the E*P complex faster than the reverse of the esterolysis step. The small isotope effect in vesicles demonstrated that the E*S complex goes on to products faster than substrate is released from the enzyme. The relevance of these results to an understanding of substrate specificity and inhibition of PLA2 is discussed. In addition, the conditions placed on the values of the rate constants obtained in the present study together with results obtained in the other studies described in this series of papers have led to the evaluation of most of the interfacial rate constants for the hydrolysis of phospholipid vesicles by PLA2.  相似文献   

3.
F Ghomashchi  B Z Yu  O Berg  M K Jain  M H Gelb 《Biochemistry》1991,30(29):7318-7329
The binding equilibrium of phospholipase A2 (PLA2) to the substrate interface influences many aspects of the overall kinetics of interfacial catalysis by this enzyme. For example, the interpretation of kinetic data on substrate specificity was difficult when there was a significant kinetic contribution from the interfacial binding step to the steady-state catalytic turnover. This problem was commonly encountered with vesicles of zwitterionic phospholipids, where the binding of PLA2 to the interface was relatively poor. The action of PLA2 on phosphatidylcholine (PC) vesicles containing a small amount of anionic phospholipid, such as phosphatidic acid (PA), was studied. It was shown that the hydrolysis of these mixed lipid vesicles occurs in the scooting mode in which the enzyme remains tightly bound to the interface and only the substrate molecules present on the outer monolayer of the target vesicle became hydrolyzed Thus the phenomenon of scooting mode hydrolysis was not restricted to the action of PLA2 on vesicles of pure anionic phospholipids, but it was also observed with vesicles of zwitterionic lipids as long as a critical amount of anionic compound was present. Under such conditions, the initial rate of hydrolysis of PC in the mixed PC/PA vesicles was enhanced more than 50-fold. Binding studies of PLA2 to vesicles and kinetic studies in the scooting mode demonstrated that the enhancement of PC hydrolysis in the PC/PA covesicles was due to the much higher affinity of the enzyme toward covesicles compared to vesicles of pure PC phospholipids. A novel and technically simple protocol for accurate determination of the substrate specificity of PLA2 at the interface was also developed by using a double-radiolabel approach. Here, the action of PLA2 in the scooting mode was studied on vesicles of the anionic phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphomethanol that contained small amounts of 3H- and 14C-labeled phospholipids. From an analysis of the 3H and 14C radioactivity in the released fatty acid products, the ratio of substrate specificity constants (kcat/KMS) was obtained for any pair of radiolabeled substrates. These studies showed that the PLA2s from pig pancreas and Naja naja naja venom did not discriminate between phosphatidylcholine and phosphatidylethanolamine phospholipids or between phospholipids with saturated versus unsaturated acyl chains and that the pig enzyme had a slight preference for anionic phospholipids (2-3-fold). The described protocol provided an accurate measure of the substrate specificity of PLA2 without complications arising from the differences in binding affinities of the enzyme to vesicles composed of pure phospholipids.  相似文献   

4.
To determine whether the ability to induce neurite outgrowth in rat pheochromocytoma cell line PC12 is characteristic of phospholipases of different types, we have studied the influence of phospholipase A(2) (PLA2) from cobra Naja kaouthia venom and two PLA2s from viper Vipera nikolskii venom on PC12 cells. Phospholipases from the viper venom are heterodimers in which only one of the subunits is enzymatically active, while PLA2 from the cobra venom is a monomer. It was found that all three PLA2s induce neurite outgrowth in PC12. The PLA2 from cobra venom exhibits this effect at higher concentrations as compared to the viper enzymes. We have not observed such an activity for isolated subunits of viper PLA2s, since the enzymatically active subunits have very high cytotoxicity, while the other subunits are not active at all. However, co-incubation of active and inactive subunits before addition to the cells leads to a marked decrease in cytotoxicity and to restoration of the neurite-inducing activity. It has also been shown that all enzymatically active PLA2s are cytotoxic, the PLA2 from cobra venom being the least active. Thus, for the first time we have shown that PLA2s from snake venoms can induce neurite outgrowth in PC12 cells.  相似文献   

5.
We have previously described the irreversible inhibition of cobra venom phospholipase A2 (PLA2) by the marine natural product manoalide (MLD) (Lombardo, D., and Dennis, E. A. (1985) J. Biol. Chem. 260, 7234-7240) and by its synthetic analog, manoalogue (MLG) (Reynolds L. J., Morgan, B. P., Hite, G. A., Mihelich, E. D., and Dennis, E. A. (1988) J. Am. Chem. Soc. 110, 5172-5177). We have now made a direct comparison of the action of these two inhibitors on PLA2 from cobra, bee, and rattlesnake venoms and have found that MLG behaves kinetically similarly to MLD in all cases with only minor differences. The time courses of inactivation differ significantly between the three enzymes, however, with the inactivation of bee and rattlesnake PLAs2, occurring much faster than does the inactivation of the cobra venom enzyme. The enzymes also differ in their sensitivity to the presence of Ca2+ during the inactivation. Of the three enzymes, the most Ca(2+)-sensitive is the rattlesnake enzyme, which shows a much faster rate of inactivation in the presence of Ca2+ than in the presence of EGTA. However, the same rate of inactivation was also observed when the inhibitor Ba2+ was substituted for Ca2+, indicating that catalytic activity is not required for inactivation of the enzyme. To probe the mechanism of inactivation and to determine the stoichiometry of incorporation, we have synthesized 3H-labeled MLG and have found that inactivation of cobra PLA2 is accompanied by an incorporation of 3.8 mol of [3H]MLG/mol of enzyme. The same amount of 3H incorporation was observed when p-bromophenacyl bromide-inactivated PLA2 was incubated with [3H]MLG, again indicating that catalytic activity is not required for the reaction of PLA2 with MLG. All together, these results suggest that MLD and MLG are not suicide inhibitors of PLA2. A portion of the incorporated radioactivity was acid-labile, and dialysis of the radiolabeled PLA2 under acidic conditions resulted in a loss of about one-third of the enzyme-associated radioactivity, leaving 2.4 mol of [3H]MLG/mol of PLA2. In previous studies, amino acid analysis, which also included acid treatment, indicated that MLG-modified cobra phospholipase A2 contained 2.8 mol of Lys less than the native enzyme. Thus, 1 mol of [3H]MLG is incorporated per mol of Lys lost. The implications of this 1:1 stoichiometry of MLG to Lys on the mechanism of reaction of these inhibitors is discussed.  相似文献   

6.
Reversible calcium-dependent association with a particulate fraction from human placenta was used as the first step in the purification of substrates for the epidermal growth factor-stimulated protein kinase. A protein with apparent Mr of 35,000 was purified to homogeneity, and the sequence was determined for approximately one-fourth of the protein. These residues could be aligned exactly with the previously published sequence of lipocortin I derived from the cDNA from a human lymphoma. Two other proteins that appear to be formed by proteolytic removal of 12 or 26 of the amino acids from the NH2 terminus of the protein also were isolated. Placental lipocortin I was phosphorylated in Tyr-21 in an epidermal growth factor-dependent manner by the kinase activity in a particulate fraction from A431 cells; half-maximal phosphorylation occurred at 50 nM lipocortin I. Lipocortin I phosphorylated on Tyr-21 was approximately 10-fold more sensitive to tryptic cleavage at Lys-26 than was the native protein. Placental lipocortin I and its two truncated forms were potent inhibitors of pancreatic phospholipase A2 activity. Another 33-kDa protein that was not related immunologically to lipocortin I or lipocortin II (calpactin I) also was purified from the EGTA extract of placenta. The unidentified protein inhibited phospholipase A2 but was not a substrate for the epidermal growth factor-stimulated kinase. The mechanism by which these proteins inhibit phospholipase A2 activity was investigated. Attempts to detect direct interaction between these proteins and the enzyme were unsuccessful. However, both the unidentified protein, lipocortin I, and 32P-labeled lipocortin I bound in a Ca2+-dependent manner to the [3H]oleic acid-labeled Escherichia coli membranes used as substrate in the phospholipase A2 assay. Heparin, which is known to block lipocortin I inhibition of phospholipase A2, also blocked binding of lipocortin I to E. coli membranes. The results of these and other experiments raise the possibility that placental lipocortin I inhibits phospholipase A2 activity in this assay by coating the phospholipid and thereby blocking interaction of enzyme and substrate.  相似文献   

7.
Membrane vesicles shed from intact A-431 epidermoid carcinoma cells and harvested in the presence of Ca2+ contained epidermal-growth-factor (EGF) receptor/kinase substrates of apparent molecular masses 185, 85, 70, 55, 38 and 27 kDa. The 38 kDa substrate (p38) was recognized by an antibody that had been raised against the human placental EGF receptor/kinase substrate calpactin II (lipocortin I). The A-431 and placental substrates, isolated by immunoprecipitation after phosphorylation in situ, yielded identical phosphopeptide maps upon limited proteolytic digestion with each of five different enzymes. The A-431-cell vesicular p38 is therefore calpactin II. EGF treatment of the intact A-431 cells before inducing vesiculation was not necessary for the substrate to be present within the vesicles. Our data thus indicate that receptor internalization is not a prerequisite for receptor-mediated phosphorylation of calpactin II. The ability of the protein to function as a substrate for the receptor/kinase depended upon the continued presence of Ca2+ during the vesicle-isolation procedure. EGF-stimulated phosphorylation of calpactin II was much less pronounced in vesicles prepared from A-431 cells in the absence of Ca2+, although comparable amounts of the protein were detectable by immunoblotting. Calpactin II therefore appears to be sequestered in a Ca2+-modulated manner within shed vesicles, along with at least four other major targets for the EGF receptor/kinase. The vesicle preparation may be a useful model system in which to study the phosphorylation and function of potentially important membrane-associated substrates for the receptor.  相似文献   

8.
Calcimedin is a group of proteins which has a binding ability to several hydrophobic matrices or cellular membrane fractions in the presence of Ca2+. Although the molecular properties were partially clarified, the physiological functions of calcimedins have not been clearly defined. In this study, we describe the isolation and characterization of 32-kDa calcimedin from chicken gizzard. Both structural and functional studies establish that 32-kDa calcimedin is a member of the calpactin/lipocortin family. The 32-kDa calcimedin displays phospholipase A2 inhibitory activity, Ca2(+)-dependent F-actin binding activity, and phospholipid binding activity similar to those of calpactins/lipocortins. Antiendonexin II antibody recognized 32-kDa calcimedin. However, antibodies against calpactin I (lipocortin II), calpactin II (lipocortin I), 35-kDa calcimedin, and 67-kDa calcimedin did not cross-react with 32-kDa calcimedin. One-dimensional peptide maps of the 32-kDa calcimedin and the 35-kDa calcimedin are different, confirming that they are distinct proteins. By comparing the sequence of 32-kDa calcimedin with the predicted sequence of endonexin II, we concluded that the primary structure of the 32-kDa protein is highly conserved. In particular, the sequences AMKGMGTDDEXEIXL, GMGTDEEEIL, VLTEILASR, and ILTSR conform to the endonexin consensus sequence, which is characteristic of the calpactin/lipocortin family.  相似文献   

9.
Two monomeric 32-kDa proteins, termed 32K-I (pI 5.8) and 32K-II (pI 5.1), were isolated from human placenta, which was solubilized by a Ca2+-chelator. Only 32K-I was associated with PLA2-inhibitory activity. CNBr peptide mapping indicated that 32K-I was distinct from 32K-II and two 36-kDa proteins, called calpactin I and II or lipocortin II and I, which have been shown to possess PLA2-inhibitory activity. 32K-I bound to PS in a Ca2+-dependent manner. 32K-I was detected in many tissues except brain, cardiac and skeletal muscle.  相似文献   

10.
Manoalogue, a synthetic analogue of the sea sponge-derived manoalide, has been previously shown to partially inactivate the phospholipase A2 from cobra venom (Reynolds, L. J., Morgan, B. P., Hite, E. D., Mihelich, E. D., & Dennis, E. A. (1988) J. Am. Chem. Soc. 110, 5172) by reacting with enzyme lysine residues. In the present study, the inactivation of the phospholipases A2 from pig pancreas, bee venom, and cobra (Naja naja naja) venom by manoalogue was studied in detail. Manoalogue-treated enzymes were examined in the scooting mode on vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphomethanol. Here the native enzymes bound irreversibly to the vesicles and hydrolyzed all of the phospholipids in the outer monolayer without leaving the surface of the interface. All three manoalogue-treated enzymes showed reduced catalytic turnover for substrate hydrolysis in the scooting mode, and the modified enzymes did not hop from one vesicle to another. Thus, inactivation by manoalogue is not due to the decrease in the fraction of enzyme bound to the substrate interface. This result was also confirmed by fluorescence studies that directly monitored the binding of phospholipase A2 to vesicles. A chemically modified form of the pig pancreatic phospholipase A2 in which all of the lysine epsilon-amino groups have been amidinated was not inactivated by manoalogue, indicating that the modification of lysine residues and not the amino-terminus is required for the inactivation. Several studies indicated that the manoalogue-modified enzymes contain a functional active site. For example, studies that monitored the protection by ligands of the active site from attack by a alkylating agent showed that manoalogue-modified pig phospholipase A2 was capable of binding calcium, a substrate analogue, lipolysis products, and a competitive inhibitor. Furthermore, relative to native enzymes, manoalogue-modified enzymes retained significantly higher catalytic activities when acting on water-soluble substrates than when acting on vesicles in the scooting mode. Intact manoalogue had no affinity for the catalytic site on the enzyme as it did not inhibit the enzyme in the scooting mode and it did not protect the active site from alkylation. Pig pancreatic phospholipase A2 bound to micelles of 2-hexadecyl-sn-glycero-3-phosphocholine was resistant to inactivation by manoalogue, suggesting that the modification of lysine residues on the interfacial recognition surface of the enzyme was required for inactivation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
A great mystery in the mechanism of phospholipase A2 (PLA2) and many other lipolytic enzymes is the "interfacial activation" induced by micellar but not monomeric substrates. Equally mysterious is the lack of interfacial activation in bee venom PLA2, as opposed to PLA2s from pancreas and other sources. We have probed these problems using the conformationally restricted short-chain cyclopentano-analogues of diacylphosphatidylcholine (Cp-DCnPC, all-trans isomer). In the reaction catalyzed by bovine pancreatic PLA2, Cp-DC8PC behaved differently from DC8PC in that its monomers and micelles showed comparable activities (but lower than the activity of DC8PC). This result suggests that the activity of PLA2 can be regulated by substrate conformation and supports the "substrate conformation model" (Wells, M. A. (1974) Biochemistry 13, 2248-2257), but raises a question as to whether Cp-DC8PC mimics monomers or micelles of DC8PC. Conformational analysis by 1H NMR revealed that monomeric Cp-DC8PC was conformationally restricted near the carbonyl region, a property characteristic of micelles. Thus, monomeric CP-DC8PC can be considered as a conformational analogue of micelles, but the important structural feature lies in the CH2COO region instead of the glycerol backbone. CP-DC8PC was then used to test a previous proposal that the bee venom PLA2 hydrolyzes monomers but not micelles (which would predict little or no activity for Cp-DC8PC since its conformation is micelle-like whether below or above its critical micelle concentration). The results showed that Cp-DC8PC is a relatively good substrate for the bee venom PLA2 in comparison with the pancreatic PLA2. This and other evidence together suggest that the bee venom PLA2 is not sensitive to the conformation of monomeric and micellar substrates and hydrolyzes both monomers and micelles. The results in both PLA2s demonstrate the usefulness of cyclopentano-phospholipids in probing the mechanism of phospholipases and the roles of substrate conformation in the catalysis of PLA2.  相似文献   

12.
Group V phospholipase A2 is a recently discovered secretory phospholipase A2 (PLA2) that has been shown to be involved in eicosanoid formation in inflammatory cells, such as macrophages and mast cells. We have demonstrated that human group V PLA2 (hsPLA2-V) can bind phosphatidylcholine (PC) membranes and hydrolyze PC substrates much more efficiently than human group IIa PLA2, which makes it better suited for acting on the outer plasma membrane (Han, S.-K., Yoon, E. T., and Cho, W. (1998) Biochem. J. 331, 353-357). In this study, we demonstrate that exogenous hsPLA2-V has much greater activity than does group IIa PLA2 to release fatty acids from various mammalian cells and to elicit leukotriene B4 formation from human neutrophils. To understand the molecular basis of these activities, we mutated two surface tryptophans of hsPLA2-V to alanine (W31A and W79A) and measured the effects of these mutations on the kinetic activity toward various substrates, on the binding affinity for vesicles and phospholipid-coated beads, on the penetration into phospholipid monolayers, and on the activity to release fatty acids and elicit eicosanoid formation from various mammalian cells. These studies show that the relatively high ability of hsPLA2-V to induce cellular eicosanoid formation derives from its high affinity for PC membranes and that Trp31 on its putative interfacial binding surface plays an important role in its binding to PC vesicles and to the outer plasma membrane.  相似文献   

13.
EDTA-extractable protein (EEP) is known to be a major lens membrane protein with a molecular mass in the range 32 kDa to 38 kDa, and is also known to bind to the lens membrane and phospholipid-containing liposomes in a calcium-dependent manner. Recent results (Russell, P., Zelenka, P., Martensen, J., and Reid, T.W. (1977) Curr. Eye Res. 6, 533-538) on antibody cross-reactivity have demonstrated that a 34-35 kDa component of EEP is identical to calpactin I (lipocortin II). In this study, we have identified and purified three distinct 34 kDa components of EEP (designated as EEP-34A1, EEP-34A2 and EEP-34B) from bovine lens that inhibit phospholipase A2 activity. These proteins bind to phospholipid-containing liposome and F-actin in a calcium-dependent fashion. Two-dimensional electrophoresis demonstrates that the three proteins were distinct from one another. However, immunochemical studies and one-dimensional peptide mapping indicate that EEP-34A1 and EEP-34B are very similar. Our results also indicate that EEP-34A1 is very similar to calpactin II and that EEP-34A2 corresponds to calpactin I. The bovine lens 34-35 kDa component of EEP is a mixture of proteins rather than a single protein.  相似文献   

14.
A platelet aggregation inhibitor phospholipase A(2) (NND-IV-PLA(2)) was isolated from Naja naja (Eastern India) venom by a combination of cation and anion exchange chromatography. NND-IV-PLA(2) is the most catalytically active enzyme isolated from the Indian cobra venom. The acidic PLA(2) profile of Eastern regional Indian cobra venom is distinctly different from that of the western regional venom. However the acidic PLA(2)s from both the regions follow the pattern of increasing catalytic activity with increase in acidic nature of the PLA(2) isoform. NND-IV-PLA(2) is a Class B1 platelet aggregation inhibitor and inhibits platelet aggregation induced by ADP, collagen and epinephrine. Modification of active site histidine abolishes both catalytic activity and platelet aggregation inhibition activities while aristolochic acid, a phospholipase A(2) inhibitor has only partial effect on the two activities.  相似文献   

15.
The stimulation of human epidermoid carcinoma A431 cells with the calcium ionophore A23187 resulted in the formation of high-molecular-weight lipocortins I, having apparent molecular weights of 75 kDa and 160 kDa as detected with specific anti-lipocortin I antibody. These immunoreactive proteins were identified to be covalently cross-linked multimers of lipocortin I, since essentially the same cross-linked multimers were observed when purified lipocortin I was incubated with tissue transglutaminase (TGase) in vitro. Classical amine substrates for TGase, such as dansylcadaverine and putrescine, were also incorporated stoichiometrically into lipocortin I. Cross-linking or amine incorporation was not observed with lipocortin II. Des 1-26 lipocortin I did not serve as a substrate for TGase, indicating that the N-terminal region of lipocortin I plays an important role in the formation of lipocortin I multimers. The cross-linking of lipocortin I by TGase resulted in a remarkable enhancement of calcium sensitivity for phospholipid binding; i.e., the free calcium concentration required for the cross-linked lipocortin I to attain 50% maximal binding to phosphatidylserine vesicles was as little as 3 microM, while that required for intact monomeric lipocortin I was 20 microM.  相似文献   

16.
Microvilli isolated from the MAT-C1 ascites subline of the 13762 rat mammary adenocarcinoma contain a major calcium-sensitive microfilament-binding protein, AMV-p35 (ascites microvillar p35). Association of AMV-p35 with microfilament cores during Triton X-100 extraction of the microvilli is half-maximal at 0.1-0.2 mM calcium. The protein, which comprises 6% of the total microvillar protein, can be isolated from microfilament cores prepared in the presence of calcium by extraction with EGTA and purification by ion-exchange chromatography. Alternatively, the protein can be isolated from Triton extracts of microvilli prepared in the absence of calcium by precipitation with calcium, solubilization of the precipitate with EGTA, and chromatography on an ion-exchange column. AMV-p35 binds to phosphatidylserine liposomes and F-actin with half-maximal calcium concentrations of about 10 microM and 0.2 mM, respectively. Treatment of AMV-p35 with chymotrypsin yields a 33,000-dalton fragment, behavior similar to the tyrosine kinase substrates calpactins I and II and lipocortins I and II. Immunoblot analyses using antibodies directed against calpactin I, lipocortin I, and lipocortin II showed strong reactivity of AMV-p35 with anti-calpactin I and anti-lipocortin II, but little reactivity toward anti-lipocortin I. The close relationship between AMV-p35 and calpactin I was verified by amino acid sequence analyses of peptides isolated from cyanogen bromide digests of AMV-p35. By gel filtration and velocity sedimentation analyses purified AMV-p35 is a 35,000-dalton monomer. Moreover, AMV-p35 extracted directly from microvilli in Triton/EGTA also behaves as a 35,000-dalton menomer. These findings indicate that AMV-p35 is closely related to the pp60src kinase substrate calpactin I (p36). However, AMV-p35 occurs in the microvilli as a monomer rather than as the heterotetrameric calpactin found in several other cell types.  相似文献   

17.
Aggregation of cells of the marine sponge Geodia cydonium is mediated by an aggregation factor (AF) particle of Mr 1.3 X 10(8). It is now reported that the AF particle is associated with calpactin, which was ascribed a role in the cell-adhesion process. In order to identify the sequence similarity to other members of the lipocortin family, the cDNA of sponge calpactin was cloned and found to display an 80% sequence similarity to vertebrate calpactin II but only a 47% similarity to calpactin I. The calpactin gene, which contains the consensus sequence coding for the amino acids G-T-D-E, was expressed in Escherichia coli and subsequently purified to a 37000-Mr polypeptide. Both the p32 and the p37 are provided with approximately two Ca2+ ions/molecule and the property to bind to phospholipids. The dissociation constant (calpactin-Ca2+) was in the absence of phospholipids in the range 500-700 microM-Ca2+ but in their presence about 20-30 microM-Ca2+. On the basis of (i) inhibition studies with antibodies to calelectrin and (ii) competition experiments with soluble phospholipids (both chemically defined as well as total homologous membrane lipids) we conclude that the AF-associated calpactin and plasma-membrane-bound phospholipid(s) are involved in cell-cell aggregation in sponges.  相似文献   

18.
Effects of Ca2+ on the kinetic parameters for the hydrolysis of mixed micelles of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (diC16PC) with Triton X-100, catalyzed by a cobra (Naja naja atra) (Group I) and a Habu (Trimeresurus flavoviridis) (Group II) PLA2s, were studied and compared with the results reported for other Group I and II enzymes. The substrate bindings to Group I enzymes were independent of the Ca2+ binding, whereas the substrate bindings to Group II enzymes were facilitated more than 10 times by the Ca2+ binding to the enzymes. The result for Group II enzymes, but not Group I enzymes, seemed compatible with the hypothesis for interpreting the catalytic mechanism that an intermediate complex should be stabilized by the coordination of the bound Ca2+ with the phosphoryl group and the carbonyl oxygen atom of the ester bond at the sn-2 position of the bound substrate molecule [Verheij et al. (1980) Biochemistry 19, 743-750 and (1981) Rev. Physiol. Biochem. Pharmacol. 91, 91-203]. The pH dependence of the kinetic parameters for the hydrolysis of the mixed micellar diC16PC, catalyzed by the cobra (N. naja atra) (Group I) and Habu (T. flavoviridis) (Group II) PLA2s, was also studied. The pK values of the catalytic group, His 48, and Tyr 52 for N. naja atra PLA2, shifted from 7.25 to 7.70 and from 10.30 to 10.85, respectively, and the corresponding values for T. flavoviridis PLA2 shifted from 5.80 to 6.95 and from 10.10 to 10.76, respectively, on binding of the micellar substrates to the enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Expression of annexins as a function of cellular growth state   总被引:8,自引:1,他引:7       下载免费PDF全文
Annexins are a structurally related family of Ca2+ binding proteins of undertermined biological function. Annexin I (also called lipocortin 1) is a substrate for the EGF-stimulated tyrosine kinase and is postulated to be involved in mitogenic signal transduction. To investigate further the involvement of lipocortin 1 in cell proliferation, we measured lipocortin 1 levels in normal diploid human foreskin fibroblasts (HFF) to determine whether its expression changed as a function of growth status. For comparison, the expression of annexin V (also called endonexin II) was measured in HFF cells. Endonexin II is a protein with similar Ca2+ and phospholipid binding properties as lipocortin 1, but it is not a substrate for tyrosine kinases. Quiescent HFF cell cultures were induced to proliferate by either subculture to lower cell density, EGF stimulation, or serum stimulation. In all three protocols, proliferating HFF cells contained three- to fourfold higher levels of lipocortin 1 and three- to fourfold lower levels of endonexin II than quiescent HFF cells. In contrast, the expression of annexin II (also called calpactin I) and annexin IV (also called endonexin I) remained relatively unchanged in growing and quiescent HFF cells. Lipocortin 1 synthesis rate was eightfold higher and its turnover rate was 1.5-fold slower in proliferating compared to quiescent HFF cells. Endonexin II synthesis rate remained constant but its turnover rate was 2.2-fold faster in proliferating compared to quiescent HFF cells. In a separate set of experiments, annexin expression levels were measured in cultures of rat PC-12 cells, a pheochromocytoma that ceases proliferation and undergoes reversible differentiation into nondividing neuronlike cells in response to nerve growth factor (NGF). After NGF treatment, PC-12 cells expressed fivefold higher levels of endonexin II and 32-fold higher levels of calpactin 1. Lipocortin 1 and endonexin I were not expressed in PC-12 cells. In summary, lipocortin 1 expression exhibited a positive correlation with cell proliferation in HFF cells. The increased expression of endonexin II in quiescent HFF cells and differentiating PC-12 cells implies that this protein may play a more prominent role in nondividing cells.  相似文献   

20.
The effects of a series of diacylglycerols (DAGs) with varying acyl chain lengths and degree of unsaturation on the activity of cobra venom, bee venom, and pig pancreatic phospholipases A2 (PL-A2S) were studied using two lipid substrates: dipalmitoylphosphatidylcholine (DPPC) or bovine liver phosphatidylcholine (BL-PC). The activities of the phospholipases critically depended on the chain length and degree of unsaturation of the added DAGs and on the chemical composition of the substrate. The effects of DAGs on cobra or bee venom PL-A2S were similar, but significantly different from the pig pancreatic PL-A2. The data, taken together with our previous NMR studies on physicochemical effects of these DAGs on lipid bilayer structure [De Boeck, H., & Zidovetzki, R. (1989) Biochemistry 28, 7439; (1992) Biochemistry 31, 623], allowed detailed correlation of the type of a bilayer perturbation induced by DAG with the activation or inhibition of the phospholipase on the same system. In general, the activation of the phospholipases correlated with the DAG-induced defects of the lipid bilayer structure. The results, however, argue against general designation of DAGs as "activators" or "inhibitors" of PL-A2S. Thus, for example, diolein activated phospholipases with the BL-PC lipid substrate, but inhibited them with the DPPC substrate. Dihexanoylglycerol and dioctanoylglycerol inhibited pig pancreatic PL-A2 with both lipid substrates and inhibited cobra or been venom PL-A2 with the DPPC substrate, but activated the latter two enzymes with the BL-PC substrate. Longer-chain DAGs (C greater than 12), which induce lateral phase separation of the bilayers into the regions of different fluidities, activated all PL-A2S with both lipid substrates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号