首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
滚环扩增是近年来发展起来的一种恒温核酸扩增方法。这种方法不仅可以直接扩增DNA和RNA,还可以实现对靶核酸的信号放大,灵敏度达到一个拷贝的核酸分子,因此,RCA技术在全基因组扩增、单核苷酸多态性、DNA芯片、蛋白质芯片等方面检测中具有很大的应用价值和潜力。  相似文献   

2.
Rolling-circle amplification (RCA) and ramification amplification (RAM, also known as hyperbranched RCA) are isothermal nucleic acid amplification technologies that have gained a great application in in situ signal amplification, DNA and protein microarray assays, single nucleotide polymorphism detection, as well as clinical diagnosis. Real-time detection of RCA or RAM products has been a challenge because of most real-time detection systems, including Taqman and Molecular Beacon, are designed for thermal cycling-based DNA amplification technology. In the present study, we describe a novel fluorescent probe construct, termed molecular zipper, which is specially designed for quantifying target DNA by real-time monitoring RAM reactions. Our results showed that the molecular zipper has very low background fluorescence due to the strong interaction between two strands. Once it is incorporated into the RAM products its double strand region is opened by displacement, therefore, its fluorophore releases a fluorescent signal. Applying the molecular zipper in RAM assay, we were able to detect as few as 10 molecules within 90 min reaction. A linear relationship was observed between initial input of targets and threshold time (R2 = 0.985). These results indicate that molecular zipper can be applied to real-time monitoring and qualification of RAM reaction, implying an amenable method for automatic RAM-based diagnostic assays.  相似文献   

3.
Rolling-circle amplification under topological constraints   总被引:6,自引:2,他引:4       下载免费PDF全文
We have performed rolling-circle amplification (RCA) reactions on three DNA templates that differ distinctly in their topology: an unlinked DNA circle, a linked DNA circle within a pseudorotaxane-type structure and a linked DNA circle within a catenane. In the linked templates, the single-stranded circle (dubbed earring probe) is threaded, with the aid of two peptide nucleic acid openers, between the two strands of double-stranded DNA (dsDNA). We have found that the RCA efficiency of amplification was essentially unaffected when the linked templates were employed. By showing that the DNA catenane remains intact after RCA reactions, we prove that certain DNA polymerases can carry out the replicative synthesis under topological constraints allowing detection of several hundred copies of a dsDNA marker without DNA denaturation. Our finding may have practical implications in the area of DNA diagnostics.  相似文献   

4.
5.
滚环扩增(rollingcircleamplification,RCA)技术是一种新的分子生物学检测方法。该方法不仅可以在体外等温条件下对核酸进行高度特异性的检测,而且还可通过线性或指数扩增来进行信号级联放大,其灵敏度能达到1个拷贝的核酸分子,因此,可用于痕量分子的检测。目前,滚环扩增技术广泛应用于全基因组DNA检测、核酸测序、单核苷酸多态性、DNA芯片及蛋白质芯片分析等领域。  相似文献   

6.
Circularizable oligonucleotide probes can detect short DNA sequences with single-base resolution at the site of ligation and can be amplified by rolling circle amplification (RCA) using strand displacing polymerases. A secondary amplification scheme was developed that uses the loop-mediated amplification reaction concurrent with RCA to achieve rapid signal development from the starting circular molecules. This isothermal reaction was found to be significantly faster than the comparable hyperbranching amplification method and could detect 100 circular copies in less than 1 h.  相似文献   

7.
Multiplexed protein profiling on microarrays by rolling-circle amplification   总被引:17,自引:0,他引:17  
Fluorescent-sandwich immunoassays on microarrays hold appeal for proteomics studies, because equipment and antibodies are readily available, and assays are simple, scalable, and reproducible. The achievement of adequate sensitivity and specificity, however, requires a general method of immunoassay amplification. We describe coupling of isothermal rolling-circle amplification (RCA) to universal antibodies for this purpose. A total of 75 cytokines were measured simultaneously on glass arrays with signal amplification by RCA with high specificity, femtomolar sensitivity, 3 log quantitative range, and economy of sample consumption. A 51-feature RCA cytokine glass array was used to measure secretion from human dendritic cells (DCs) induced by lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-alpha). As expected, LPS induced rapid secretion of inflammatory cytokines such as macrophage inflammatory protein (MIP)-1beta, interleukin (IL)-8, and interferon-inducible protein (IP)-10. We found that eotaxin-2 and I-309 were induced by LPS; in addition, macrophage-derived chemokine (MDC), thymus and activation-regulated chemokine (TARC), soluble interleukin 6 receptor (sIL-6R), and soluble tumor necrosis factor receptor I (sTNF-RI) were induced by TNF-alpha treatment. Because microarrays can accommodate approximately 1,000 sandwich immunoassays of this type, a relatively small number of RCA microarrays seem to offer a tractable approach for proteomic surveys.  相似文献   

8.
A novel method for regenerating biosensors has been developed in which the highly specific detection of nucleic acid sequences is carried out using molecular padlock probe (MPP) technology and surface-associated rolling circle amplification (RCA). This technique has a low occurrence of false positive results when compared to polymerase chain reaction, and is an isothermal reaction, which is advantageous in systems requiring low power consumption such as remote field sensing applications. Gold-sputtered 96-well polystyrene microplates and a fluorescent label were used to explore the detection limits of the surface-associated RCA technique, specificity for different MPP, conditions for regeneration of the biomolecular sensing surface, and reproducibility of measurements on regenerated surfaces. The technique was used to create highly selective biomolecular surfaces capable of discriminating between DNA oligonucleotides with sequences identical to RNA from infectious salmon anemia (ISA) and infectious hematopoietic necrosis (IHN) virus. As little as 0.6 fmol of circularized MPP was detectable with this fluorimetric assay. The sensing layers could be reused for at least four cycles of amplification using thermal denaturation, with less than 33% decrease in RCA response over time. Because the nucleic acid product of the test is attached to a surface during amplification, the technique is directly applicable to a variety of existing sensing platforms, including acoustic wave and optical devices.  相似文献   

9.
Classical strategies for gene microarrays require labeling of probes or target nucleic acids with signaling molecules, a process that is expensive, time consuming and not always reliable. Bazan and colleagues showed that a nucleic acid-binding cationic conjugated polyelectrolyte can be used in label-free DNA microarrays based on surfaces modified with neutral peptide nucleic acid (PNA) probes. This technique provides a simple and sensitive method for DNA detection without the need for covalent labeling of target DNA.  相似文献   

10.
Many techniques in molecular biology require the use of pure nucleic acids in general and circular DNA (plasmid or mitochondrial) in particular. We have developed a method to separate these circular molecules from a mixture containing different species of nucleic acids using rolling circle amplification (RCA). RCA of plasmid or genomic DNA using random hexamers and bacteriophage Phi29 DNA polymerase has become increasingly popular for the amplification of template DNA in DNA sequencing protocols. Recently, we reported that the mutant single-stranded DNA binding protein (SSB) from Thermus thermophilus (TthSSB) HB8 eliminates nonspecific DNA products in RCA reactions. We developed this method for separating circular nucleic acids from a mixture having different species of nucleic acids. Use of the mutant TthSSB resulted in an enhancement of plasmid or mitochondrial DNA content in the amplified product by approximately 500×. The use of mutant TthSSB not only promoted the amplification of circular target DNA over the background but also could be used to enhance the amplification of circular targets over linear targets.  相似文献   

11.
近年来,CRISPR/Cas系统已经成为转录调控和基因组编辑的重要工具。除了在基因编辑领域的贡献,CRISPR/Cas系统独特的靶核酸顺式切割和非特异性单链核酸反式切割能力,在开发核酸检测的新型生物传感器方面展现出巨大潜力。构建基于CRISPR/Cas系统高灵敏度生物传感器的关键通常依赖其与不同信号扩增策略,诸如核酸扩增技术或特定信号转导方法的结合。基于此,本文旨在通过介绍不同类型的CRISPR/Cas系统,全面概述基于该系统的核酸检测生物传感器的研究进展,并重点对结合核酸扩增技术(PCR、LAMP、RCA、RPA和EXPAR)、灵敏的信号转导方法(电化学和表面增强拉曼光谱)和特殊结构设计生物传感的三大类型信号放大策略的CRISPR/Cas生物传感器进行总结和评论。最后,本文对目前的挑战以及未来的前景进行展望。  相似文献   

12.
滚环扩增技术(RCA)是近年来发展起来的一种新型的核酸扩增技术.该技术是基于连接酶连接、引物延伸、与链置换扩增反应的一种等温核酸扩增方法.在恒温的条件下,可以产生大量的与环型探针互补的重复序列.与传统的核酸扩增方法相比,它具有扩增条件简单,特异性高,能在恒温条件下进行等特点.滚环扩增技术结合荧光、电化学、电化学发光等检...  相似文献   

13.
Nucleic acid amplification techniques are used for signal generation in antibody-based immunoassays, thereby dramatically enhancing the sensitivity of conventional immunoassays. Methodological aspects, as well as applications of this novel approach, are summarized in this review, with an emphasis on immuno-polymerase chain reaction (IPCR). IPCR is based on chimeric conjugates of specific antibodies and nucleic acid molecules, the latter of which are used as markers to be amplified by PCR for signal generation. The enormous efficiency of nucleic acid amplification typically leads to a 100-10,000-fold increase in sensitivity, as compared with the analogous enzyme-amplified immunoassay. The evolution of IPCR included the development of efficient reagents, the design of assay formats and the maintenance of functionality, even within complex biological matrices. Eventually, IPCR crossed the border from being a research method to a routine laboratory technique, enabling a broad range of applications in immunological research and clinical diagnostics.  相似文献   

14.
Protein detection via direct enzymatic amplification of short DNA aptamers   总被引:1,自引:1,他引:0  
Aptamers are single-stranded nucleic acids that fold into defined tertiary structures to bind target molecules with high specificities and affinities. DNA aptamers have garnered much interest as recognition elements for biodetection and diagnostic applications due to their small size, ease of discovery and synthesis, and chemical and thermal stability. Here we describe the design and application of a short DNA molecule capable of both protein target binding and amplifiable bioreadout processes. Because both recognition and readout capabilities are incorporated into a single DNA molecule, tedious conjugation procedures required for protein-DNA hybrids can be omitted. The DNA aptamer is designed to be amplified directly by either polymerase chain reaction (PCR) or rolling circle amplification (RCA) processes, taking advantage of real-time amplification monitoring techniques for target detection. A combination of both RCA and PCR provides a wide protein target dynamic range (1 microM to 10 pM).  相似文献   

15.
Polymerization-based signal amplification offers sensitive visualization of biotinylated biomolecules functionalized to glass microarrays in a manner suitable for point-of-care use. Here we report using this method for visual detection of multiplexed nucleic acid hybridizations from complex media and develop an application toward point mutation detection and single nucleotide polymorphism (SNP) typing. Primer extension reactions were employed to label selectively and universally all complementary surface DNA hybrids with photoinitiators, permitting simultaneous and dynamic photopolymerization from positive sites to 0.5-nM target concentrations. Dramatic improvements in signal ratios between complementary and mismatched hybrids enabled visual discrimination of single base differences in KRAS codon-12 biomarkers.  相似文献   

16.
The ability to conveniently and rapidly profile a diverse set of proteins has valuable applications. In a step toward further enabling such a capability, we developed the use of rolling-circle amplification (RCA) to measure the relative levels of proteins from two serum samples, labeled with biotin and digoxigenin, respectively, that have been captured on antibody microarrays. Two-color RCA produced fluorescence up to 30-fold higher than direct-labeling and indirect-detection methods using antibody microarrays prepared on both polyacrylamide-based hydrogels and nitrocellulose. Replicate RCA measurements of multiple proteins from sets of 24 serum samples were highly reproducible and accurate. In addition, RCA enabled reproducible measurements of distinct expression profiles from lower-abundance proteins that were not measurable using the other detection methods. Two-color RCA on antibody microarrays should allow the convenient acquisition of expression profiles from a great diversity of proteins for a variety of applications.  相似文献   

17.
Classical in situ hybridization (ISH) with biotinylated probes makes it possible to detect and localize human papillomavirus (HPV) nucleic acid sequences in cytological and histological materials. This method is however of limited value in the detection of a few copies of the virus. Moreover the specificity of such a technique is not always convincing when ISH signals are small and/or of low intensity. Recently, much attention has been focused on the utility of the in vitro polymerase chain reaction (PCR) and especially on PCR-single strand conformation polymorphism (SSCP) to amplify small amounts of viral DNA with accurate hybrid specificity. But the latter method requires nucleic acid extraction and tissue destruction. Thus, correlation between the PCR results and histological findings is not possible. Hence, the aim of our current study was to apply to HeLa cells and cervical formalin-fixed and paraffin-embedded biopsies, a novel procedure of ISH signal amplification, the catalyzed signal amplification (CSA). Such a procedure is based on the deposition of streptavidin-horseradish peroxidase catalyzing the deposition of biotinylated tyramide molecules on the location of the probed target. The biotin accumulation is then detected with streptavidin peroxidase and diaminobenzidine. The results were compared with those obtained by direct and indirect in situ PCR. The catalysed signal amplification successfully increased the sensitivity and efficiency of ISH for the detection of rare sequences in HPV infected cells and histological materials. Such a method was found simpler and faster than in situ PCR and tissue morphology was better preserved.  相似文献   

18.
Recently, we developed a simple isothermal nucleic acid amplification reaction, primer generation-rolling circle amplification (PG-RCA), to detect specific DNA sequences with great sensitivity and large dynamic range. In this paper, we combined PG-RCA with a three-way junction (3WJ) formation, and detected specific RNA molecules with high sensitivity and specificity in a one-step and isothermal reaction format. In the presence of target RNA, 3WJ probes (primer and template) are designed to form a 3WJ structure, from which multiple signal primers for the following PG-RCA can be generated by repeating primer extension, nicking and signal primer dissociation. Although this signal primer generation is a linear amplification process, the PG-RCA exponentially can amplify these signal primers and thus even a very small amount of RNA specimen can be detected. After optimizing the structures of 3WJ probes, the detection limit of this assay was 15.9 zmol (9.55 × 10(3) molecules) of synthetic RNA or 143 zmol (8.6 × 10(4) molecules) of in vitro transcribed human CD4 mRNA. Further, the applicability of this assay to detect CD4 mRNA in a human mRNA sample was demonstrated.  相似文献   

19.
Sensitive detection assays are a prerequisite for the analysis of small amounts of samples derived from biological material. There is a great demand for highly sensitive and robust detection techniques to analyze biomolecules. The combination of catalytic active DNA (DNAzyme) with a peroxidase activity with rolling circle amplification (RCA) is a promising alternative to common detection systems. The rolling circle amplification leads to a product with tandemly linked copies of DNAzymes. The continuous signal generation of the amplified DNAzymes results in an increased sensitivity. The combination of two amplification reactions, namely RCA and DNAzymes, results in increased signal intensity by a factor of 10(6). With this approach the labeling of samples can be avoided. The advantage of the introduced assay is the usage of nucleic acids as biosensors for the detection of biomolecules. Coupling of the analyte molecule to the detection molecules allows the direct detection of the analyte molecule. The described label-free hotpot assay has a broad potential field of applications. The hotpot assay can be adapted to detect and analyze RNA, DNA and proteins down to femtomolar concentrations in a miniaturized platform with a total reaction solution of 50 nl. The applicability of the assay for diagnostics and research will be shown with a focus on high throughput systems using a nano-well platform.  相似文献   

20.
Techniques that provide strong signal amplification are useful in diagnostic applications, especially in detecting low concentrations of non-amplifiable target molecules. A versatile and strong signal amplification method based on activities of a DNA polymerase to generate high concentrations of pyrophosphate (PPi) is described. The generation of PPi is catalyzed by nucleotide extension and excision activities of a DNA polymerase on an oligonucleotide cassette. The signal is generated upon enzymatic conversion of PPi to ATP and ATP levels subsequently detected with firefly luciferase. Bioluminesence produced by an oligonucleotide cassette consisting of just two polymerase reaction sites is sufficient to detect them at low attomole levels. The attachment of a large number of these oligonucleotide cassettes to DNA dendrimers enabled the detection of such polyvalent substrate molecules at low zeptomole (10–21 mol) concentrations. The extent of signal amplification obtained with dendrimer substrates is comparable to exponential target amplifications provided by nucleic acid amplification methods. The attachment of such PPi-generating dendritic DNA platforms to ligands that mediate target recognition would potentially permit detection of extremely low concentrations of analytes in diagnostic assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号