首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of CaCO3 and iron on the availability of iron, manganese phosphorus and calcium was studied in the greenhouse on pea (Pisum sativum L.) crop on a light textured soil, which was marginal in exchangeable calcium. Addition of calcium carbonate caused significant increase in dry matter yield with no added iron at both the stages of crop growth. But yeild intended to decrease with 8% CaCO3 at 75 days of crop growth. Dry matter yield also increased with the addition of iron upto 10 ppm at 45 days and upto 5 ppm at 75 days. The iron concentration and uptake decreased with the increase in CaCO3 and increased with the application of iron at both the stages of crop growth. The application of iron and CaCO3 decreased concentration and uptake of phosphorus significantly at both the stages.Like phosphorus, concentration and uptake of manganese also decreased with the increase in added CaCO3 upto 8% and iron upto 20 ppm at 45 and 75 days. The concentration of calcium increased with the addition of CaCO3 to the extent of 50 and 40% with 8% CaCO3 at 45 and 75 days, while the uptake of calcium increased more than 3 folds at 45 days and more than 2 folds at 75 days. The concentration of calcium decreased with the application of iron upto 20 ppm but the uptake at 45 days increased upto 10 ppm and at 75 days upto 5 ppm and then decreased.The concentration of Fe, P and Ca decreased at 75 days and that of Mn increased while the uptake of all these nutrients increased at 2nd stage due to higher dry matter.  相似文献   

2.
Summary Surface samples of six Ontario soils were selected to provide a range in pH, texture and carbonate content. Phosphorus was added to the soil samples at the rate of 200, and 2000 pounds. P2O5 per acre and the inorganic phosphates associated with aluminum (Al-P), iron (Fe-P) and calcium (Ca-P) were analysed 15, 30, and 335 days after treatment. Samples of the check soils were leached with the equivalent of 7 litres of soil-percolated water and then analysed for phosphate fractions. In 5 soils with added phosphorus the Al-P fraction increased at both rates of added phosphorus, Fe-P increased only at the higher rate of added phosphorus and Ca-P did not increase at either rate. In the sixth soil (69.9% CaCO3 equivalent) Ca-P increased at both rates of added phosphorus, but proportionately less than the water-soluble phosphorus. These changes in phosphorus values existed relatively unchanged for 335 days after the addition of phosphorus. Leaching generally removed phosphorus from all phosphorus fraction. At or below pH 7.1 (soil paste) the Al-P decreased proportionately more than the Fe-P and Ca-P. Above pH 7.1 the Ca-P decreased proportionately more than the other two fractions upon leaching.Contribution from Dept. of Soil Science, O.A.C., Guelph, Canada. Part of thesis submitted by junior author to the Graduate School, University of Toronto, in partial fulfilment of the requirements for the M.S.A. degree.  相似文献   

3.
The effect of added CaCO3 and iron as ferrous sulphate on the availability of various forms of manganese in light-textured soil was studied in laboratory at room temperature. All forms of manganese decrease with increase in added CaCO3 upto 16%. Application of iron as ferrous sulphate also decreased all forms of manganese. The addition of iron and CaCO3 together showed additive negative effect on the forms of manganese through various reactions. The increase in the time of incubation decreases manganese extracted with all forms of extractants due to oxidation and hydration of manganese to higher insoluble oxides and hydroxides. Ammoni um acetate (pH 7.0) + 0.1 % hydroquinone extracted highest amount of manganese by reducing some of the higher oxides along with lower oxides.  相似文献   

4.
根际试验研究表明,水分、有机质、土壤酸度是影响白浆土磷素生物有效性的重要因子.调节土壤水分含量,能增强土壤中铁、铝磷酸盐的溶解,加速磷酸根离子从根际土壤向非根际土壤扩散.增加土壤有机质含量,降低了土壤对P 素的吸附自由能( K 值) ,提高土壤中的速效磷含量.适量施用石灰,调节白浆土酸度,由于化学溶解作用的影响,促进了土壤中铁、铝磷酸盐的溶解,增强了土壤中磷素的生物有效性  相似文献   

5.
Summary The effect of CaCO3 and organic matter on the availability of iron and manganese was studied on sorghum (Sorghum bicolor). Addition of calcium carbonate caused significant decrease in dry matter and grain yield. But yields tended to increase with the addition of organic matter at the rate of 15 t/ha. The iron concentration decreased with the addition of CaCO3 at all the stages of crop growth. Like iron, concentration of manganese also decreased with the increase in added CaCO3. Organic matter increased the iron concentration both at seedling and flowering stage. The concentration of manganese was, however, dependent on the stage of the crop.  相似文献   

6.
Responses of wheat (Triticum aestivum L.) to various concentrations of NaCl and levels of drought were followed. With the rise of NaCl or drought, or NaCl and drought together, growth was retarded. The water content of shoots and roots was mostly unchanged. The chlorophyll and carotenoid contents were increased in plants subjected to salinity or drought or both. Only high salinity level induced a considerable decrease in net photosynthetic rate (PN) and dark respiration rate (RD). PN and RD were decreased with the decrease of soil moisture content. The content of Na+ in the shoots and roots of wheat plants increased with increasing salinity or decreasing soil moisture content or both treatments. Considerable variations in the content of K+, Ca2+ or Mg2+ were induced by the NaCl, drought or both treatments.  相似文献   

7.
We assessed the ability of aPseudonocardia sp. from soil samples to bioconvert vitamin D3. The optimal culture conditions for the bioconversion of vitamin D3 to active 1α,25-dihydroxyvitamin D3 were investigated by varying the carbon and nitrogen sources, the metal salt concentrations, the initial pH, and the temperature. Microbial transformations were carried out with the addition of vitamin D3 dissolved in ethanol. They were sampled by extraction with methanol-dichloromethane and the samples were examined by HPLC. Optimum culture conditions were found to be 0.4% yeast extract, 1% glucose, 3% starch, 1% fish meal, 0.2% NaCl, 0.01% K2HPO4, 0.2% CaCO3, 0.01% NaF, and pH 7.0 at 28°C. The optimal timing of the addition of vitamin D3 for the production of calcitriol byPseudonocardia autotrophica ID 9302 was concurrent with the inoculation of seed culture broth. Maximum calcitriol productivity and the yield of bioconversion reached a value of 10.4 mg/L and 10.4% respectively on the 7th day in a 75 L fermenter jar under the above conditions.  相似文献   

8.
A pot culture experiment was conducted in loamy sand soil to study the effect of different levels of FYM and CaCO3 on the dry matter yield and nutrients uptake by oats. Application of different levels of CaCO3 (0, 2, 4 and 8%) and FYM (0, 0.5, 1,2%) resulted in significant increase in dry matter yield of oats. But, a little decrease in dry matter yield was obtained at 4% FYM. The interaction of FYM×CaCO3 was also significant on dry matter yield of oats. There was a significant decrease in the concentration and uptake of P with increased levels of applied CaCO3. But, application of FYM resulted in a significant increase in concentration and uptake of P. A significant increase in concentration and uptake of Ca was observed with the increasing levels of CaCO3. The concentration of Ca decreased with the increased application of FYM in the presence as well as in the absence of added CaCO3. However, at 0.5 and 1.0 percent FYM with 4 per cent CaCO3 a little increase in Ca concentration was recorded. The Mg concentration in oat decreased significantly with the increasing levels of CaCO3 and FYM. The effect of CaCO3 levels was more pronounced in the absence as well as in the presence of FYM. The Mg uptake followed a different pattern. At 0 and 2% CaCO3 and application of FYM @ 1 per cent the Mg uptake increased but then it decreased with increasing levels of FYM and CaCO3 both alone as well as in the presence of each other. The concentration and uptake of Mn decreased with increasing levels of applied CaCO3. However, in the absence of CaCO3, the application of FYM increased the concentration and uptake of Mn in oats. In the presence of CaCO3, Mn concentration decreased at all levels of FYM application but at 8 per cent CaCO3 there was a slight increase in Mn concentration with 0.5, 2 and 4 percent FYM. Iron concentration and uptake was also affected adversely by increasing levels of CaCO3 but FYM application removed the harmful effect of CaCO3 to some extent.  相似文献   

9.
碳酸钙对水稻吸收重金属(Pb、Cd、Zn)和As的影响   总被引:11,自引:0,他引:11  
选用重金属(Pb、Cd、Zn)和As复合污染土壤进行水稻盆栽试验,结果表明,碳酸钙的添加显著提高了土壤pH值,显著降低了土壤中交换态Pb、Cd、Zn和As的含量,与对照相比,交换态Pb、Cd、Zn和As含量分别最多降低了98.35%,93.72%,98.52%和69.48%。碳酸钙对水稻根、稻谷干重和总生物量没有显著影响,添加量过高时显著降低了水稻分蘖数和茎叶干重,说明过量施用碳酸钙对水稻生长会产生负面作用。因为碳酸钙的添加,水稻植株各部位重金属Zn含量显著降低,糙米中Zn含量最多减少了34.95%;根、谷壳中Pb、Cd含量显著降低,但糙米中含量却未显著降低;水稻各部位As含量均没有显著降低。参照《食品中污染物限量》(GB2762—2012),试验糙米中Pb、Cd、无机As含量均未达到限量标准。显然,碳酸钙的添加降低了Pb、Cd、Zn的生物有效性(水稻根系对Pb、Cd、Zn的吸收累积减少),但并未有效地抑制Pb、Cd向糙米转运;碳酸钙显著降低了土壤的交换态As含量,但并未使土壤中As的生物有效性明显降低(水稻植株各部位的As含量并未显著减少)。  相似文献   

10.
Summary Laboratory experiments were conducted to study the effect of algal growth on the change of (I) pH, (II) available phosphorus and (III) solubility of iron and manganese content in five waterlogged alluvial rice soils of West Bengal, India. The results showed that the algal growth initially caused an increase in the soil pH, which later declined to the original value in some of the soils. The available phosphorus content decreased upto 90 days of their growth and began to increase towards the later period of incubation. The drastic fall of water soluble plus exchaneable manganese content of the soils due to algal growth was accompanied by similar increase in reducible manganese content. No appreciable change in water soluble plus exchangeable ferrous iron content was encountered but theN-NH4OAC(pH 3) extractable iron due to algal growth progressively decreased with the progress of the incubation period.  相似文献   

11.
Summary A greenhouse experiment was conducted to study the effect of phosphorus and zinc application, in three lowland alluvial rice soils (Haplustalf) on the growth of rice and the concentration of phosphorus, zinc, copper, iron and manganese in shoots and roots. The results showed that application of phosphorus and zinc significantly increased the dry matter yield of shoots, grains and roots. Application of phosphorus caused a decrease in the concentration of zinc, copper, iron and manganese both in shoots and roots. Application of zinc also similarly lowered the concentration of phosphorus, copper and iron, but increased that of manganese in shoots and roots. The decrease in the concentration of the elements in the shoots was not due to dilution effect or to the reduced rate of translocation of the elements from the roots to tops. This has been attributed more to the changes in the availability of the elements in soil resulting from the application of phosphorus and zinc.  相似文献   

12.
As the glomerular filtration rate (GFR) decreases, it can cause imbalance in some divalent elements. These imbalances can cause increased oxidative stress in patients with renal impairment. The aim of present study was to investigate the changes of these divalent elements with CKD progression. One hundred and ninety-four patients with chronic kidney diseases (CKD) were divided into five stages, stage 1, 2, 3a, 3b, 4, and were recruited into this study. The divalent elements, calcium, magnesium, phosphorus, as well as iron, zinc, and copper were determined in clinical chemistry analyzer. Higher CKD stages were found to be associated with increased levels of phosphorus and copper; Ptrend values were 0.002 and 0.004, respectively. Also, higher CKD stages were associated with decreased levels of zinc; Ptrend value was 0.002, after adjustment for age, gender, smoke, education, diabetes, hypertension, and BMI. Decreased levels of zinc and elevated levels of phosphorus and copper might increase the oxidative stress and complications in CKD patients. Future randomized studies are needed to show whether adjusting dietary intake of phosphorus, copper, and zinc might affect the progression of CKD.  相似文献   

13.
Summary Addition of CaCO3 to the soils has been found to increase the retention of manganese applied to soils. As the black soil contained enough of CaCO3 initially the addition of CaCO3 even upto 16% is not effective. But in red soil the effect in marked.It has also been observed that addition of CaCO3, at the rate of 1 to 8 per cent to H-soils, resulted in an increased retention of manganese.The E and r forms decrease and increase respectively with an increase in the addition of CaCO3 addition to both original and H-soils.Addition of soluble carbonates has also been found to effect the retention of manganese.The availability of manganese added to soils in the soluble form has been found to be adversely affected by the addition of both soluble and in soluble carbonates to black, red, and alkali soils.  相似文献   

14.
Summary Several agricultural problems are associated with the presence of certain levels of CaCO3 in soils. The level of CaCO3 at which the phosphate fixation becomes an apparent agricultural problem, is thought to be an appropriate margine at which the soil can be considered calcareous. Thus, a set of soil mixtures, ranging in CaCO3 content from 1 to 96% was prepared and used in a column study to determine the level at which the CaCO3 fraction becomes a dominant factor controlling. P32 movement and distribution.Increasing the percentage of oolitic sand, in the soil mixture, from 1 to 10% caused a sharp drop in P32 movement with soil solution and any increase in CaCO3 content above 10% did not show any further drop in P32 movement. The amount of P32 removed with the soil solution was generally low compared to that retained in soil columns. Studying the distribution of P32 in soil columns, after five displacements, has indicated that the migration of P32 from the top soil increased by increasing CaCO3 from 1 and 2 to 6%. The amount of P32 removed was however retained in lower sections. A very sharp decrease in P32 migration from the top soil was observed when CaCO3 content was raised from 8 to 10%.A similar picture was shown when the CaCO3 material used was in clay size fraction. However the sharp increase in phosphate retention in top soil sections took place at CaCO3 content of 8% rather than at 10%. A limit of 8 to 10% CaCO3 was proposed as an appropriate margine for defining calcareous soils.  相似文献   

15.
Batch fermentation of 60g/l glucose/xylose mixture by Clostridium acetobutylicum ATCC 824 was investigated on complex culture medium. Different proportions of mixtures, ranged between 10 and 50g of each sugar/l, were fermented during pH control at 4.8 (optimum pH for solventogenesis) or during CaCO3 addition. Using xylose-pregrown cells and pH control, an important amount of xylose was left over at the end of the fermentation when the glucose concentration was higher than that of xylose. The addition of 10g of CaCO3/l (to prevent the pH dropping below 4.8) increased xylose uptake: a substantial decrease of residual xylose was observed when xylose-pregrown cells as well as glucose-pregrown cells were used as inoculum for all the mixture proportions studied. MgCO3 (Mg2+-containing compound) and CaCl2 (Ca2+-containing compound) reduced residual xylose only during pH control at 4.8 by NaOH addition. As butanol is the major limiting factor of xylose uptake in C. acetobutylicum, fermentations were carried out with or without CaCO3 in butanol-containing media or in iron deficient media (under iron limitation, butanol synthesis occurred early and could inhibit xylose uptake). Results showed that an excess of CaCOCaCO3 could increase butanol tolerance which resulted in an increase in xylose utilization. This positive effect seem to be specific to Ca2+- or Mg2+-containing compounds, going beyond the buffering effect of carbonate.  相似文献   

16.
Dicotyledonous plants subjected to Fe-deficiency stress can decrease pH in the rhizosphere by proton excretion and reduce ferric iron by an activated reduction system in the plasma membranes of the root or by reductants released from the roots. The efficiency by which these plants take up Fe may strongly depend on their cation-anion balance. This study presents results of two experiments conducted to evaluate the effect of K, growth stage and cultivar on ionic balance and Fe acquisition of peanut (Arachis hypogaea L.) plants.Potassium applications to the high calcareous soil (30.3% CaCO3) favoured proton release, but did not ameliorate plant Fe acquisition. At the earliest stages of plant growth, anion uptake exceeded cation uptake due to intensive N uptake. With time, a shift in the ionic balance was observed as a result of predominant cation uptake. It appears that the relationship between H/OH-ion release and Fe nutrition of peanut plants is actually a complex phenomenon under soil conditions and depends on some soil parameters, such as CaCO3 content. Even by enhanced H-ion release Fe nutrition of plants can be impaired if soil CaCO3 is too high.  相似文献   

17.
D. H. Khan 《Plant and Soil》1970,32(1-3):177-188
Summary A greenhouse study of some aspects of infertility of an acid soil of California, namely the ‘Wilder’ soil, was undertaken. Experiments with white-rooted radish showed that the soil when limed to near neutrality with CaCO3 indicated deficiencies of boron and magnesium. When sweet corn was used as a test crop, zinc deficiency was exposed in limed soil. The plant tissue tests and morphological observations corroborated this. The apparent decrease in zinc content in sweet corn in presence of the added phosphate was taken to be a dilution effect. The work was carried out in Department of Soils and Plant Nutrition, University of California, Davis.  相似文献   

18.
It has been shown previously (Treeby et al., 1989) that phytosiderophores, released by roots of iron deficient grasses (Gramineae), mobilize from calcareous soils not only iron (Fe) but also zinc (Zn), manganese (Mn) and copper (Cu). Mobilization of Fe may therefore be impaired by other micronutrient cations. This has been studied in both, model experiments with Fe hydroxide and with a calcareous soil (15% CaCO3, pH 8.6) amended with micronutrients as sulfate salts.Mobilization of Fe from Fe hydroxide by phytosiderophores (epi-3-hydroxymugineic acid) was not affected by the addition of CaCl2, MgSO4 and MnSO4, slightly inhibited by ZnSO4 and strongly inhibited by CuSO4. In a calcareous soil amended with increasing levels of ZnSO4, MnSO4 and CuSO4, mobilization of Fe by phytosiderophores remained uneffected by Zn and Mn amendments but was progressively impaired by increasing levels of Cu amendment, correlated with corresponding enhancement of Cu mobilization.High concentrations of ZnSO4 and MnSO4 and relatively high concentrations of CuSO4 were required for inhibition of Fe mobilization by phytosiderophores. It is therefore concluded that in most calcareous soils phytosiderophores efficiently mobilize Fe, and that phytosiderophores play an important role in Fe acquisition by grasses grown on calcareous soils.  相似文献   

19.
Summary Transformation of iron and manganese under three different moisture regimes,viz continuous waterlogged (W1), continuous saturated (W2) and alternate waterlogged and saturated (W3) and three levels of organic matterviz 0, 0.5 and 1.0% in all possible combinations was studied in four soils. The results showed that under waterlogged moisture regime there was a sharp increase in the content of water soluble plus exchangeable manganese accompanied by significant decrease in the content of reducible manganese in all the soils excepting the acidic soil which was very poor in active manganese content. The increase in respect of iron in similar form was, however, very small. The increase in the content of water soluble plus exchangeable manganese as well as iron under the continuous saturated and alternate waterlogged and saturated moisture regimes was always much lower as compared to that under the continuous waterlogged condition. Application of organic matter brought about an increase in the content of water soluble plus exchangeable manganese in all the soils excepting the lateritic one irrespective of moisture regimes but did not cause any change in the content of iron and manganese in insoluble complex. The content of water soluble plus exchangeable iron and of insoluble ferrous iron although recorded some increase due to organic matter application, the increase was not so marked in any of the soils.  相似文献   

20.
Extracellular carbonic anhydrase was purified from Pseudomonas fragi isolated from CaCO3 enriched soil samples. The enzyme is induced in presence of CaCO3 and is envisaged to play an important role in bicarbonate ion transport. The 75% ammonium sulphate dialysate was purified by single step affinity chromatography with 86% yield. It is a trimeric protein having a subunit molecular weight of 31.0 kDa and was stable at pH 7.0–8.5 and temperature 35–45 °C. Lead, mercury and EDTA had an inhibitory effect on CA activity, whereas zinc, iron and cadmium increased it. The presence of esterase activity along with IC50 of sulphonamides and anionic inhibitors indicated that CA from P. fragi belonged to α-class. The CA stability in presence of different salts, as well as in alkaline pH and high temperature makes it a potential candidate to be exploited for biomimetic CO2 sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号