首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Control of the G2/M transition   总被引:5,自引:0,他引:5  
  相似文献   

2.
BACKGROUND INFORMATION: Centrosome movements at the onset of mitosis result from a balance between the pulling and pushing forces mediated by microtubules. The structural stability of the centrosome core structure, the centriole pair, is correlated with a heavy polyglutamylation of centriole tubulin. RESULTS: Using HeLa cells stably expressing centrin-green fluorescent protein as a centriole marker, we monitored the effect of microinjecting an anti-(polyglutamylated tubulin) monoclonal antibody, GT335, in G1/S or G2 cells. In contrast with the slow effect of the monoclonal antibody GT335 during interphase, a dramatic and rapid centrosome fragmentation occurred in cells microinjected in G2 that was both Eg5- and dynein-dependent. Inhibition of either one of these two motors significantly decreased the scattering of centrosome fragments, and inhibition of centrosome segregation by impairing microtubule dynamics abolished centrosome fragmentation. CONCLUSIONS: Our results demonstrate that the compact structure of the mitotic centrosome is capable of absorbing most of the pulling and pushing forces during G2/M transition and suggest that centrosomes could act as mechanosensors integrating tensions during cell division.  相似文献   

3.
In the present study, we investigated the expression of cyclin A2 in mouse two-cell embryos to elucidate the role of cyclin A2 at the G2/M transition. Two forms of cyclin A2 on SDS-PAGE (an upper and a lower band) were detected in two-cell embryos synchronized at the M phase by nocodazole. To investigate the nature of this shift, embryos synchronized at the M phase were treated with alkaline phosphatase (AP). The upper band of cyclin A2 was fainter in AP-treated embryos than in nontreated embryos. This result indicates that cyclin A2 in mouse two-cell embryos is phosphorylated and the band on SDS-PAGE shifts up during the G2/M transition. In addition, we examined the sequential expression of cyclin A2 in two-cell blocked embryos after OA treatment. The upper band of cyclin A2 was first detected at 2 hr after the treatment, corresponding to the timing of Cdc2 kinase activation. In two-cell embryos after removal from nocodazole treatment, the phosphorylated form of cyclin A2 protein decreased abruptly just before cytokinesis. These results suggest that the mechanism of cyclin A2 degradation in mouse two-cell embryos may be different from that in somatic cells.  相似文献   

4.
Induction of G(2)/M phase transition in mitotic and meiotic cell cycles requires activation by phosphorylation of the protein phosphatase Cdc25. Although Cdc2/cyclin B and polo-like kinase (PLK) can phosphorylate and activate Cdc25 in vitro, phosphorylation by these two kinases is insufficient to account for Cdc25 activation during M phase induction. Here we demonstrate that p42 MAP kinase (MAPK), the Xenopus ortholog of ERK2, is a major Cdc25 phosphorylating kinase in extracts of M phase-arrested Xenopus eggs. In Xenopus oocytes, p42 MAPK interacts with hypophosphorylated Cdc25 before meiotic induction. During meiotic induction, p42 MAPK phosphorylates Cdc25 at T48, T138, and S205, increasing Cdc25's phosphatase activity. In a mammalian cell line, ERK1/2 interacts with Cdc25C in interphase and phosphorylates Cdc25C at T48 in mitosis. Inhibition of ERK activation partially inhibits T48 phosphorylation, Cdc25C activation, and mitotic induction. These findings demonstrate that ERK-MAP kinases are directly involved in activating Cdc25 during the G(2)/M transition.  相似文献   

5.
Xenopus oocyte maturation is analogous to G2/M transition and characterized by germinal vesicle breakdown (GVBD), spindle formation, activation of MPF and Mos-Xp42(Mpk1) pathways. It is accompanied prior to GVBD by a transient increase in intracellular pH. We determined that a well known acidifying compound, NH(4)Cl, delayed progesterone-induced GVBD in a dose-dependent manner. GVBD(50) was delayed up to 2.3-fold by 10 mM NH(4)Cl. Cyclin B2 phosphorylation, Cdk1 Tyr15 dephosphorylation as well as p39(Mos) accumulation, Xp42(Mpk1) and p90(Rsk) phosphorylation induced by progesterone were also delayed by incubation of oocyte in NH(4)Cl. The delay induced by NH(4)Cl was prevented by injection of MOPS buffer pH 7.7. In contrast to acidifying medium, alkalyzing treatment such as Tris buffer pH 9 injections, accelerated GVBD, MPF and Xp42(Mpk1) activation, indicating that pHi changes control early steps of G2/M dynamics. When injected in an immature recipient oocyte, egg cytoplasm triggers GVBD through MPF auto-amplification, independently of protein synthesis. In these conditions, GVBD and Xp42(Mpk1) activation were delayed by high concentration of NH(4)Cl, which never prevented or delayed MPF activation. Strickingly, NH(4)Cl strongly inhibited thiophosphorylated active MAPK-induced GVBD and MPF activation. Nevertheless, Tris pH 9 did not have any effects on egg cytoplasm- or active MAPK-induced GVBD. Taken together, our results suggest that dynamic of early events driving Xp42(Mpk1) and MPF activation induced by progesterone may be negatively or positively regulated by pH(i) changes. However Xp42(Mpk1) pathway was inhibited by acidification alone. Finally, MPF auto-amplification loop was not sensitive to pH(i) changes.  相似文献   

6.
Regulation of maturation in meiotically competent mammalian oocytes is a complex process involving the carefully coordinated exchange of signals between the somatic and germ cell compartments of the ovarian follicle via paracrine and cell–cell coupling pathways. This review highlights recent advances in our understanding of how such signaling controls both meiotic arrest and gonadotropin‐triggered meiotic resumption in competent oocytes and relates them to the historical context. Emphasis will be on rodent systems, where many of these new findings have taken place. A regulatory scheme is then proposed that integrates this information into an overall framework for meiotic regulation that demonstrates the complex interplay between different follicular compartments. Mol. Reprod. Dev. 77: 566–585, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Cell division cycle protein, CDC6, is essential for the initiation of DNA replication. CDC6 was recently shown to inhibit the microtubule-organizing activity of the centrosome. Here, we show that CDC6 is localized to the spindle from pro-metaphase I (MI) to MII stages of oocytes, and it plays important roles at two critical steps of oocyte meiotic maturation. CDC6 depletion facilitated the G2/M transition (germinal vesicle breakdown [GVBD]) through regulation of Cdh1 and cyclin B1 expression and CDK1 (CDC2) phosphorylation in a GVBD-inhibiting culture system containing milrinone. Furthermore, GVBD was significantly decreased after knockdown of cyclin B1 in CDC6-depleted oocytes, indicating that the effect of CDC6 loss on GVBD stimulation was mediated, at least in part, by raising cyclin B1. Knockdown of CDC6 also caused abnormal localization of γ-tubulin, resulting in defective spindles, misaligned chromosomes, cyclin B1 accumulation, and spindle assembly checkpoint (SAC) activation, leading to significant pro-MI/MI arrest and PB1 extrusion failure. These phenotypes were also confirmed by time-lapse live cell imaging analysis. The results indicate that CDC6 is indispensable for maintaining G2 arrest of meiosis and functions in G2/M checkpoint regulation in mouse oocytes. Moreover, CDC6 is also a key player regulating meiotic spindle assembly and metaphase-to-anaphase transition in meiotic oocytes.  相似文献   

8.
9.
Wee1 is a protein kinase that negatively regulates mitotic entry in G2 phase by suppressing cyclin B-Cdc2 activity, but its spatiotemporal regulations remain to be elucidated. We observe the dynamic behavior of Wee1 in Schizosaccharomyces pombe cells and manipulate its localization and kinase activity to study its function. At late G2, nuclear Wee1 efficiently suppresses cyclin B-Cdc2 around the spindle pole body (SPB). During the G2/M transition when cyclin B-Cdc2 is highly enriched at the SPB, Wee1 temporally accumulates at the nuclear face of the SPB in a cyclin B-Cdc2-dependent manner and locally suppresses both cyclin B-Cdc2 activity and spindle assembly to counteract a Polo kinase-dependent positive feedback loop. Then Wee1 disappears from the SPB during spindle assembly. We propose that regulation of Wee1 localization around the SPB during the G2/M transition is important for proper mitotic entry and progression.  相似文献   

10.
11.
12.
The molecular events regulating hormone-induced oocyte activation and meiotic maturation are probably best understood in Xenopus laevis. In X. laevis, progesterone activates the G2-arrested oocyte, induces entry into M phase of meiosis I (MI) and resumption of the meiotic cell cycles, and leads to the formation of a mature, fertilizable egg. Oocytes of Xenopus tropicalis offer several practical advantages over those of X. laevis, including faster and more synchronous meiotic cell cycle progression, less seasonal variability, and the availability of transgenic approaches. Previous work found several similarities in the pathways regulating oocyte maturation in the two species. Here, we report several additional ones that are conserved in X. tropicalis. (1). Injection of Mos mRNA into G2-arrested oocytes activates the MAP kinase cascade and induces the G2/MI transition. (2). Injection of the beta subunit of the kinase CK2 (a negative regulator of Mos and oocyte activation) delays the G2/MI transition. (3). Elevating PKA activity blocks progesterone-induced maturation; repressing PKA activity induces entry into MI in the absence of progesterone. (4). LF (anthrax lethal factor), which cleaves certain MAP kinase kinases, strongly reduces both the rate and extent of entry into MI. In contrast to the one previously reported major difference between oocytes of the two species, we find that injection of egg cytoplasm ("MPF activity") into G2-arrested X. tropicalis oocytes induces entry into meiosis I even when protein synthesis is blocked, just as it does in oocytes of X. laevis. These results indicate that much of what we have learned from studies of X. laevis oocytes holds for those of X. tropicalis, and suggest that X. tropicalis oocytes offer a good experimental system for investigating certain questions that require a rapid, synchronous progression through the G2/meiosis I transition.  相似文献   

13.
14.
15.
The dynamic balance between polymerization and depolymerization of microtubules is critical for cells to enter and exit mitosis, and drugs that disrupt this balance, such as taxol, colchicine, and nocodazole, arrest the cell cycle in mitosis. Although the Raf/MEK/MAPK pathway can be activated by these drugs, its role in mitosis has not been addressed. Here, we characterize activation of Raf/MEK/MAPK by nocodazole when mitosis is induced. We find that at early time points (up to 3 h) in nocodazole induction, Raf/MEK/MAPK is activated, and inhibition of MAPK activation by a MEK inhibitor, PD98059 or U0126, reduces the number of cells entering mitosis by creating a block at G(2). At later time points and in mitosis, activation of MEK/MAPK is severely inhibited, even though Raf-1 activity remains high and can be further increased by growth factor. This inhibition is reversed when cells are released from metaphase and enter G(0)/G(1) phase. In addition, we find that binding of Raf-1 to 14-3-3 is progressively induced by nocodazole, reaching a maximum in mitosis, and that this binding is necessary to maintain mitotic Raf-1 activity. Our present study indicates that activation of the Raf/MEK/MAPK pathway is necessary for the G(2)/M progression.  相似文献   

16.
The mammalian Golgi apparatus is organized in the form of a ribbon‐like structure positioned near the centrosome. Despite its multimodular organization, the Golgi complex is characterized by a prominent structural plasticity, which is crucial during essential physiological processes, such as the G2 phase of the cell cycle, during which the Golgi ribbon must be “unlinked” into isolated stacks to allow progression into mitosis. Here we show that the Golgi‐associated protein GRASP65, which is well known for its role in Golgi stacking and ribbon formation, is also required for the organization of the microtubule cytoskeleton. GRASP65 is not involved in microtubule nucleation or anchoring. Instead, it is required for the stabilization of newly nucleated microtubules, leading to their acetylation and clustering of Golgi stacks. Ribbon formation and microtubule stabilization are both regulated by JNK/ERK‐mediated phosphorylation of S274 of GRASP65, suggesting that this protein can coordinate the Golgi structure with microtubule organization. In agreement with an important role, tubulin acetylation is strongly reduced during the G2 phase of the cell cycle, allowing the separation of the Golgi stacks. Thus, our data reveal a fundamental role of GRASP65 in the integration of different stimuli to modulate Golgi structure and microtubule organization during cell division.  相似文献   

17.
Differentiation of placental trophoblast stem (TS) cells to trophoblast giant (TG) cells is accompanied by transition from a mitotic cell cycle to an endocycle. Here, we report that Cdh1, a regulator of the anaphase-promoting complex/cyclosome (APC/C), negatively regulates mitotic entry upon the mitotic/endocycle transition. TS cells derived from homozygous Cdh1 gene-trapped (Cdh1GT/GT) murine embryos accumulated mitotic cyclins and precociously entered mitosis after induction of TS cell differentiation, indicating that Cdh1 is required for the switch from mitosis to the endocycle. Furthermore, the Cdh1GT/GT TS cells and placenta showed aberrant expression of placental differentiation markers. These data highlight an important role of Cdh1 in the G2/M transition during placental differentiation.  相似文献   

18.
Speedy: a novel cell cycle regulator of the G2/M transition   总被引:1,自引:0,他引:1       下载免费PDF全文
Stage VI Xenopus oocytes are suspended at the G2/M transition of meiosis I, and represent an excellent system for the identification and examination of cell cycle regulatory proteins. Essential cell cycle regulators such as MAPK, cyclins and mos have the ability to induce oocyte maturation, causing the resumption of the cell cycle from its arrested state. We have identified the product of a novel Xenopus gene, Speedy or Spy1, which is able to induce rapid maturation of Xenopus oocytes, resulting in the induction of germinal vesicle breakdown (GVBD) and activation of M-phasepromoting factor (MPF). Spy1 activates the MAPK pathway in oocytes, and its ability to induce maturation is dependent upon this pathway. Spy1-induced maturation occurs much more rapidly than maturation induced by other cell cycle regulators including progesterone, mos or Ras, and does not require any of these proteins or hormones, indicating that Spy1-induced maturation proceeds through a novel regulatory pathway. In addition, we have shown that Spy1 physically interacts with cdk2, and prematurely activates cdk2 kinase activity. Spy1 therefore represents a novel cell cycle regulatory protein, inducing maturation through the activation of MAPK and MPF, and also leading to the premature activation of cdk2.  相似文献   

19.
20.
Summry— Interactions between cells and extracellular matrix play a crucial role during development by controlling tissue remodelling and cell migration. Integrins are the main family of cell surface receptors for extracellular matrix. The knockout of integrin genes in mouse embryos has provided new insights into the function of these receptors during embryonic development and morphogenesis. The lethality observed either during embryonic life or after birth suggests that many integrins are essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号