首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first time the involvement of C-Reactive protein (CRP) in early (acute) and delayed ischemic (IPC) and pharmacological (chemical) preconditioning (CPC) in an in vivo model of rat myocardial infarction was presented. Acute IPC was produced by three 5 minute occlusion (ischemia) periods interspersed with 5 minute reperfusion, followed by 30 minute occlusion of the left coronary artery and 2 hour reperfusion injury. Acute CPC was produced by a k-opioid receptor agonist U50488H (5 mg/kg) applied i.v. 15 minutes before 30 minute ischemia/ 2 hour reperfusion. Delayed preconditioning was produced by 30 minute ischemia/ 2 hour reperfusion, induced 24 hour after either ischemic or pharmacological preconditioning. The myocardial ischemia/reperfusion injury was evaluated on the basis of total and cardiac creatine kinase isoenzyme activity, functional recovery of the heart (ECG), infarct size (% IS/RA) and mortality at the end of the experiments. The results obtained showed that: k-opioid receptor agonist U50488H mimics both the acute and delayed IPC in the above experimental protocol; Both acute IPC and most probably CPC act by opening of K(ATP) channels (the effects were blocked by nonspecific ATP-sensitive K channel blocker glybenclamide), and via activation of protein kinase C (a selective protein kinase C inhibitor chelerythrine blocked the efects); C-reactive protein (CRP) was significantly elevated by 54% in non-preconditioned acute ischemia/reperfusion injury. The elevation was more pronounced (82% increase) 24 hour after non-preconditioned ischemia/reperfusion injury. It reflected very well the increase in cardiac isoenzymes, infarct size and mortality of the rats, and can be used as a marker of the severity of myocardial injury in this model; The increase of CRP was prevented by both IPC and CPC in early, and especially in late preconditioning. This confirms the involvement of CRP as a marker in cardiac ischemic/reperfusion injury. It was concluded that in addition to the established involvement of adenosine, bradykinin, opioid and other receptors, a suppression of myocardial CRP/complement production might be involved in the biological mechanism of preconditioning. This could be a promising perspective in clinical interventions against ischemia/reperfusion injuries of the heart.  相似文献   

2.
A mild cerebral ischemic insult, also known as ischemic preconditioning (IPC), confers transient tolerance to a subsequent ischemic challenge in the brain. This study was conducted to investigate whether bone morphogenetic protein-7 (BMP-7) is involved in neuroprotection elicited by IPC in a rat model of ischemia. Ischemic tolerance was induced in rats by IPC (15 min middle cerebral artery occlusion, MCAO) at 48 h before lethal ischemia (2 h MCAO). The present data showed that IPC increased BMP-7 mRNA and protein expression after 24 h reperfusion following ischemia in the brain. In rats of ischemia, IPC-induced reduction of cerebral infarct volume and improvement of neuronal morphology were attenuated when BMP-7 was inhibited either by antagonist noggin or short interfering RNA (siRNA) pre-treatment. Besides, cerebral IPC-induced up-regulation of B-cell lymphoma 2 (Bcl-2) and down-regulation of cleaved caspase-3 at 24 h after ischemia/reperfusion (I/R) injury were reversed via inhibition of BMP-7. These findings indicate that BMP-7 mediates IPC-induced tolerance to cerebral I/R, probably through inhibition of apoptosis.  相似文献   

3.
目的:研究心肌缺血预适应(IPC)大鼠循环血中微囊泡(MVs)对大鼠在体心肌缺血/再灌注(I/R)损伤的作用及相关机制。方法:反复短暂结扎/松开大鼠冠状动脉左前降支建立大鼠IPC模型,自腹主动脉取血,超速离心法分离循环血中的IPC-MVs,并对其进行流式鉴定。建立在体大鼠心肌I/R模型,股静脉注射IPC-MVs 7 mg/kg。HE染色观察心肌形态学变化,TTC染色检测心肌梗死范围,TUNEL染色检测心肌细胞凋亡率。比色法测定血清乳酸脱氢酶(LDH)活力,分光光度法测定心肌组织caspase 3活力,Western blot法检测心肌组织Bcl-2、Bax蛋白表达水平。结果:流式细胞术检测IPC-MVs浓度为4380±745个/μl。与I/R组比较,IPC-MVs能够减轻I/R大鼠心肌组织损伤,缩小心肌梗死范围(P<0.01),减少心肌细胞凋亡数量(P<0.01),明显降低血清LDH活力(P<0.01),降低心肌组织caspase 3活力(P<0.01),升高Bcl-2蛋白表达(P<0.01),降低Bax蛋白表达(P<0.01),升高Bcl-2/Bax比值(P<0.01)。结论:IPC-MVs显著减轻大鼠在体心肌I/R损伤,通过上调心肌组织中Bcl-2的蛋白表达,下调Bax的蛋白表达,升高Bcl-2/Bax比值,降低caspase 3活力而发挥心肌保护作用。  相似文献   

4.
目的:研究雷米普利对糖尿病大鼠心肌缺血/再灌注损伤的保护作用,并从超微结构的角度初步探讨其作用机制。方法:链脲佐菌素致糖尿病大鼠被随机分为3组(n=16):缺血/再灌注(I/R)、缺血预适应(IPC)和雷米普利(RAM)组。RAM组每天用雷米普利(1mg/kg)灌胃,I/R和IPC组用等体积生理盐水灌胃。4周后各组动物均经历心肌缺血/再灌注损伤,IPC组于缺血前行心肌缺血预适应。连续监测心电图变化,测定心肌梗死面积,光、电镜下观察心肌形态学改变。结果:与I/R组比较,RAM及IPC组缺血期心脏ST-段抬高幅度降低,室早出现时间推迟,持续时间缩短,室速、室颤发生率降低,心肌梗死面积缩小,形态学观察心肌损伤减轻,心肌纤维及线粒体特征性结构保持清晰,血管通畅,内皮损伤减轻。结论:连续4周使用RAM对实验性糖尿病大鼠具有与IPC相似的心脏保护效应,机制可能与保护心肌细胞及线粒体、改善内皮功能等有关。  相似文献   

5.
目的:探讨在体情况下,骨骼肌缺血后处理对兔缺血/再灌注心肌坏死和凋亡的影响。方法:新西兰大白兔36只,随机分成3组(每组随机选取6只进行梗死范围的测定,另外6只进行凋亡测定):①假手术组(Sham组);②缺血/再灌注组(I/R组);③远端后处理组(RPostC组)。在缺血前、后及再灌注60 min、120 min分别抽血测定肌酸激酶(CK),乳酸脱氢酶(LDH)的活性。采用伊文思兰(evans blue)和三苯基氯化四氮唑(TTC)染色方法确定心肌缺血区范围以及心肌坏死区范围。用Tunel法检测兔心肌缺血区细胞凋亡情况,免疫组织化学方法检测心肌缺血区蛋白caspase-3、Bcl-2及Bax的表达。结果:RPostC组心肌坏死程度、再灌注末CK活性较I/R组明显减低。RPostC组缺血区心肌Tunel阳性指数显著低于I/R组(21.79%±1.07%vs35.81%±1.10%,P<0.05)。而RPostC组缺血区心肌细胞caspase-3阳性指数显著低于I/R组(25.03%±1.16%vs39%±2.43%,P<0.05)。与Sham组比较,I/R组及RPostC组Bax蛋白表达指数、Bcl-2蛋白表达指数均升高;但RPostC组的Bax/Bcl-2比值降低,而I/R组的Bax/Bcl-2比值升高。与I/R组相比较,RPostC组Bax蛋白表达指数及Bax/Bcl-2比值显著降低,Bcl-2表达指数显著升高,差异均有统计学意义。结论:远端后处理能够明显的减少缺血/再灌注心肌细胞的坏死和凋亡,其减轻心肌细胞凋亡的机制可能与抑制促凋亡基因caspase-3的活化及Bcl-2表达的上调有关。  相似文献   

6.
Pharmacological preconditioning limits myocardial infarct size after ischemia/reperfusion. Dexmedetomidine is an α2-adrenergic receptor agonist used in anesthesia that may have cardioprotective properties against ischemia/reperfusion injury. We investigate whether dexmedetomidine administration activates cardiac survival kinases and induces cardioprotection against regional ischemia/reperfusion injury. In in vivo and ex vivo models, rat hearts were subjected to 30 min of regional ischemia followed by 120 min of reperfusion with dexmedetomidine before ischemia. The α2-adrenergic receptor antagonist yohimbine was also given before ischemia, alone or with dexmedetomidine. Erk1/2, Akt and eNOS phosphorylations were determined before ischemia/reperfusion. Cardioprotection after regional ischemia/reperfusion was assessed from infarct size measurement and ventricular function recovery. Localization of α2-adrenergic receptors in cardiac tissue was also assessed. Dexmedetomidine preconditioning increased levels of phosphorylated Erk1/2, Akt and eNOS forms before ischemia/reperfusion; being significantly reversed by yohimbine in both models. Dexmedetomidine preconditioning (in vivo model) and peri-insult protection (ex vivo model) significantly reduced myocardial infarction size, improved functional recovery and yohimbine abolished dexmedetomidine-induced cardioprotection in both models. The phosphatidylinositol 3-kinase inhibitor LY-294002 reversed myocardial infarction size reduction induced by dexmedetomidine preconditioning. The three isotypes of α2-adrenergic receptors were detected in the whole cardiac tissue whereas only the subtypes 2A and 2C were observed in isolated rat adult cardiomyocytes. These results show that dexmedetomidine preconditioning and dexmedetomidine peri-insult administration produce cardioprotection against regional ischemia/reperfusion injury, which is mediated by the activation of pro-survival kinases after cardiac α2-adrenergic receptor stimulation.  相似文献   

7.
Adenosine-enhanced ischemic preconditioning (APC) extends the cardioprotection of ischemic preconditioning (IPC) by both significantly decreasing myocardial infarct size and significantly enhancing postischemic functional recovery. In this study, the role of adenosine receptors during ischemia-reperfusion was determined. Rabbit hearts (n = 92) were used for Langendorff perfusion. Control hearts were perfused for 180 min, global ischemia hearts received 30-min ischemia and 120-min reperfusion, and IPC hearts received 5-min ischemia and 5-min reperfusion before ischemia. APC hearts received a bolus injection of adenosine coincident with IPC. Adenosine receptor (A(1), A(2), and A(3)) antagonists were used with APC before ischemia and/or during reperfusion. GR-69019X (A(1)/A(3)) and MRS-1191/MRS-1220 (A(3)) significantly increased infarct size in APC hearts when administered before ischemia and significantly decreased functional recovery when administered during both ischemia and reperfusion (P < 0.05 vs. APC). DPCPX (A(1)) administered either before ischemia and/or during reperfusion had no effect on APC cardioprotection. APC-enhanced infarct size reduction is modulated by adenosine receptors primarily during ischemia, whereas APC-enhanced postischemic functional recovery is modulated by adenosine receptors during both ischemia and reperfusion.  相似文献   

8.
目的:线粒体通透性转换孔通透性改变是导致缺血再灌注损伤的原因,线粒体功能的致命性改变最终引起细胞凋亡,本研究旨在观察线粒体通透性转换孔(mitochondrial permeability transition pore,MPTP)在缺血再灌注及缺血预处理脑保护中的作用;方法:将体外培养8天的海马神经元细胞分为五组,正常对照组(A组),缺血再灌注组(B组),缺血预处理+缺血再灌注组(C组),苍术苷+缺血再灌注组(D组),缺血预处理+苍术苷+缺血再灌注组(E组)。使用流式细胞术检测各组细胞凋亡率,罗丹明123染色流式细胞术检测线粒体膜电位,Western-blot检测Bcl-2,Bax的表达。结果:与A组比较,其余四组线粒体膜电位均降低,神经元凋亡率升高(P〈0.05);与B组比较,c组线粒体膜电位升高,神经元凋亡率升高,Bcl-2表达上调,Bax表达下调(P〈0.05);与c组比较,E组粒体膜电位降低,神经元凋亡率升高,Bcl.2表达下调,Bax表达上调(P〈0.05)。结论:我们在细胞及分子生物学水平对MPTP及缺血预处理的研究后发现,缺血预处理能有效减轻海马神经元缺血再灌注损伤,抑制缺血再灌注后神经细胞凋亡,其机制与抑制MPTP的开放有关。  相似文献   

9.
Brief ischemia before normothermic ischemia protects hearts against reperfusion injury (ischemic preconditioning, IPC), but it is unclear whether it protects against long-term moderate hypothermic ischemia. We explored in isolated guinea pig hearts 1) the influence of two 2-min periods of normothermic ischemia before 4 h, 17 degrees C hypothermic ischemia on cardiac cytosolic [Ca(2+)], mechanical and metabolic function, and infarct size, and 2) the potential role of K(ATP) channels in eliciting cardioprotection. We found that IPC before 4 h moderate hypothermia improved myocardial perfusion, contractility, and relaxation during normothermic reperfusion. Protection was associated with markedly reduced diastolic [Ca(2+)] loading throughout both hypothermic storage and reperfusion. Global infarct size was markedly reduced from 36 +/- 2 (SE)% to 15 +/- 1% with IPC. Bracketing ischemic pulses with 200 microM 5-hydroxydecanoic acid or 10 microM glibenclamide increased infarct size to 28 +/- 3% and 26 +/- 4%, respectively. These results suggest that brief ischemia before long-term hypothermic storage adds to the cardioprotective effects of hypothermia and that this is associated with decreased cytosolic [Ca(2+)] loading and enhanced ATP-sensitive K channel opening.  相似文献   

10.
Ca(+) loading during reperfusion after myocardial ischemia is linked to reduced cardiac function. Like ischemic preconditioning (IPC), a volatile anesthetic given briefly before ischemia can reduce reperfusion injury. We determined whether IPC and sevoflurane preconditioning (SPC) before ischemia equivalently improve mechanical and metabolic function, reduce cytosolic Ca(2+) loading, and improve myocardial Ca(2+) responsiveness. Four groups of guinea pig isolated hearts were perfused: no ischemia, no treatment before 30-min global ischemia and 60-min reperfusion (control), IPC (two 2-min occlusions) before ischemia, and SPC (3.5 vol%, two 2-min exposures) before ischemia. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured at the left ventricular (LV) free wall with the fluorescent probe indo 1. Ca(2+) responsiveness was assessed by changing extracellular [Ca(2+)]. In control hearts, initial reperfusion increased diastolic [Ca(2+)] and diastolic LV pressure (LVP), and the maximal and minimal derivatives of LVP (dLVP/dt(max) and dLVP/dt(min), respectively), O(2) consumption, and cardiac efficiency (CE). Throughout reperfusion, IPC and SPC similarly reduced ischemic contracture, ventricular fibrillation, and enzyme release, attenuated rises in systolic and diastolic [Ca(2+)], improved contractile and relaxation indexes, O(2) consumption, and CE, and reduced infarct size. Diastolic [Ca(2+)] at 50% dLVP/dt(min) was right shifted by 32-53 +/- 8 nM after 30-min reperfusion for all groups. Phasic [Ca(2+)] at 50% dLVP/dt(max) was not altered in control but was left shifted by -235 +/- 40 nM [Ca(2+)] after IPC and by -135 +/- 20 nM [Ca(2+)] after SPC. Both SPC and IPC similarly reduce Ca(2+) loading, while augmenting contractile responsiveness to Ca(2+), improving postischemia cardiac function and attenuating permanent damage.  相似文献   

11.
Pharmacological preconditioning limits myocardial infarct size after ischemia/reperfusion. Dexmedetomidine is an α(2)-adrenergic receptor agonist used in anesthesia that may have cardioprotective properties against ischemia/reperfusion injury. We investigate whether dexmedetomidine administration activates cardiac survival kinases and induces cardioprotection against regional ischemia/reperfusion injury. In in vivo and ex vivo models, rat hearts were subjected to 30 min of regional ischemia followed by 120 min of reperfusion with dexmedetomidine before ischemia. The α(2)-adrenergic receptor antagonist yohimbine was also given before ischemia, alone or with dexmedetomidine. Erk1/2, Akt and eNOS phosphorylations were determined before ischemia/reperfusion. Cardioprotection after regional ischemia/reperfusion was assessed from infarct size measurement and ventricular function recovery. Localization of α(2)-adrenergic receptors in cardiac tissue was also assessed. Dexmedetomidine preconditioning increased levels of phosphorylated Erk1/2, Akt and eNOS forms before ischemia/reperfusion; being significantly reversed by yohimbine in both models. Dexmedetomidine preconditioning (in vivo model) and peri-insult protection (ex vivo model) significantly reduced myocardial infarction size, improved functional recovery and yohimbine abolished dexmedetomidine-induced cardioprotection in both models. The phosphatidylinositol 3-kinase inhibitor LY-294002 reversed myocardial infarction size reduction induced by dexmedetomidine preconditioning. The three isotypes of α(2)-adrenergic receptors were detected in the whole cardiac tissue whereas only the subtypes 2A and 2C were observed in isolated rat adult cardiomyocytes. These results show that dexmedetomidine preconditioning and dexmedetomidine peri-insult administration produce cardioprotection against regional ischemia/reperfusion injury, which is mediated by the activation of pro-survival kinases after cardiac α(2)-adrenergic receptor stimulation.  相似文献   

12.
Magnolol, an active component extracted from Magnolia officinalis, has been reported to have protective effect on ischemia and reperfusion (I/R)-induced injury in experimental animals. The aim of the present investigation was to further evaluate the mechanism(s) by which magnolol reduces I/R-induced myocardial injury in rats in vivo. Under anesthesia, left anterior descending (LAD) coronary artery was occluded for 30 min followed by reperfusion for 24 h (for infarct size and cardiac function analysis). In some experiments, reperfusion was limited to 1 h or 6 h for analysis of biochemical and molecular events. Magnolol and DMSO solution (vehicle) were injected intra-peritoneally 1 h prior to I/R insult. The infarct size was measured by TTC technique and heart function was monitored by Millar Catheter. Apoptosis related events such as p-ERK, p-Bad, Bcl-xl and cytochrome c expression were evaluated by Western blot analysis and myocardial caspase-3 activity was also measured. Magnolol (10 mg/kg) reduced infarct size by 50% (P < 0.01 versus vehicle), and also improved I/R-induced myocardial dysfunction. Left ventricular systolic pressure and positive and negative maximal values of the first derivative of left ventricular pressure (dP/dt) were significantly improved in magnolol-treated rats. Magnolol increased the expression of phosphor ERK and Bad which resulted in inhibition of myocardial apoptosis as evidenced by TUNEL analysis and DNA laddering experiments. Application of PD 98059, a selective MEK1/2 inhibitor, strongly antagonized the effect of magnolol. Taken together, we concluded that magnolol inhibits apoptosis through enhancing the activation of ERK1/2 and modulation of the Bcl-xl proteins which brings about reduction of infarct size and improvement of cardiac function in I/R-induced injury.  相似文献   

13.
Reperfusion is the definitive treatment to salvage ischemic myocardium from infarction. A primary determinant of infarct size is the duration of ischemia. In myocardium that has not been irreversibly injured by ischemia, reperfusion induces additional injury in the area at risk. The heart has potent innate cardioprotective mechanisms against ischemia-reperfusion that reduce infarct size and other presentations of postischemic injury. Ischemic preconditioning (IPC) applied before the prolonged ischemia exerts the most potent protection observed among known strategies. It has been assumed that IPC exerts protection during ischemia. However, recent data suggest that cardioprotection is also exerted during reperfusion. Postconditioning (PoC), defined as brief intermittent cycles of ischemia alternating with reperfusion applied after the ischemic event, has been shown to reduce infarct size, in some cases equivalent to that observed with IPC. Although there are similarities in mechanisms of cardioprotection by these two interventions, there are key differences that go beyond simply exerting these mechanisms before or after ischemia. A significant limitation of IPC has been the inability to apply this maneuver clinically except in situations where the ischemic event can be predicted. On the other hand, PoC is applied at the point of service in the hospital (cath-lab for percutaneous coronary intervention, coronary artery bypass grafting, and other cardiac surgery) where and when reperfusion is initiated. Initial clinical studies are in agreement with the success and extent to which PoC reduces infarct size and myocardial injury, even in the presence of multiple comorbidities.  相似文献   

14.
Ornithine decarboxylase (ODC) is the first rate-limiting enzyme in polyamine biosynthesis, which is essential for cell survival. We hypothesized that the ODC/polyamine system is involved in ischemic preconditioning (IPC)-mediated cardioprotection through the activation of Erk1/2 and Akt and through the inhibition of the mitochondrial permeability transition (mPT). Isolated rat hearts were subjected to 40 min of ischemia either with or without IPC (3 cycles of 5-min global ischemia), and ODC protein expression, polyamine content, and Akt and Erk1/2 phosphorylation were evaluated after 30 min of reperfusion. IPC significantly upregulated the ODC/polyamine pathway, promoted Erk1/2 and Akt phosphorylation, and reduced the infarct size and heart dysfunction after reperfusion. An inhibitor of ODC, α-difluoromethylornithine (DFMO), abolished the IPC-induced cardioprotection. Moreover, the inhibition of the IPC-induced activation of Erk1/2 and Akt using PD98059 or wortmannin downregulated the ODC/polyamine system. In separate studies, the Ca2+ load required to open the mPT pore was significantly lower in DFMO-treated cardiac mitochondria than in mitochondria from IPC hearts. Furthermore, spermine or spermidine significantly inhibited the mPT induced by CaCl2. These results suggest that IPC upregulates the ODC/polyamine system and mediates preconditioning cardioprotection, which may depend on the phosphorylation/activation of Erk1/2 and Akt and on the inhibition of the mPT during reperfusion.  相似文献   

15.
Pharmacological activation of the prosurvival kinases Akt and ERK-1/2 at reperfusion, after a period of lethal ischemia, protects the heart against ischemia-reperfusion injury. We hypothesized that ischemic preconditioning (IPC) protects the heart by phosphorylating the prosurvival kinases Akt and ERK-1/2 at reperfusion. In isolated perfused Sprague-Dawley rat hearts subjected to 35 min of lethal ischemia, the phosphorylation states of Akt, ERK-1/2, and p70 S6 kinase (p70S6K) were determined after 15 min of reperfusion, and infarct size was measured after 120 min of reperfusion. IPC induced a biphasic response in Akt and ERK-1/2 phosphorylation during the preconditioning and reperfusion phases after the period of lethal ischemia. IPC induced a fourfold increase in Akt, ERK-1/2, and p70S6K phosphorylation at reperfusion and reduced the infarct risk-to-volume ratio (56.9 +/- 5.7 and 20.9 +/- 3.6% for control and IPC, respectively, P < 0.01). Inhibiting the IPC-induced phosphorylation of Akt, ERK-1/2, and p70S6K at reperfusion with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002 or the MEK-1/2 inhibitor PD-98059 abrogated IPC-induced protection (46.3 +/- 5.8, 49.2 +/- 4.0, and 20.9 +/- 3.6% for IPC + LY-294002, IPC + PD-98059, and IPC, respectively, P < 0.01), demonstrating that the phosphorylation of these kinases at reperfusion is required for IPC-induced protection. In conclusion, we demonstrate that the reperfusion phase following sustained ischemia plays an essential role in mediating IPC-induced protection. Specifically, we demonstrate that IPC protects the heart by phosphorylating the prosurvival kinases Akt and ERK-1/2 at reperfusion.  相似文献   

16.
Sun D  Huang J  Zhang Z  Gao H  Li J  Shen M  Cao F  Wang H 《PloS one》2012,7(3):e33491

Background

The present study was to investigate the effects and mechanism of Luteolin on myocardial infarct size, cardiac function and cardiomyocyte apoptosis in diabetic rats with myocardial ischemia/reperfusion (I/R) injury.

Methodology/Principal Findings

Diabetic rats underwent 30 minutes of ischemia followed by 3 h of reperfusion. Animals were pretreated with or without Luteolin before coronary artery ligation. The severity of myocardial I/R induced LDH release, arrhythmia, infarct size, cardiac function impairment, cardiomyocyte apoptosis were compared. Western blot analysis was performed to elucidate the target proteins of Luteolin. The inflammatory cytokine production were also examined in ischemic myocardium underwent I/R injury. Our results revealed that Luteolin administration significantly reduced LDH release, decreased the incidence of arrhythmia, attenuated myocardial infarct size, enhanced left ventricular ejection fraction and decreased myocardial apoptotic death compared with I/R group. Western blot analysis showed that Luteolin treatment up-regulated anti-apoptotic proteins FGFR2 and LIF expression, increased BAD phosphorylation while decreased the ratio of Bax to Bcl-2. Luteolin treatment also inhibited MPO expression and inflammatory cytokine production including IL-6, IL-1a and TNF-a. Moreover, co-administration of wortmannin and Luteolin abolished the beneficial effects of Luteolin.

Conclusions/Significance

This study indicates that Luteolin preserves cardiac function, reduces infarct size and cardiomyocyte apoptotic rate after I/R injury in diabetic rats. Luteolin exerts its action by up-regulating of anti-apoptotic proteins FGFR2 and LIF expression, activating PI3K/Akt pathway while increasing BAD phosphorylation and decreasing ratio of Bax to Bcl-2.  相似文献   

17.
Local and remote ischemic preconditioning (IPC) reduce ischemia-reperfusion (I/R) injury and preserve cardiac function. In this study, we tested the hypothesis that remote preconditioning is memorized by the explanted heart and yields protection from subsequent I/R injury and that the underlying mechanism involves sarcolemmal and mitochondrial ATP-sensitive K(+) (K(ATP)) channels. Male Wistar rats (300-350 g) were randomized to a control (n = 10), a remote IPC (n = 10), and a local IPC group (n = 10). Remote IPC was induced by four cycles of 5 min of limb ischemia, followed by 5 min of reperfusion. Local IPC was induced by four cycles of 2 min of regional myocardial ischemia, followed by 3 min of reperfusion. The heart was excised within 5 min after the final cycle of preconditioning, mounted in a perfused Langendorff preparation for 40 min of stabilization, and subjected to 45 min of sustained ischemia by occluding the left coronary artery and 120 min of reperfusion. I/R injury was assessed as infarct size by triphenyltetrazolium staining. The influence of sarcolemmal and mitochondrial K(ATP) channels on remote preconditioning was assessed by the addition of glibenclamide (10 microM, a nonselective K(ATP) blocker), 5-hydroxydecanoic acid (5-HD; 100 microM, a mitochondrial K(ATP) blocker), and HMR-1098 (30 microM, a sarcolemmal K(ATP) blocker) to the Langendorff preparation before I/R. The role of mitochondrial K(ATP) channels as an effector mechanism for memorizing remote preconditioning was further studied by the effect of the specific mitochondrial K(ATP) activator diaxozide (10 mg/kg) on myocardial infarct size. Remote preconditioning reduced I/R injury in the explanted heart (0.17 +/- 0.03 vs. 0.39 +/- 0.05, P < 0.05) and improved left ventricular function during reperfusion compared with control (P < 0.05). Similar effects were obtained with diazoxide. Remote preconditioning was abolished by the addition of 5-HD and glibenclamide but not by HMR-1098. In conclusion, the protective effect of remote preconditioning is memorized in the explanted heart by a mechanism that involves mitochondrial K(ATP) channels.  相似文献   

18.
Calcium-sensing receptors (CaSRs) are G-protein coupled receptors which regulate systemic calcium homeostasis and also participate in cell proliferation, differentiation and apoptosis. We have previously shown that CaSR can induce apoptosis in isolated rat adult hearts and in normal rat neonatal cardiomyocytes. However, no knowledge exists concerning the role of CaSR in apoptosis induced by ischemia and reperfusion in neonatal cardiac myocytes. Therefore, in the present study, we incubated primary neonatal rat ventricular cardiomyocytes in ischemia-mimetic solution for 2h, then re-incubated them in a normal culture medium for 24h to establish a model of simulated ischemia/reperfusion (I/R). We assayed the apoptotic ratio of the cardiomyocytes by flow cytometry; observed morphological alterations by transmission electron microscope; analyzed the expression of caspase-3, Bcl-2, CaSR, extracellular signal-regulated protein kinase (ERK), and Fas/Fas ligand (FasL) by Western blotting; and measured the concentration of intracellular calcium by Laser Confocal Scanning Microscopy. The results showed that simulated I/R increased the expression of CaSR and cardiomyocyte apoptosis. GdCl3, a specific activator of CaSR, further enhanced CaSR expression, along with increases in intracellular calcium and apoptosis in cardiomyocytes during I/R. Activation of CaSR down-regulated Bcl-2 expression, up-regulated caspase-3 and Fas/FasL expression and stimulated ERK1/2 phosphorylation. In summary, CaSR is involved in I/R injury and apoptosis of neonatal rat ventricular cardiomyocytes by inhibiting Bcl-2, inducing calcium overload and activating the Fas/FasL death receptor pathway.  相似文献   

19.
This investigation examined the effect of preconditioning in an in vivo model of ischemia-reperfusion injury. Anesthetized New Zealand White rabbits underwent 30 min of regional myocardial ischemia followed by 2 h of reperfusion. Hearts preconditioned with two cycles of 5 min ischemia-10 min reperfusion (IPC) or with the ATP-sensitive K (K(ATP)) channel opener, diazoxide (10 mg/kg), exhibited significantly (P < 0.05) smaller infarcts compared with control. These treatments also significantly (P < 0.001 to P < 0.05) reduced C1q, C1r, C3, C8, and C9 mRNA in the areas at risk (AAR). The K(ATP) channel blocker 5-hydroxydecanoate (5-HD; 10 mg/kg) attenuated infarct size reduction elicited by IPC and diazoxide treatment. 5-HD partially reversed the decrease in complement expression caused by IPC but not diazoxide. There were no significant differences in complement gene expression in the nonrisk regions and livers of all groups. Western blot analysis revealed that IPC also reduced membrane attack complex expression in the AAR. The data demonstrate that preconditioning significantly decreases reperfusion-induced myocardial complement expression in vivo.  相似文献   

20.

Aims

Ischemic preconditioning (IPC) is a potent form of endogenous protection. However, IPC-induced cardioprotective effect is significantly blunted in insulin resistance-related diseases and the underlying mechanism is unclear. This study aimed to determine the role of glucose metabolism in IPC-reduced reperfusion injury.

Methods

Normal or streptozotocin (STZ)-treated diabetic rats subjected to 2 cycles of 5 min ischemia/5 min reperfusion prior to myocardial ischemia (30 min)/reperfusion (3 h). Myocardial glucose uptake was determined by 18F-fluorodeoxyglucose-positron emission tomography (PET) scan and gamma-counter biodistribution assay.

Results

IPC exerted significant cardioprotection and markedly improved myocardial glucose uptake 1 h after reperfusion (P<0.01) as evidenced by PET images and gamma-counter biodistribution assay in ischemia/reperfused rats. Meanwhile, myocardial translocation of glucose transporter 4 (GLUT4) to plasma membrane together with myocardial Akt and AMPK phosphorylation were significantly enhanced in preconditioned hearts. Intramyocardial injection of GLUT4 siRNA markedly decreased GLUT4 expression and blocked the cardioprotection of IPC as evidence by increased myocardial infarct size. Moreover, the PI3K inhibitor wortmannin significantly inhibited activation of Akt and AMPK, reduced GLUT4 translocation, glucose uptake and ultimately, depressed IPC-induced cardioprotection. Furthermore, IPC-afforded antiapoptotic effect was markedly blunted in STZ-treated diabetic rats. Exogenous insulin supplementation significantly improved glucose uptake via co-activation of myocardial AMPK and Akt and alleviated ischemia/reperfusion injury as evidenced by reduced myocardial apoptosis and infarction size in STZ-treated rats (P<0.05).

Conclusions

The present study firstly examined the role of myocardial glucose metabolism during reperfusion in IPC using direct genetic modulation in vivo. Augmented glucose uptake via co-activation of myocardial AMPK and Akt in reperfused myocardium is essential to IPC-alleviated reperfusion injury. This intrinsic metabolic modulation and cardioprotective capacity are present in STZ-treated hearts and can be triggered by insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号