首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A synthase which oxidizes (S)-reticuline to 1,2-dehydroreticuline has been found to occur in seedlings of opium poppy (Papaver somniferum L.). Due to its instability, this enzyme could only be partly purified (ca. 5-fold enrichment). Partial characterization at this stage of purification showed that it does not need a redox cofactor and accepts both (S)-reticuline and (S)-norreticuline as substrates. [1-(2)H, (13)C]-(R,S)-reticuline was enzymatically converted into [1-(13)C]-dehydroreticuline, which has been identified by mass spectrometry. Release of the hydrogen atom in position C-1 of the isoquinoline alkaloid during the oxidative conversion, was exploited as a sensitive assay system for this enzyme. The enzyme has a pH optimum of 8.75, a temperature optimum of 37 degrees C and the apparent K(M) value for the substrate reticuline was shown to be 117 microM. Moreover it could be demonstrated by sucrose density gradient centrifugation that the enzyme is located in vesicles of varying size. In combination with the previously discovered strictly stereoselective and NADPH dependent 1,2-dehydroreticuline reductase the detection of this enzyme, the 1,2-dehydroreticuline synthase, provides the necessary inversion of configuration and completes the pathway from two molecules of L-tyrosine via (S)-norcoclaurine to (R)-reticuline in opium poppy involving a total number of 11 enzymes.  相似文献   

2.
To identify all of the O-methyltransferase genes involved in isoquinoline alkaloid biosynthesis in Coptis japonica cells, we sequenced 1014 cDNA clones isolated from high-alkaloid-producing cultured cells of C. japonica. Among them, we found all three reported O-methyltransferases and an O-methyltransferase-like cDNA clone (CJEST64). This cDNA was quite similar to S-adenosyl-l-methionine:coclaurine 6-O-methyltransferase and S-adenosyl-l-methionine:isoflavone 7-O-methyltransferase. As S-adenosyl-l-methionine:columbamine O-methyltransferase, which catalyzes the conversion of columbamine to palmatine, is one of the remaining unelucidated components in isoquinoline alkaloid biosynthesis in C. japonica, we heterologously expressed the protein in Escherichia coli and examined the activity of columbamine O-methyltransferase. The recombinant protein clearly showed O-methylation activity using columbamine, as well as (S)-tetrahydrocolumbamine, (S)-, (R,S)-scoulerine and (R,S)-2,3,9,10-tetrahydroxyprotoberberine as substrates. This result clearly indicated that EST analysis was useful for isolating the candidate gene in a relatively well-characterized biosynthetic pathway. The relationship between the structure and substrate recognition of the O-methyltransferases involved in isoquinoline alkaloid biosynthesis, and a reconsideration of the biosynthetic pathway to palmatine are discussed.  相似文献   

3.
4.
S-adenosyl-L-methionine:3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'-OMT) catalyzes the conversion of 3'-hydroxy-N-methylcoclaurine to reticuline, an important intermediate in synthesizing isoquinoline alkaloids. In an earlier step in the biosynthetic pathway to reticuline, another O-methyltransferase, S-adenosyl-L-methionine:norcoclaurine 6-O-methyltransferase (6-OMT), catalyzes methylation of the 6-hydroxyl group of norcoclaurine. We isolated two kinds of cDNA clones that correspond to the internal amino acid sequences of a 6-OMT/4'-OMT preparation from cultured Coptis japonica cells. Heterologously expressed proteins had 6-OMT or 4'-OMT activities, indicative that each cDNA encodes a different enzyme. 4'-OMT was purified using recombinant protein, and its enzymological properties were characterized. It had enzymological characteristics similar to those of 6-OMT; the active enzyme was the dimer of the subunit, no divalent cations were required for activity, and there was inhibition by Fe(2+), Cu(2+), Co(2+), Zn(2+), or Ni(2+), but none by the SH reagent. 4'-OMT clearly had different substrate specificity. It methylated (R,S)-6-O-methylnorlaudanosoline, as well as (R, S)-laudanosoline and (R,S)-norlaudanosoline. Laudanosoline, an N-methylated substrate, was a much better substrate for 4'-OMT than norlaudanosoline. 6-OMT methylated norlaudanosoline and laudanosoline equally. Further characterization of the substrate saturation and product inhibition kinetics indicated that 4'-OMT follows an ordered Bi Bi mechanism, whereas 6-OMT follows a Ping-Pong Bi Bi mechanism. The molecular evolution of these two related O-methyltransferases is discussed.  相似文献   

5.
Transgenic alfalfa plants were generated harboring caffeic acid 3-O-methyltransferase (COMT) and caffeoyl CoA 3-O-methyltransferase (CCOMT) cDNA sequences under control of the bean phenylalanine ammonia-lyase PAL2 promoter. Strong downregulation of COMT resulted in decreased lignin content, a reduction in total guaiacyl (G) lignin units, a near total loss of syringyl (S) units in monomeric and dimeric lignin degradation products, and appearance of low levels of 5-hydroxy guaiacyl units and a novel dimer. No soluble monolignol precursors accumulated. In contrast, strong downregulation of CCOMT led to reduced lignin levels, a reduction in G units without reduction in S units, and increases in beta-5 linked dimers of G units. Accumulation of soluble caffeic acid beta-d-glucoside occurred only in CCOMT downregulated plants. The results suggest that CCOMT does not significantly contribute to the 3-O-methylation step in S lignin biosynthesis in alfalfa and that there is redundancy with respect to the 3-O-methylation reaction of G lignin biosynthesis. COMT is unlikely to catalyze the in vivo methylation of caffeic acid during lignin biosynthesis.  相似文献   

6.
P J Facchini  C Penzes  A G Johnson    D Bull 《Plant physiology》1996,112(4):1669-1677
In Papaver somniferum (opium poppy) and related species, (S)-reticuline serves as a branch-point intermediate in the biosynthesis of numerous isoquinoline alkaloids. The berberine bridge enzyme (BBE) ([S]-reticuline:oxygen oxidoreductase [methylene bridge forming], EC 1.5.3.9) catalyzes the stereospecific conversion of the N-methyl moiety of (S)-reticuline into the berberine bridge carbon of (S)-scoulerine and represents the first committed step in the pathway leading to the antimicrobial alkaloid sanguinarine. Three unique genomic clones (bbe1, bbe2, and bbe3) similar to a BBE cDNA from Eschscholtzia californica (California poppy) were isolated from opium poppy. Two clones (bbe2 and bbe3) contained frame-shift mutations of which bbe2 was identified as a putative, nonexpressed pseudogene by RNA blot hybridization using a gene-specific probe and by the lack of transient expression of a chimeric gene fusion between the bbe2 5' flanking region and a beta-glucuronidase reporter gene. Similarly, bbe1 was shown to be expressed in opium poppy plants and cultured cells. Genomic DNA blot-hybridization data were consistent with a limited number of bbe homologs. RNA blot hybridization showed that bbe genes are expressed in roots and stems of mature plants and in seedlings within 3 d after germination. Rapid and transient BBE mRNA accumulation also occurred after treatment with a fungal elicitor or with methyl jasmonate. However, sanguinarine was found only in roots, seedlings, and fungal elicitor-treated cell cultures.  相似文献   

7.
Two types of structurally distinct O-methyltransferases mediate the methylation of hydroxylated monomeric lignin precursors in angiosperms. Caffeate 3-O-methyltransferase (COMT; EC 2.1.1.68) methylates the free acids and caffeoyl CoA 3-O-methyltransferase (CCoAOMT; EC 2.1.1.104) methylates coenzyme A esters. Recently, we reported a novel hydroxycinnamic acid/hydroxycinnamoyl CoA ester O-methyltransferase (AEOMT) from loblolly pine differentiating xylem that was capable of methylating both acid and ester precursors with similar efficiency. In order to determine the possible existence and role of CCoAOMT in lignin biosynthesis in gymnosperms, a 1.3 kb CCoAOMT cDNA was isolated from loblolly pine that showed 79–82% amino acid sequence identity with many angiosperm CCoAOMTs. The recombinant CCoAOMT expressed in Escherichia coli exhibited a significant methylating activity with hydroxycinnamoyl CoA esters whereas activity with hydroxycinnamic acids was insignificant. Moreover, 3.2 times higher catalytic efficiency for methylating caffeoyl CoA over 5-hydroxyferuloyl CoA was observed which could serve as a driving force towards synthesis of guaiacyl lignin. The secondary xylem-specific expression of CCoAOMT was demonstrated using RNA blot analysis, western blot analysis, and O-methyltransferase enzyme assays. In addition, Southern blot analysis indicated that CCoAOMT may exist as a single-copy gene in loblolly pine genome. The transgenic tobacco plants carrying loblolly pine CCoAOMT promoter-GUS fusion localized the site of GUS activity at the secondary xylem tissues. These data suggest that CCoAOMT, in addition to AEOMT, plays an important role in the methylation pathway associated with lignin biosynthesis in loblolly pine.  相似文献   

8.
Cytochrome P450s (P450) play a key role in oxidative reactions in plant secondary metabolism. Some of them, which catalyze unique reactions other than the standard hydroxylation, increase the structural diversity of plant secondary metabolites. In isoquinoline alkaloid biosyntheses, several unique P450 reactions have been reported, such as methylenedioxy bridge formation, intramolecular C-C phenol-coupling and intermolecular C-O phenol-coupling reactions. We report here the isolation and characterization of a C-C phenol-coupling P450 cDNA (CYP80G2) from an expressed sequence tag library of cultured Coptis japonica cells. Structural analysis showed that CYP80G2 had high amino acid sequence similarity to Berberis stolonifera CYP80A1, an intermolecular C-O phenol-coupling P450 involved in berbamunine biosynthesis. Heterologous expression in yeast indicated that CYP80G2 had intramolecular C-C phenol-coupling activity to produce (S)-corytuberine (aporphine-type) from (S)-reticuline (benzylisoquinoline type). Despite this intriguing reaction, recombinant CYP80G2 showed typical P450 properties: its C-C phenol-coupling reaction required NADPH and oxygen and was inhibited by a typical P450 inhibitor. Based on a detailed substrate-specificity analysis, this unique reaction mechanism and substrate recognition were discussed. CYP80G2 may be involved in magnoflorine biosynthesis in C. japonica, based on the fact that recombinant C. japonica S-adenosyl-L-methionine:coclaurine N-methyltransferase could convert (S)-corytuberine to magnoflorine.  相似文献   

9.
10.
Eschscholzia californica produces various types of isoquinoline alkaloids. The structural diversity of these chemicals is often due to cytochrome P450 (P450) activities. Members of the CYP719A subfamily, which are found only in isoquinoline alkaloid-producing plant species, catalyze methylenedioxy bridge-forming reactions. In this study, we isolated four kinds of CYP719A genes from E. californica to characterize their functions. These four cDNAs encoded amino acid sequences that were highly homologous to Coptis japonica CYP719A1 and E. californica CYP719A2 and CYP719A3, which suggested that these gene products may be involved in isoquinoline alkaloid biosynthesis in E. californica, especially in methylenedioxy bridge-forming reactions. Expression analysis of these genes showed that two genes (CYP719A9 and CYP719A11) were preferentially expressed in plant leaf, where pavine-type alkaloids accumulate, whereas the other two showed higher expression in root than in other tissues. They were suggested to have distinct physiological functions in isoquinoline alkaloid biosynthesis. Enzyme assay analysis using recombinant proteins expressed in yeast showed that CYP719A5 had cheilanthifoline synthase activity, which was expected based on the similarity of its primary structure to that of Argemone mexicana cheilanthifoline synthase (deposited at DDBJ/GenBanktrade mark/EMBL). In addition, enzyme assay analysis of recombinant CYP719A9 suggested that it has methylenedioxy bridge-forming activity toward (R,S)-reticuline. CYP719A9 might be involved in the biosynthesis of pavine- and/or simple benzylisoquinoline-type alkaloids, which have a methylenedioxy bridge in an isoquinoline ring, in E. californica leaf.  相似文献   

11.
12.
Pisatin is the major phytoalexin produced by pea upon microbial infection. The enzyme that catalyzes the terminal step in the pisatin biosynthetic pathway is (+)6a-hydroxymaackiain 3-O-methyltransferase (HMM). We report here the isolation and characterization of two HMM cDNA clones (pHMM1 and pHMM2) made from RNA obtained from Nectria haematococca-infected pea tissue. The two clones were confirmed to encode HMM activity by heterologous expression in Escherichia coli/. The substrate specificity of the methyltransferases in E. coli was similar to the activity detected in CuCl2-treated pea tissue. Nucleotide sequence analysis of Hmm1 and Hmm2 revealed an open reading frame of 1080 bp and 360 amino acid residues which would encode 40.36 kda and 40.41 kDa polypeptides, respectively. The deduced amino acid sequence of HMM1 has 95.8% identity to HMM2, 40.6% identity to Zrp4, a putative O-methyltransferase (OMT) in maize root, and 39.1% to pBH72-F1, a putative OMT induced in barley by fungal pathogens or UV light. Comparison of the deduced amino acid sequences of the cDNA clones to OMTs from other higher plants identified the binding sites of S-adenosylmethionine (AdoMet). Southern blot analysis showed two closely linked genes with strong homology to Hmm in the pea genome.  相似文献   

13.
14.
15.
Trans-Caffeoyl-CoA 3-O-methyltransferase is involved in the reinforcement of the plant cell wall under conditions that trigger the disease resistance response (Pakusch, A.-E., Kneusel, R.E., and Matern, U. (1989) Arch. Biochem. Biophys. 271, 488-494). Partial amino acid sequences of the enzyme from cultured parsley cells that had been treated with a crude elicitor were identified (Pakusch, A.-E., Matern, U., and Schiltz, E. (1991) Plant Physiol. 95, 137-143), and corresponding degenerated oligonucleotides of 29- and 30-nucleotide length were synthesized. Northern hybridizations with these probes revealed one specific RNA band, and the amount of this RNA appeared to be transiently induced upon elicitation of the cells. De novo enzyme synthesis was confirmed by Western blotting experiments using a specific antiserum. The time course of induction closely followed the pattern observed for phenylalanine ammonia-lyase and suggested the operational coordination of the methyltransferase with the general phenylpropanoid pathway in vivo. Full size cDNA of 1.258 kilobases was isolated in lambda gt11, sequenced and found to contain a remarkably long 5'-untranslated leader sequence followed by an open reading frame that codes for a 241-residue polypeptide representing the 27-kDa subunit of the native, dimeric parsley enzyme. Almost no homology was found to protein sequences filed in data banks. Southern hybridization with genomic DNA suggested that only one or two copies of the respective gene(s) are present in the parsley genome. Caffeoyl-CoA-specific methyltransferase activity was demonstrated in taxonomically widely diverse plants such as Dianthus caryophyllus (Caryophyllaceae), Carthamus tinctorius (Asteraceae) or Daucus carota, and Ammi majus (Apiaceae) where it is commonly induced by elicitor treatment. In Northern blots with RNA from Ammi or Daucus, parsley cDNA hybridized specifically to one band comparable in size to the parsley RNA, whereas Dianthus and Carthamus appear to code for slightly larger RNAs (roughly 1.45 and 1.3 kilobases, respectively). Slot-blot hybridizations revealed in all instances the rapid and transient increase of mRNA levels in response to elicitation. This emphasizes the integral role of the enzyme in disease resistance expression in plants far beyond parsley and also illustrates a new physiological context for the induction of 4-coumarate:CoA ligase.  相似文献   

16.
Syntheses of trans-(1R,2R) and cis-(1S,2R)-1-amino-2-indanol (AI) were accomplished by a series of enantioselective enzymatic reactions using lipase and transaminase (TA). Lipase catalysed enantioselective hydrolysis of 2-acetoxyindanone was employed to prepare (R)-2-hydroxy indanone (HI). trans-AI (5 mM) (de > 98%) was produced from 20 mM (R)-2- HI using omega-TA and 50 mM (S)-1-aminoindan as an amino donor in water-saturated ethyl acetate. For the production of cis-AI, the diastereomeric (2R)-AI was synthesized from (R)-2-HI using reductive amination, and the kinetic resolution was performed with omega-TA. The enantioselectivity of omega-TA for (2R)-AI was increased to 22.1 in the presence of 5% gamma-cyclodextrin. cis-AI (15.4 mM) (96% de) was obtained from 40 mM (2R)-AI using 30 mM pyruvate and omega-TA (25 mg) in 10 mL of 100 mM phosphate buffer (pH 7.0).  相似文献   

17.
Comparative analysis of the predicted amino acid sequences of a number of plant O-methyltransferase cDNA clones show that they share some 32–71% sequence identity, and can be grouped according to the different compounds they utilise as substrates. Five highly conserved regions are proposed as a signature for plant O-methyltransferases, two of which (regions I and IV) are believed to be involved in S-adenosyl-L-methionine and metal binding, respectively. The glycine-rich signature regions include a 36 amino acid domain which is located in the mid-terminal section of the carboxy terminus of most O-methyltransferase sequences. Cladistic analysis of the amino acid sequences suggests that plant O-methyltransferases may have arisen from common ancestral genes that were driven by different structural and/or functional requirements, and whose descendants segregated into different biochemical species. A comprehensive classification of plant O-methyltransferases is proposed following the guidelines of the Commission of Plant Gene Nomenclature.  相似文献   

18.
A cDNA (LeAPP2) was cloned from tomato coding for a 654 amino acid protein of 72.7 kDa. The deduced amino acid sequence was >40% identical with that of mammalian aminopeptidase P, a metalloexopeptidase. All amino acids reported to be important for binding of the active site metals and catalytic activity, respectively, were conserved between LeAPP2 and its mammalian homologues. LeAPP2 was expressed in Escherichia coli in N-terminal fusion with glutathione S-transferase and was purified from bacterial extracts. LeAPP2 was verified as an aminopeptidase P, hydrolyzing the amino-terminal Xaa-Pro bonds of bradykinin and substance P. LeAPP2 also exhibited endoproteolytic activity cleaving, albeit at a reduced rate, the internal -Phe-Gly bond of substance P. Apparent K(m) (15.2 +/- 2.4 microm) and K(m)/k(cat) (0.94 +/- 0.11 mm(-1) x s(-1)) values were obtained for H-Lys(Abz)-Pro-Pro-pNA as the substrate. LeAPP2 activity was maximally stimulated by addition of 4 mm MnCl(2) and to some extent also by Mg(2+), Ca(2+), and Co(2+), whereas other divalent metal ions (Cu(2+), Zn(2+)) were inhibitory. Chelating agents and thiol-modifying reagents inhibited the enzyme. The data are consistent with LeAPP2 being a Mn(II)-dependent metalloprotease. This is the first characterization of a plant aminopeptidase P.  相似文献   

19.
(R)-3-Amino-3-phenylpropionic acid ((R)-beta-Phe) and (S)-3-amino-3-phenylpropionic acid ((S)-beta-Phe) are key compounds on account of their use as intermediates in synthesizing pharmaceuticals. Enantiomerically pure non-natural amino acids are generally prepared by enzymatic resolution of the racemic N-acetyl form, but despite the intense efforts this method could not be used for preparing enantiomerically pure beta-Phe, because the effective enzyme had not been found. Therefore, screening for microorganisms capable of amidohydrolyzing (R,S)-N-acetyl-3-amino-3-phenylpropionic acid ((R,S)-N-Ac-beta-Phe) in an enantiomer-specific manner was performed. A microorganism having (R)-enantiomer-specific amidohydrolyzing activity and another having both (R)-enantiomer- and (S)-enantiomer-specific amidohydrolyzing activities were obtained from soil samples. Using 16S rDNA analysis, the former organism was identified as Variovorax sp., and the latter as Burkholderia sp. Using these organisms, enantiomerically pure (R)-beta-Phe (>99.5% ee) and (S)-beta-Phe (>99.5% ee) with a high molar conversion yield (67%-96%) were obtained from the racemic substrate.  相似文献   

20.
Carvedilol is currently used as the racemic mixture, (R,S)-carvedilol, consisting of equal amounts of (R)-carvedilol, an alpha-blocker, and (S)-carvedilol, an alpha- and beta-blocker, which have never been tested in their optically pure forms in human subjects. We performed a randomized, double-blind, placebo-controlled, crossover study in 12 healthy male volunteers. Subjects received single oral doses of 25 mg (R,S)-carvedilol, 12.5 mg (R)-carvedilol, 12.5 mg (S)-carvedilol, and placebo at 8 AM as well as at 8 PM. Exercise was performed at 11 AM, and heart rate and blood pressure were measured at rest and after 10 min of exercise. Urine was collected between 10 AM and 6 PM, as well as between 10 PM and 6 AM, and the amounts of urinary 6-hydroxy-melatonin sulfate (aMT6s) were determined by RIA. Compared to placebo, (R)-carvedilol increased heart rate during exercise (+4%, P < 0.05) and recovery (+10%, P < 0.05); (S)-carvedilol decreased heart rate during exercise (-14%, P < 0.05) and recovery (-6%, P < 0.05), and systolic blood pressure during exercise (-12%, P < 0.05); (R,S)-carvedilol decreased heart rate during exercise (-11%, P < 0.05), and systolic blood pressure at rest (-7%, P < 0.05) and during exercise (-10%, P < 0.05). None of the agents had any significant effect on the release of aMT6s. Our results indicate that only (S)-carvedilol causes beta-blockade, whereas (R)-carvedilol appears to increase sympathetic tone, presumably as a physiological reaction to the decrease of blood pressure caused by alpha-blockade. None of the drugs had any influence on melatonin release. The weak clinical net effect of beta-blockade of (R,S)-carvedilol at rest might be one reason why this drug causes fewer side effects than other beta-blockers, such as a reduction of nocturnal melatonin release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号