首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arachidonic acid metabolism in ionophore A23187-activated human polymorphonuclear leukocytes (PMNs) proceeds predominantly via the 5-lipoxygenase pathway in comparison to metabolism by the 15-lipoxygenase route. Products of both lipoxygenase pathways appear to be involved in the mediation of inflammatory reactions. Pretreatment of polymorphonuclear leukocytes with micromolar amounts of the platelet-derived 12-lipoxygenase product 12-hydroxy-5,8,10,14- eicosatetraenoic acid (12-HETE) prior to the addition of A23187 and [14C]arachidonic acid resulted in the unexpected dose-dependent stimulation of the 15-lipoxygenase pathway, as evidenced by the formation of [14C]15-HETE. A concomitant inhibition of the 5-lipoxygenase pathway was also observed. The structural identity of 15-HETE was confirmed by retention times on straight-phase and reverse-phase high pressure liquid chromatography in comparison with an authentic standard, radioimmunoassay, and chemical derivatization. When other isomeric HETEs were tested, the order of stimulatory potencies was 15-HETE greater than 12-HETE greater than 5-HETE. When arachidonic acid metabolism via the 5-lipoxygenase route was inhibited by nordihydroguaiaretic acid, previously ineffective concentrations of exogenous 12-HETE were now able to stimulate the polymorphonuclear leukocyte 15-lipoxygenase. Thus, blockade of the 5-lipoxygenase pathway appeared to be a prerequisite for the activation of the 15-lipoxygenase. The HETE-induced activation of the 15-lipoxygenase occurred within 1-2 min, was a reversible process, and was enhanced in the presence of A23187. In nine donors tested, up to 14-fold stimulation of [14C]15-HETE production was observed. Our results indicate that endogenous HETEs can have a dual role in the post-phospholipase regulation of arachidonic acid metabolism since they can act as physiological stimulators of the 15-lipoxygenase as well as inhibitors of the 5-lipoxygenase.  相似文献   

2.
While platelet derived growth factor (PDGF) did not induce any platelet aggregation nor secretion, it modified the polyphosphoinositide metabolism of human platelets prelabeled with 32P-orthophosphate. We found a decrease of 32P associated with phosphatidylinositol 4,5 bisphosphate after 3 min, with parallel increase of 32P-phosphatidylinositol 4 phosphate and 32P-phosphatidylinositol using 100 ng/ml of PDGF. This modification was PDGF concentration dependent. PDGF inhibited thrombin and collagen induced platelet aggregation and 14C-serotonin release in a dose dependent manner, but was without effect when arachidonic acid was used. These results suggest that PDGF (i) stimulated the hydrolysis of polyphosphoinositides (ii) and could exert a negative feedback control on platelet activation induced by thrombin or collagen.  相似文献   

3.
Two perfluorinated carboxylic acids (PFCAs), pentadecafluorooctanoic acid (PDFOA) and heptadecafluorononanoic acid (HDFNA), were investigated for potential modulatory effects on the cyclooxygenase (COX) and 12-lipoxygenase (LOX) metabolisms in rat platelets. Both PDFOA and HDFNA dose-dependently inhibited the formation of a COX metabolite, 12-HHT, without any effect on that of a LOX metabolite, 12-HETE, at concentrations ranging from 10 to 100 μM. These two PFCAs up to 100 μM did not affect platelet membrane integrity, and COX-1 and -2 protein expression levels in Caco-2 cells. These results suggest that PDFOA and HDFNA have the potential to modify platelet function by inhibiting the COX pathway at activity level, but not at protein level.  相似文献   

4.
Arachidonic acid is converted into several more polar products in addition to 12-l-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12-HPETE) and 12-l-hydroxyeicosa-5,8,10,14-tetraenoic acid (12-HETE) by the cytosol fractions of rat platelets. The more polar products are formed via the lipoxygenase pathways in the same way as are 12-HPETE and 12-HETE, since their formation is not inhibited by indomethacin but by eicosa-5,8,11,14-tetraynoic acid (ETYA). The presence of 0.5-1.5mm-reduced glutathione (GSH) in the reaction mixture prevents the formation of the more polar products and produces 12-HETE as the only metabolite from arachidonic acid by the 12-lipoxygenase pathway. l-Cysteine has the same effect as GSH. However, oxidized glutathione (GSSG) and l-cystine are not able to prevent the formation of the more polar products. The results indicate that 12-HPETE peroxidase in the 12-lipoxygenase pathway is a GSH-dependent peroxidase and the more polar products might be formed from the non-enzymic breakdown of the primary 12-lipoxygenase product of 12-HPETE, owing to insufficient capability of the subsequent peroxidase system to completely reduce 12-HPETE to 12-HETE. Thus the presence of GSH in the reaction mixture offers a convenient and precise cell-free assay system for 12-lipoxygenase in rat platelets. Routine assays of 12-lipoxygenase are carried out in the presence of 1mm-GSH in the reaction mixture. The synthesis of 12-HETE by 12-lipoxygenase is linear during the first 4 min of incubation at 37 degrees C, and has a pH optimum of 7.7. The 12-lipoxygenase reaches half-maximal activity at an arachidonate concentration of 20mum. Fractionation of cell homogenates indicates that the cytosol fraction possesses almost all the 12-lipoxygenase activity, whereas the microsomal fraction exhibits little enzyme activity.  相似文献   

5.
12-Lipoxygenase activity in platelets of spontaneously hypertensive rats was investigated. Enzyme activity was measured in the absence and the presence of reduced glutathione. In both assay conditions, 12-lipoxygenase activity in platelets of spontaneously hypertensive rats was significantly higher than that in platelets of normotensive rats. Since 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE), a 12-lipoxygenase product of arachidonic acid in platelets, has been reported to be a potent chemoattractant for aortic smooth muscle cells, increase in biosynthesis of 12-HETE in platelets of spontaneously hypertensive rats might contribute to the explanation of pathogenesis of vascular disorder commonly found in hypertension patients.  相似文献   

6.
Platelet 12-lipoxygenase(p-12-LOX) is highly expressed in human platelets, and the development of p-12-LOX inhibitors has the potential to be a novel antithrombotic tool by inhibiting thrombosis without prolonging hemostasis. A chiral liquid chromatography-mass spectrometry(LC-MS/MS) method was used to assess the impact of three commercially available LOX inhibitors[esculetin(6,7-dihydroxycoumarin), ML-355(N-2-benzothiazolyl-4-[[(2-hydroxy-3-methoxyphenyl)methyl]amino]-benzenesulfonamide), CDC(cinnamyl-3,4-dihydroxy-α-cyanocinnamate) and acetylsalicylic acid(ASA; a cyclooxygenase-1 inhibitor) on the generation of prostanoids and HETEs(hydroxyeicosatetraenoic acids) in human whole blood allowed to clot for 1 h at 37 °C(serum), platelet-rich plasma(PRP) stimulated with collagen or TRAP-6(a peptide activating thrombin receptor) and washed platelets. In serum, ML-355 did not affect eicosanoid generation, while CDC caused an incomplete reduction of 12S-HETE levels; esculetin inhibited both 12S-HETE and thromboxane(TX)B2 production; ASA selectively affected TXB2 production. In washed platelets stimulated with thrombin, esculetin, and CDC inhibited both 12S-HETE and TXB2 while ML-355 was almost ineffective. In PRP, ML-355, CDC, and esculetin did not affect platelet aggregation associated with incomplete effects on eicosanoid biosynthesis. ASA alone or in combination with ticagrelor(a P2Y12 blocker) affected platelet aggregation associated with profound inhibition of TXB2 generation. P2Y12 receptor signaling contributed to platelet 12S-HETE biosynthesis in response to primary agonists. In conclusion, ML-355, esculetin, and CDC were not selective inhibitors of p-12-LOX in different cellular systems. They did not affect platelet aggregation induced in PRP by collagen or TRAP-6. The characterization of 12-LOX inhibitors on eicosanoids generated in human whole blood is useful for information on their enzyme selectivity, off-target effects, and the possible influence of plasma components on their pharmacological effects.  相似文献   

7.
8.
Washed human platelets were not able to convert eicosapentaenoic acid (EPA) to thromboxane B3 (TXB3) and 12-hydroxyeicosapentaenoic acid (AA) to washed human platelets induced conversion of EPA to TXB3 and 12-HEPE. Esculetin, a specific inhibitor of 12-lipoxygenase, prevented the effect of AA, but cyclooxygenase inhibitor did not. The conversion of AA to TXB2 was not affected by the same dose of esculetin. These data suggest that products of AA formed by 12-lipoxygenase in human platelets have stimulatory effects on EPA metabolism. When AA was preincubated with washed human platelets, its effect on EPA conversion was reduced, suggesting that a labile product of AA formed by 12-lipoxygenase is involved in the facilitation of EPA metabolism. Addition of 12-hydroperoxyeicosatetraenoic acid directly to washed human platelets caused dose-dependent synthesis of TXB3 and 12-HEPE, while addition of 12-hydroxyeicosatetraenoic acid had no effect. Thus, 12-hydroperoxyeicosatetraenoic acid formed from AA promotes the metabolism of EPA in washed human platelets.  相似文献   

9.
The reducing capacity toward cytochrome c present in human resting platelets increases upon platelet stimulation, and is partially inhibited by superoxide dismutase. This activity therefore represents the generation of superoxide anion. In order to evaluate hydrogen peroxide formation a quantitative assay by mean of dichlorofluorescin (DCFH) has been set up. The DCFH, trapped inside the cell, is oxidized by hydrogen peroxide to the fluorescent compound DCF. Basal DCF increases during activation of platelets by agonists. Arachidonic acid, calcium ionophore A23187 and to a lesser extent PMA and thrombin are the most effective. N-ethylmaleimide induces a dose-dependent DCFH oxidation and potentiates the effect of agonists. NAD(P)H--cytochrome c reductase enzyme, which catalyzes superoxide anion production, is present in platelets at high specific activity, as well as those enzymes who protect the cells from oxygen reactive species.  相似文献   

10.
Eicosanoid biosynthesis was examined with a human megakaryocytic cell line (Dami). Megakaryocytes incubated with [1-14C]arachidonic acid and either ionophore A23187 or thrombin generated both thromboxane and 12-hydroxyheptadecatrienoic acid (HHTrE). Exposure to phorbol myristate acetate (PMA) for 1 through 9 days induced differentiation and revealed an increase in the conversion of [1-14C]arachidonate to cyclooxygenase- and lipoxygenase (LO)-derived products. The LO-derived product was identified as 12S-HETE by its physical characteristics including GC/MS and chiral column SP-HPLC. PMA-treated Dami cells did not generate 5-HETE, leukotrienes or lipoxins from exogenous arachidonic acid while they did convert leukotriene A4 (LTA4) to lipoxin A4, lipoxin B4 and their respective all-trans isomers. In addition, COS-M6 cells transfected with a human 12-lipoxygenase cDNA and incubated with either arachidonic acid or LTA4 generated 12-HETE and lipoxins, respectively. The lipoxin profile generated by transfected COS-M6 cells incubated with LTA4 was similar to that generated by the PMA-treated Dami cells. Results indicate that human megakaryocytes can transform arachidonate and LTA4 to bioactive eicosanoids and that the 12-lipoxygenase appears upon further differentiation of these cells. In addition, they indicate that the 12-LO of human megakaryocytes and the 12-LO expressed by transfected COS cells can generate both lipoxins A4 and B4. Together they suggest that the human 12-LO can serve as a model of LX-synthetase activity with LTA4.  相似文献   

11.
Molecular cloning and expression of human arachidonate 12-lipoxygenase   总被引:5,自引:0,他引:5  
The cDNA for a 12-lipoxygenase was isolated from cDNA library of human erythroleukemia cells. The cDNA had an open reading frame encoding 663 amino acids with a calculated molecular weight of 75,513. The deduced amino acid sequence of human 12-lipoxygenase exhibited 41.5%, 65.3% and 65.4% identity with human 5-lipoxygenase, human 15-lipoxygenase and porcine 12-lipoxygenase, respectively. Blot hybridization analysis of RNA from human erythroleukemia cells demonstrated a single species (3.1 kb) of mRNA with the cDNA probe for 12-lipoxygenase of these cells, but not with the cDNA for porcine leukocyte enzyme. The cytosol of Escherichia coli transformed with a recombinant pUC19 plasmid oxygenated the position 12 of arachidonic acid.  相似文献   

12.
13.
Human uterine cervix possesses a high 12-lipoxygenase activity; this enzyme has been isolated in a purified form from the squamous epithelial region of human cervix and its major properties have been investigated. Enzyme activity was present in all subcellular fractions obtained by centrifugation; the highest specific activity was associated with the microsome fraction (160,000 X g pellet). Purification of the enzyme was achieved by acetone precipitation, ion exchange chromatography on CM-cellulose and affinity chromatography on linoleyl-aminoethyl-Sepharose. The product from the incubation of sodium [1-14C]arachidonate with crude enzyme extracts co-chromatographed with authentic 12-hydroxyeicosatetraenoic acid, but the purified enzyme gave a product that behaved like the 12-hydroperoxy derivative. The enzyme had optimum activity at pH 6.5, a Km of 15 microM for arachidonic acid and was stimulated by ATP and Ca2+. Enzyme activity was inhibited by esculetin, nordihydroguaiaretic acid, eicosatetraynoic acid, detergents at concentrations greater than 0.1% (w/v) and preincubation of substrate with GSH and GSH peroxidase. The occurrence of a high 12-lipoxygenase activity is discussed in relation to the specific physiological functions of this tissue.  相似文献   

14.
15.
Two fatty acids differing from arachidonic acid in lacking one of the internal double bonds (20:35,8,14 and 20:35,11,14) and their 1-C14 and acetylenic analogues were synthesized. 20:35,8,14 was not metabolized by human platelets but 20:35,11,14 yielded a small amount (1.5% conversion) of two hydroxy fatty acids in a three (11-hydroxy-5,12,14-icosatrienoic acid) to one (15-hydroxy-5,11,13-icosatrienoic acid) proportion. Indomethacin inhibited formation of both hydroxy fatty acids indicating that they are produced via cyclooxygenase. Both ethylenic acids were weak inhibitors of cyclooxygenase (substrate 20 μM arachidonic acid) (ID50: 8.8 μM 20:35,8,14; 11.2 μM 20:35,11,14) but were inactive against lipoxygenase (RD50 > 100 μM). Similarly, both acetylenic analogues were poor inhibitors of lipoxygenase (ID50: 23.4 μM 20:35,8,14; 47.8 μM 20:35,11,14) but although 20:35,8,14 was inactive against cyclooxygenase (ID50 > 100 μM) the 20:35,11,14 was a potent inhibitor (ID50: 0.35 μM). The results are interpreted on the basis that hydrogen removal by the lipoxygenase is from C10 and by the cyclooxygenase from C13 but only in 20:35,11,14 are these hydrogens (C13) located at the center of a 1,4 pentadiene system (ethylenic) or a 1,4 pentadiyne system (acetylenic).  相似文献   

16.
Two fatty acids differing from arachidonic acid in lacking one of the internal double bonds (20:35,8,14 and 20:35,11,14) and their 1-C14 and acetylenic analogues were synthesized. 20:35,8,14 was not metabolized by human platelets but 20:35,11,14 yielded a small amount (1.5% conversion) of two hydroxy fatty acids in a three (11-hydroxy-5,12,14-icosatrienoic acid) to one (15-hydroxy-5,11,13-icosatrienoic acid) proportion. Indomethacin inhibited formation of both hydroxy fatty acids indicating that they are produced via cyclooxygenase. Both ethylenic acids were weak inhibitors of cyclooxygenase (substrate 20 microM arachidonic acid) (ID50: 8.8 microM 20:35,8,14; 11.2 microM 20:35,11,14) but were inactive against lipoxygenase (ID50 greater than 100 microM). Similarly, both acetylenic analogues were poor inhibitors of lipoxygenase (ID50: 23.4 microM 20:35,8,14; 47.8 microM 20:35,11,14) but although 20:35,8,14 was inactive against cyclooxygenase (ID50 greater than 100 microM) the 20:35,11,14 was a potent inhibitor (ID50: 0.35 microM). The results are interpreted on the basis that hydrogen removal by the lipoxygenase is from C10 and by the cyclooxygenase from C13 but only in 20:35,11,14 are these hydrogens (C13) located at the center of a 1,4 cis cis pentadiene system (ethylenic) or a 1,4 pentadiyne system (acetylenic).  相似文献   

17.
18.
Segraves EN  Holman TR 《Biochemistry》2003,42(18):5236-5243
Mammalian lipoxygenases have been implicated in several inflammatory disorders; however, the details of the kinetic mechanism are still not well understood. In this paper, human platelet 12-lipoxygenase (12-hLO) and human reticulocyte 15-lipoxygenase-1 (15-hLO) were tested with arachidonic acid (AA) and linoleic acid (LA), respectively, under a variety of changing experimental conditions, such as temperature, dissolved oxygen concentration, and viscosity. The data that are presented show that 12-hLO and 15-hLO have slower rates of product release (k(cat)) than soybean lipoxygenase-1 (sLO-1), but similar or better rates of substrate capture for the fatty acid (k(cat)/K(M)) or molecular oxygen [k(cat)/K(M(O)2)]. The primary, kinetic isotope effect (KIE) for 15-hLO with LA was determined to be temperature-independent and large ((D)k(cat) = 40 +/- 8), over the range of 10-35 degrees C, indicating that C-H bond cleavage is the sole rate-limiting step and proceeds through a tunneling mechanism. The (D)k(cat)/K(M) for 15-hLO, however, was temperature-dependent, consistent with our previous results [Lewis, E. R., Johansen, E., and Holman, T. R. (1999) J. Am. Chem. Soc. 121, 1395-1396], indicating multiple rate-limiting steps. This was confirmed by a temperature-dependent, k(cat)/K(M) solvent isotope effect (SIE), which indicated a hydrogen bond rearrangement step at low temperatures, similar to that of sLO-1 [Glickman, M. H., and Klinman, J. P. (1995) Biochemistry 34, 14077-14092]. The KIE could not be determined for 12-hLO due to its inability to efficiently catalyze LA, but the k(cat)/K(M) SIE was temperature-independent, indicating distinct rate-limiting steps from both 15-hLO and sLO-1.  相似文献   

19.
Changes in intracellular Ca2+, [Ca2+]i, were measured in control and chondroitin ABC lyase-pretreated platelets. [Ca2+]i was measured with the fluorescent calcium probe Quin2. Chondroitin ABC lyase removed chondroitin 4-sulfate from the platelet surface without inducing shape change or release of serotonin. Compared to similarly prepared controls, enzyme treated platelets showed an increase of [Ca2+]i in response to stimulation by various agonists at high (1 mM) extracellular Ca2+ concentration. At low Ca2+ in the medium (1 mM EGTA), such platelets responded to agonists with a decreased rise in [Ca2+]i compared to the controls. These studies indicate that selective removal of glycosaminoglycans may sensitize platelets to the action of platelet aggregating agents. In addition, glycosaminoglycans may have a calcium storage function.  相似文献   

20.
The uptake and metabolism of [14C]- or [3H]adenosine have been studied in suspensions of washed platelets and in platelet rich plasma. The appearance of radio-activity in the platelets and the formation of radioactive adenosine metabolites have been used to determine the uptake. Adenosine is transported into human blood platelets by two different systems: a low Km system (9.8 μM) which is competitively inhibited by papaverine, and a high Km system (9.4 mM) which is competitively inhibited by adenine. Adenosine transported via the low Km system is probably directly incorporated into adenine nucleotides, while adenosine transported through the high Km system arrives unchanged inside the platelet and is then converted into inosine and hypoxanthine or incorporated into adenine nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号