首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthesis of a component SGM 110, specifically localized to the membrane of insulin secretory granules, was studied in rat insulinoma cells and in normal islets of Langerhans. Cells or islets were labelled with [35S]methionine or [3H]mannose and SGM 110 was immunoprecipitated by using a monoclonal antibody. Pulse-chase experiments demonstrated that the nascent polypeptide was cotranslationally glycosylated to form a 97,000 Da peptide which in turn was processed to the mature 110,000 Da form. A 50,000 Da form detected by immunoblotting with the same antibody was not conspicuously labelled even after a 20 h chase incubation, suggesting that it represented late processing of SGM 110 in lysosomes. With insulinoma cells, an increase in medium glucose concentration from 3 mM to 20 mM was without effect on the secretion of insulin or on the biosynthesis of (pro)insulin or SGM 110. In normal islets, however, 20 mM-glucose produced a 17-fold increase in (pro)insulin biosynthesis and a 13-fold increase in SGM 110 biosynthesis, compared with only a 2-fold increase in total protein synthesis, as judged by incorporation of [35S]methionine during a 1 h incubation. The effect of glucose on both (pro)insulin and SGM 110 biosynthesis was blocked by the addition of mannoheptulose, but not by the removal of extracellular calcium, both of which conditions inhibit insulin secretion. In contrast tolbutamide, an agent which stimulates insulin secretion, did not enhance the biosynthesis of (pro)insulin or SGM 110. It is concluded that at least one protein component of the insulin secretory granule membrane is synthesized co-ordinately with proinsulin and is subject to similar regulatory mechanisms. Factors which acutely control insulin secretion may also control granule biogenesis, although the two processes are not coupled in an obligatory fashion.  相似文献   

2.
It was possible to induce different metabolic states in sand rats of our breeding colony or in newly caught Egyptian sand rats, respectively, by feeding a pellet diet or vegetable diet (green cabbage). Newly captured sand rats fed only on native food were used as reference group (group C). Plasma IRI-level and glucose in vivo and [3H]-leucine incorporation into proinsulin and insulin, insulin secretion and insulin content in vitro were investigated. Sand rats fed on pellet chow and ad libitum (group B) developed a hyperinsulinism and showed higher sensitivity of [3H]-leucine incorporation into proinsulin and insulin to glucose (maximal stimulation at 3 mM) and increased incorporation rates in vitro. Restriction of pellet food to 35-40 kcal/animal/day (group A) lead to changes of all parameters, which were investigated in the same direction as in group B, but to a much smaller extent. Newly captured sand rats, which were fed green cabbage for 4 to 6 weeks divided into two groups: One group (group D1) was comparable to the normal group (C) in IRI levels, glucose levels, glucose sensitivity and amount of [3H]-leucine incorporation. The other group (group D2) tended to group A. Marked changes in insulin content and insulin secretion of isolated pancreatic islets could not be found in any group.  相似文献   

3.
In the present study, we evaluated the autocrine modulatory effect of insulin on glucose metabolism and glucose-induced insulin secretion in islets isolated from hamsters with insulin resistance (IR) induced by administration of a sucrose-rich diet (SRD) during 5 weeks. We used an approach of two metabolic pathways (glucose oxidation and utilization) based on the measurement of 14CO2 and 3H2O production from D-[U-14C]-glucose and D-[5-(3)H]-glucose, respectively, in isolated islets incubated with 3.3 and 16.7 mM glucose alone, or with 5 or 15 mU/ml insulin, anti-insulin guinea-pig serum (1:500), 25 microM nifedipine, or 150 nM wortmannin. Insulin release was measured by radioimmunoassay in islets incubated with 3.3 or 16.7 mM glucose, with or without 75, 150, and 300 nM wortmannin. Results showed that the stimulatory effect of insulin upon 14CO2 and 3H2O production in control islets was not observed in SRD islets. Addition of anti-insulin serum, nifedipine or wortmannin to the medium with 16.7 mM glucose decreased 14CO2 and 3H2O production in control but not in SRD islets. Whereas wortmannin did not decrease insulin release induced by 16.7 mM glucose in SRD hamsters, it did in controls. We can conclude that the autocrine stimulatory effect of insulin upon glucose metabolism observed in normal islets is attenuated or even absent in islets from IR animals. Such decreased islet sensitivity to insulin did not prevent the compensatory secretion of insulin from maintaining glucose homeostasis, suggesting that, at least in this model, the islets can put forward alternative mechanisms to overcome such defect.  相似文献   

4.
The biosynthesis of insulin in the islets of Langerhans is strongly controlled at the translational level by glucose. We have used a variety of experimental approaches in efforts to dissect the mechanisms underlying the stimulatory effect of glucose. To assess its effects on rates of peptide-chain elongation, isolated rat islets were labelled with [3H]leucine at different glucose concentrations in the presence or absence of low concentrations of cycloheximide. Under these conditions, at glucose concentrations up to 5.6 mM, endogenous insulin mRNA did not become rate-limiting for the synthesis of insulin, whereas stimulation of non-insulin protein synthesis was abolished by cycloheximide at all glucose concentrations, indicating either that insulin synthesis is selectively regulated at the level of elongation at glucose concentrations up to 5.6 mM, or that at these concentrations inactive insulin mRNA is transferred to an actively translating pool. Glucose-induced changes in the intracellular distribution of insulin mRNA in cultured islets were assessed by subcellular fractionation and blot-hybridization using insulin cDNA probes. At glucose concentrations above 3.3 mM, cytoplasmic insulin mRNA was increasingly transferred to fractions co-sedimenting with ribosomes, and relatively more of the ribosome-associated insulin mRNA became membrane-associated, consistent with effects of glucose above 3.3 mM on both the initiation of insulin mRNA and SRP (signal recognition particle)-mediated transfer of cytosolic nascent preproinsulin to the endoplasmic reticulum. When freshly isolated islets were homogenized and incubated with 125I-Tyr-tRNA, run-off incorporation of 125I into preproinsulin was increased by prior incubation of the islets at 16.7 mM-glucose. The addition of purified SRP receptor increased the run-off incorporation of [125I]iodotyrosine into preproinsulin, especially when the islets had been preincubated at 16.7 mM-glucose. These findings taken together suggest that glucose may stimulate elongation rates of nascent preproinsulin at concentrations up to 5.6 mM, stimulates initiation of protein synthesis involving both insulin and non-insulin mRNA at concentrations above 3.3 mM, and increases the transfer of initiated insulin mRNA molecules from the cytoplasm to microsomal membranes by an SRP-mediated mechanism that involves the modification of interactions between SRP and its receptor.  相似文献   

5.
The effects of various sugars on the simultaneous release of insulin and accumulation of cyclic AMP were studied in collagenase isolated rat pancreatic islets. D-Glucose stimulated the formation of cyclic AMP at 3 and 60 min of incubation, whether measured by a label incorporation technique, or by the protein kinase binding assay of Gilman. Only D-glucose and D-mannose were able to stimulate insulin release and cyclic [3H]AMP accumulation in the absence of other substrate. D-fructose had a stimulatory effect in the presence of 3.3 mM D-glucose only at a high concentration (33.8 mM), and enhanced the effects of 8.3 mM glucose when added at the concentration of 8.3 mM. D-Galactose was effective only together with 8.3 mM D-glucose. The order of potency of these hexoses, both regarding insulin secretion and cyclic [3H]AMP accumulation, was glucose-mannose-fructose-galactose. L-Glucose and 3-O-methylglucose had no effects at 60 min when incubated together with 8.3 mM D-glucose, whereas at 3 min, 3-O-methylglucose induced a small stimulation of the cyclic [3H]AMP response. D-mannoheptulose and D-glucosamine inhibited the insulin and cyclic [3H]AMP responses to 27.7 mM glucose. Mannoheptulose suppressed completely the glucose effect on cyclic nucleotide accumulation within 90 s. Although under all incubation conditions, the threshold stimulatory or inhibitory concentration of a given agent was identical for insulin release and cyclic [3H]AMP accumulation, these two variables showed quantitative differences in incubations of 60 min, the magnitude of the changes in insulin secretion being larger than that for the cyclic nucleotide. It is suggested that modulation of islet cyclic AMP level is an important step in the transmission of the effect of various sugars on insulin release; however, glucose and possibly other sugars may also enhance insulin release by additional mechanisms not involving the adenylate cyclase-cyclic AMP system of the beta-cell.  相似文献   

6.
7.
The effect of glucose on the metabolism of phospholipids in pancreatic islets was studied with three radioactive phospholipid precursors, [32P]orthophosphate, [3H]myoinositol, and [3H]arachidonic acid, to determine the conditions necessary for studying the breakdown of prelabeled phospholipids. Islets were incubated in the presence of a radioactive precursor for 60 or 90 min and in the presence of either 3.3 or 16.7 mM glucose to prelabel phospholipids. To study the breakdown of prelabeled phospholipid, the unincorporated precursor was removed and the islets were reincubated for 15 or 20 min under conditions that either did or did not stimulate insulin release. Prelabeling in the presence of a noninsulinotropic concentration of glucose (3.3 mM) supported the incorporation of precursors into almost all islet phospholipids studied. Prelabeling in an insulinotropic concentration of glucose (16.7 mM) increased the incorporation of precursors into a number of phospholipids even more; and reincubation in 16.7 mM glucose caused a rapid loss of radioactivity from specific phospholipids (phosphatidylinositol and/or phosphatidylcholine, depending on the precursor). This breakdown was observed only when islets had been prelabeled in 16.7 mM glucose. The amount of radioactivity lost from phospholipid corresponded roughly to the additional amount incorporated during the prelabeling in the high concentration of glucose. Radioactivity in phospholipids in islets prelabeled in 3.3 mM glucose or in nonsecretagogue metabolic fuels, such as malate plus pyruvate, did not decrease when the islets were subsequently exposed to 16.7 mM glucose, nor did it decrease in 3.3 mM glucose when these islets had been prelabeled in 16.7 mM glucose. Glyceraldehyde, an insulin secretagogue, but not galactose or L-glucose which are not insulin secretagogues, stimulated phospholipid breakdown in islets that had been prelabeled in 16.7 mM glucose. Depriving islets of extracellular calcium, a condition that inhibits insulin release, inhibited phospholipid breakdown. The results suggest that pancreatic islets contain a glucose-responsive and a glucose-unresponsive phospholipid pool. The glucose-responsive pool becomes labeled and undergoes rapid turnover only under stimulatory conditions and may play a role in the stimulus-secretion coupling of insulin release.  相似文献   

8.
We evaluated the possible autocrine modulatory effect of insulin on glucose metabolism and glucose-induced insulin secretion in islets isolated from normal hamsters. We measured 14CO2 and 3H2O production from d-[U-14C]glucose and d-[5-3H]glucose, respectively, in islets incubated with 0.6, 3.3, 8.3, and 16.7 mM glucose alone or with 5 or 15 mU/ml insulin, anti-insulin guinea pig serum (1:500), 25 microM nifedipine, or 150 nM wortmannin. Insulin release was measured (radioimmunoassay) in islets incubated with 3.3 or 16.7 mM glucose with or without 75, 150, and 300 nM wortmannin. Insulin significantly enhanced 14CO2 and 3H2O production with 3.3 mM glucose but not with 0.6, 8.3, or 16.7 mM glucose. Addition of anti-insulin serum to the medium with 8.3 and 16.7 mM glucose decreased 14CO2 and 3H2O production significantly. A similar decrease was obtained in islets incubated with 8.3 and 16.7 mM glucose and wortmannin or nifedipine. This latter effect was reversed by adding 15 mU/ml insulin to the medium. Glucose metabolism was almost abolished when islets were incubated in a Ca2+-deprived medium, but this effect was not reversed by insulin. No changes were found in 14CO2 and 3H2O production by islets incubated with 3.3 mM glucose and anti-insulin serum, wortmannin, or nifedipine in the media. Addition of wortmannin significantly decreased insulin release induced by 16.7 mM glucose in a dose-dependent manner. Our results suggest that insulin exerts a physiological autocrine stimulatory effect on glucose metabolism in intact islets as well as on glucose-induced insulin release. Such an effect, however, depends on the glucose concentration in the incubation medium.  相似文献   

9.
The effects of glucose on insulin biosynthesis were studied by measuring the incorporation of radiolabelled amino acids into proinsulin/insulin in isolated rat islets. The islets were pulse labelled for 15 min with [3H]leucine (present in rat insulin I and II) or [35S]methionine (unique to rat insulin II) and then incubated for a 165 min post-label (chase) period during which the majority of labelled proinsulin was converted to insulin but under conditions whereby greater than 95% of radiolabelled proinsulin or insulin was retained in the islets. The newly synthesized, labelled, insulin was analyzed by high performance liquid chromatography. Rat I and II insulin biosynthesis was stimulated by 16.7 mM glucose to the same extent.  相似文献   

10.
Isolated rat islets were incubated with myo-[2-3H]inositol for 2 h to label their phosphoinositide (PI) pools. Labelling was carried out under three separate conditions: in media containing low (2.75 mM) glucose, high (13.75 mM) glucose, or low (2.75 mM) glucose plus sulphated cholecystokinin (CCK-8S; 200 nM). After labelling, the islets were perifused and the insulin-secretory response to 20 mM-glucose was measured. PI hydrolysis in these same islets was assessed by measurements of both [3H]inositol efflux and the accumulation of labelled inositol phosphates. The following major observations were made. After prelabelling for 2 h in low glucose, perifusion with 20 mM-glucose resulted in a biphasic insulin-secretory response, an increase in [3H]inositol efflux and a parallel increase in the accumulation of labelled inositol phosphates. After prelabelling in high (13.75 mM) glucose, peak first-phase insulin secretion induced by 20 mM-glucose increased 2-2.5-fold, whereas the second phase of insulin release, as well as [3H]inositol efflux and inositol phosphate accumulation, were significantly decreased. The simultaneous infusion of the diacylglycerol kinase inhibitor 1-mono-oleoylglycerol (50 microM), along with 20 mM-glucose, restored the second-phase insulin-secretory response from these islets. After labelling in low (2.75 mM) glucose plus CCK-8S, the initial phases of the insulin-secretory and [3H]inositol-efflux responses to 20 mM-glucose were blunted and the sustained phases of both responses were markedly decreased. Inositol phosphate accumulation was also impaired. Labelling islets in high (13.75 mM) glucose or low (2.75 mM) glucose plus CCK-8S suppresses, in a parallel fashion, glucose-induced increases in PI hydrolysis and in second-phase insulin release. These findings suggest that desensitization of the insulin-secretory response is a consequence of impaired information flow in the inositol lipid cycle.  相似文献   

11.
The effects of various sugars on the simultaneous release of insulin and accumulation of cyclic AMP were studied in collagenase isolated rat pancreatic islets. d-Glucose stimulated the formation of cyclic AMP at 3 and 60 min of incubation, whether measured by a label incorporation technique, or by the protein kinase binding assay of Gilman. Only d-glucose and d-mannose were able to stimulate insulin release and cyclic [3H]AMP accumulation in the absence of other substrate. d-fructose had a stimulatory effect in the presence of 3.3 mM d-glucose only at a high concentration (38.8 mM), and enhanced the effects of 8.3 mM glucose when added at the concentration of 8.3 mM. d-Galactose was effective only together with 8.3 mM d-glucose. The order of potency of these hexoses, both regarding insulin secretion and cyclic [3H]AMP accumulation, was glucose-mannose-fructose-galactose.l-Glucose and 3-O-methylglucose had no effects at 60 min when incubated together with 8.3 mM d-glucose, whereas at 3 min, 3-O-methylglucose induced a small stimulation of the cyclic [3H]AMP response.d-mannoheptulose and d-glucosamine inhibited the insulin and cyclic [3H]-AMP responses to 27.7 mM glucose. Mannoheptulose suppressed completely the glucose effect on cyclic nucleotide accumulation within 90 s.Although under all incubation conditions, the threshold stimulatory or inhibitory concentration of a given agent was identical for insulin release and cyclic [3H]AMP accumulation, these two variables showed quantitative differences in incubations of 60 min, the magnitude of the changes in insulin secretion being larger than that for the cyclic nucleotide. It is suggested that modulation of islet cyclic AMP level is an important step in the transmission of the effect of various sugars on insulin release; however, glucose and possibly other sugars may also enhance insulin release by additional mechanisms not involving the adenylate cyclase-cyclic AMP system of the β-cell.  相似文献   

12.
Isolated pancreatic islets of the rat were either prelabeled with [3H]arachidonic acid, or were incubated over the short term with the concomitant addition of radiolabeled arachidonic acid and a stimulatory concentration of glucose (17mM) for prostaglandin (PG) analysis. In prelabeled islets, radiolabel in 6-keto-PGF1 alpha, PGE2, and 15-keto-13,14-dihydro-PGF2 alpha increased in response to a 5 min glucose (17mM) challenge. In islets not prelabeled with arachidonic acid, label incorporation in 6-keto-PGF1 alpha increased, whereas label in PGE2 decreased during a 5 min glucose stimulation; after 30-45 min of glucose stimulation labeled PGE levels increased compared to control (2.8mM glucose) levels. Enhanced labelling of PGF2 alpha was not detected in glucose-stimulated islets prelabeled or not. Isotope dilution with endogenous arachidonic acid probably occurs early in the stimulus response in islets not prelabeled. D-Galactose (17mM) or 2-deoxyglucose (17mM) did not alter PG production. Indomethacin inhibited islet PG turnover and potentiated glucose-stimulated insulin release. Islets also converted the endoperoxide [3H]PGH2 to 6-keto-PGF1 alpha, PGF2 alpha, PGE2 and PGD2, in a time-dependent manner and in proportions similar to arachidonic acid-derived PGs. In dispersed islet cells, the calcium ionophore ionomycin, but not glucose, enhanced the production of labeled PGs from arachidonic acid. Insulin release paralleled PG production in dispersed cells, however, indomethacin did not inhibit ionomycin-stimulated insulin release, suggesting that PG synthesis was not required for secretion. In confirmation of islet PGI2 turnover indicated by 6-keto-PGF1 alpha production, islet cell PGI2-like products inhibited platelet aggregation induced by ADP. These results suggest that biosynthesis of specific PGs early in the glucose secretion response may play a modulatory role in islet hormone secretion, and that different pools of cellular arachidonic acid may contribute to PG biosynthesis in the microenvironment of the islet.  相似文献   

13.
This study describes the effects of prednisolone, oestradiol-17B and progesterone on DNA replication and insulin biosynthesis and release of cultured foetal rat islets. Prednisolone significantly inhibited the incorporation of [3H]-thymidine into DNA of islets cultured at a physiological (5.5 mmol/l) but not at a high (22 mmol/l) glucose concentration. It also increased insulin biosynthesis and release of islets cultured at 5.5 mmol/l glucose. Oestradiol-17B reduced the incorporation of [3H]-thymidine into islet DNA at both glucose concentrations, but had no effect on insulin biosynthesis and release. Progesterone had no effect on either the growth or the function of the cultured foetal islets. The observations show a clear dissociation between the action of prednisolone on islet growth versus islet function. They also support the view that neither progesterone nor oestradiol is directly involved in the high rate of B-cell replication previously observed in islets of pregnant rats.  相似文献   

14.
The secretion of insulin from perifused rat pancreatic islets was stimulated by raising the glucose concentration from 5.6 to 20 mM or by exposure to tolbutamide. The addition of sodium lactate (40 mM) to islets perifused in the presence of glucose (5.6 mM) resulted in a small, transient, rise in the rate of secretion. The subsequent removal of lactate, but not glucose or tolbutamide, from the perifusate produced a dramatic potentiation of insulin release. The rate of efflux of 45Ca2+ was also increased when islets were exposed to a high concentration of glucose or lactate or to tolbutamide, and again subsequently upon withdrawal of lactate. Efflux of 86Rb+ was modestly inhibited upon addition of lactate and markedly enhanced by the subsequent withdrawal of lactate from islets. The output of [14C]lactate from islets incubated in the presence of [U-14C]glucose increased linearly with increasing concentrations of glucose (1-25 mM). It is proposed that the activation of islets by the addition or withdrawal of lactate is not due to increased oxidative flux, but occurs as a result of the electrogenic passage of lactate ions across the plasma membrane, resulting in islet-cell depolarization, Ca2+ entry and insulin secretion. The production of lactate via the glycolytic pathway, and the subsequent efflux of lactate from the islet cells with concomitant exchange of H+ for Na+, could be a major determinant of depolarization and hence insulin secretion, in response to glucose.  相似文献   

15.
We have studied acute effects of the PPARgamma agonist pioglitazone in vitro on human islets from both non-diabetic and type 2 diabetic subjects. In 5 mM glucose, pioglitazone caused a transient increase in insulin secretion in non-diabetic, but not diabetic, islets. Continuous presence of the drug suppressed insulin release in both non-diabetic and diabetic islets. In islets from non-diabetic subjects, both high glucose and tolbutamide-stimulated insulin secretion was inhibited by pioglitazone. When islets were continuously perifused with 5 mM glucose, short-term pretreatment with pioglitazone caused approximately 2-fold increase in insulin secretion after drug withdrawal. Pioglitazone pretreatment of diabetic islets restored their glucose sensitivity. Examination of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) in non-diabetic islets revealed slight Ca(2+) transient by pioglitazone at 3 mM glucose with no significant changes at high glucose. Our data suggest that short-term pretreatment with pioglitazone primes both healthy and diabetic human islets for enhanced glucose-sensitive insulin secretion.  相似文献   

16.
Heat shock protein (hsp), including hsp70, has been reported to restore the glucose-induced insulin release suppressed by nitric oxide (NO). However, the mechanism underlying this recovery remains unclear. In the present study, we examine the effects, in rat islets, of heat shock on insulin secretion inhibited by a small amount of NO and also on glucose metabolism, the crucial factor in insulin release. Exposure to a higher dose (15 U/ml) of interleukin-1beta (IL-1beta) abolished the insulin release by stimulation of glucose or KCl in both control and heat shocked islets. In rat islets exposed to a lower dose (1.5 U/ml) of IL-1beta, insulin secretion in response to glucose, but not to glyceraldehydes (GA), ketoisocaproate (KIC), or KCl, was selectively impaired, concomitantly with lower ATP concentrations in the presence of 16.7 mM glucose, while such suppression of insulin secretion and ATP content was not observed in heat shock-treated islets. NO production in islets exposed to 1.5 U/ml IL-1beta was significantly, but only partly, decreased by heat shock treatment. The glucose utilization rate measurement using [5-3H]-glucose and [2-3H]-glucose and the glucokinase activity in vitro were reduced in islets treated with 1.5 U/ml IL-1beta. In heat shock-treated islets, glucose utilization and glucokinase activity were not affected by 1.5 U/ml IL-1beta. These data suggest that heat shock restores glucose-induced insulin release inhibited by NO by maintaining glucokinase activity and the glucose utilization rate in islets in addition to reducing endogenous NO production.  相似文献   

17.
d-glyceraldehyde stimulated insulin secretion from isolated rat pancreatic islets in static incubation and perifusion systems. At low concentrations (2–4 mM) d-glyceraldehyde was a more potent secretagogue than glucose. The insulinotropic action of 15 mM d-glyceraldehyde was not affected by d-mannoheptulose, was potentiated by cytochalasin B (5 μg/ml) and theophylline (4 mM), and was inhibited by both adrenalin (2 μM) and somatostatin (10 μg/ml). D-glyceraldehyde at a concentration of 1.5 mM produced a 10-fold increase of l-[4,5-3 H]leucine incorporation into proinsulin and insulin without a significant increase into other islet proteins. Glucose at 1.5 mM did not stimulate proinsulin biosynthesis. d-Glyceraldehyde at concentrations higher than 1.5 mM, in marked contrast to glucose, progressively inhibited incorporation of labelled leucine into proinsulin + insulin and other islet proteins. d-glyceraldehyde also inhibited the oxidation of glucose. l-Glyceraldehyde did not stimulate proinsulin biosynthesis and had less effect than the d-isomer on insulin release and glucose oxidation. The results strongly suggest that metabolites below d-glyceraldehyde-3-P are signals for insulin biosynthesisand release. Interaction of d-glyceraldehyde with a “membrane receptor” cannot, however, be excluded with certainty.  相似文献   

18.
The impact of muscarinic type 3 receptor knockout (M3KO) on the cholinergic regulation of insulin secretion and phospholipase C (PLC) activation was determined. Islets isolated from control, wild-type mice or heterozygotes responded with comparable insulin secretory responses to 15 mM glucose. This response was markedly amplified by the inclusion of 10 microM carbachol. While 15 mM glucose-induced release remained similar to wild-type and heterozygote responses in M3KO mice, the stimulatory impact of carbachol was abolished. Stimulation with 15 mM glucose plus 50 microM carbachol increased fractional efflux rates of myo-[2-3H]inositol from control wild-type and heterozygote islets but not from M3KO islets. Fed plasma insulin levels of M3KO mice were reduced 68% when compared to values obtained from combined wild-type and heterozygote animals. These studies support the conclusion that the M3 receptor in islets is coupled to PLC activation and insulin secretion and that cholinergic stimulation of the islets may play an important role in the regulation of plasma insulin levels.  相似文献   

19.
Glucose (20 mM) and carbachol (1 mM) produced a rapid increase in [3H]inositol trisphosphate (InsP3) formation in isolated rat islets of Langerhans prelabelled with myo-[3H]inositol. The magnitude of the increase in InsP3 formation was similar when either agent was used alone and was additive when they were used together. In islets prelabelled with 45Ca2+ and treated with carbachol (1 mM), the rise in InsP3 correlated with a rapid, transient, release of 45Ca2+ from the cells, consistent with mobilization of 45Ca2+ from an intracellular pool. Under these conditions, however, insulin secretion was not increased. In contrast, islets prelabelled with 45Ca2+ and exposed to 20mM-glucose exhibited a delayed and decreased 45Ca2+ efflux, but released 7-8-fold more insulin than did those exposed to carbachol. Depletion of extracellular Ca2+ failed to modify the increase in InsP3 elicited by either glucose or carbachol, whereas it selectively inhibited the efflux of 45Ca2+ induced by glucose in preloaded islets. Under these conditions, however, glucose was still able to induce a small stimulation of the first phase of insulin secretion. These results demonstrate that polyphosphoinositide metabolism, Ca2+ mobilization and insulin release can all be dissociated in islet cells, and suggest that glucose and carbachol regulate these parameters by different mechanisms.  相似文献   

20.
We studied the effect of a specific-competitive inhibitor of the sucrose taste response, p-nitrophenyl-D-glucopyranoside (PNP-Glu) on insulin release and phosphoinositide metabolism in rat pancreatic islets. The alpha-anomer, but not the beta-anomer, of PNP-Glu at a concentration of 5 mM inhibited insulin release induced by 10 mM glucose. Islets were labeled by exposure for 2 h to 10 uCi of myo-[2-3H] inositol solution supplemented with 2.8 mM glucose. Forty islets were then incubated in the presence of 10 mM LiCl, 1 mM inositol and 10 mM glucose with or without the anomers of PNP-Glu. [3H] radioactivity in the incubation medium remained significantly greater in the presence of the alpha-anomer of PNP-Glu than in the presence of glucose alone after 5- and 20-min incubation. The inositol monophosphate levels in the islets incubated with glucose alone were increased more than in the islets with alpha-anomer. The beta-anomer of PNP-Glu did not change either glucose-induced insulin release or phosphoinositide breakdown. A patch-clamp study revealed that neither anomer affected the glucose-dependent ATP-sensitive K(+)-channels. These results indicate that the anomeric preference for glucose in insulin release in the pancreatic islets is closely associated with phosphoinositide breakdown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号