首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Refugia have been suggested as priority sites for conservation under climate change because of their ability to facilitate survival of biota under adverse conditions. Here, we review the likely role of refugial habitats in conserving freshwater biota in arid Australian aquatic systems where the major long‐term climatic influence has been aridification. We introduce a conceptual model that characterizes evolutionary refugia and ecological refuges based on our review of the attributes of aquatic habitats and freshwater taxa (fishes and aquatic invertebrates) in arid Australia. We also identify methods of recognizing likely future refugia and approaches to assessing the vulnerability of arid‐adapted freshwater biota to a warming and drying climate. Evolutionary refugia in arid areas are characterized as permanent, groundwater‐dependent habitats (subterranean aquifers and springs) supporting vicariant relicts and short‐range endemics. Ecological refuges can vary across space and time, depending on the dispersal abilities of aquatic taxa and the geographical proximity and hydrological connectivity of aquatic habitats. The most important are the perennial waterbodies (both groundwater and surface water fed) that support obligate aquatic organisms. These species will persist where suitable habitats are available and dispersal pathways are maintained. For very mobile species (invertebrates with an aerial dispersal phase) evolutionary refugia may also act as ecological refuges. Evolutionary refugia are likely future refugia because their water source (groundwater) is decoupled from local precipitation. However, their biota is extremely vulnerable to changes in local conditions because population extinction risks cannot be abated by the dispersal of individuals from other sites. Conservation planning must incorporate a high level of protection for aquifers that support refugial sites. Ecological refuges are vulnerable to changes in regional climate because they have little thermal or hydrological buffering. Accordingly, conservation planning must focus on maintaining meta‐population processes, especially through dynamic connectivity between aquatic habitats at a landscape scale.  相似文献   

2.
Climate relicts hold considerable importance because they have resulted from numerous historical changes. However, there are major interspecific variations among the ways by which they survived climate changes. Therefore, investigating the factors and timing that affected population demographics can expand our understanding of how climate relicts responded to historical environmental changes. Here, we examined herbaceous hydrangeas of genus Deinanthe in East Asia, which show limited distributions and a remarkable disjunction between Japan and central China. Chloroplast genome and restriction site-associated DNA sequencing revealed that speciation event occurred in the late Miocene (ca. 7–9 Mya) in response to global climate change. Two lineages apparently remained not branched until the middle Quaternary, and afterwards started to diverge to regional population groups. The narrow endemic species in central China showed lower genetic diversity (He = 0.082), as its population size rapidly decreased during the Holocene due to isolation in montane refugia. Insular populations in the three Japanese islands (He = 0.137–0.160) showed a genetic structure that was inconsistent with sea barriers, indicating that it was shaped in the glacial period when its range retreated to coastal refugia on the exposed sea floor. Demographic modelling by stairway-plot analysis reconstructed variable responses of Japanese populations: some experienced glacial bottlenecks in refugial isolation, while post-glacial range expansion seemingly exerted founder effects on other populations. Overall, this study demonstrated the involvement of not just one, but multiple factors, such as the interplay between climate changes, geography, and other population-specific factors, that determine the demographics of climate relicts.Subject terms: Population genetics, Plant genetics  相似文献   

3.
Biotic interactions are often ignored in assessments of climate change impacts. However, climate‐related changes in species interactions, often mediated through increased dominance of certain species or functional groups, may have important implications for how species respond to climate warming and altered precipitation patterns. We examined how a dominant plant functional group affected the population dynamics of four co‐occurring forb species by experimentally removing graminoids in seminatural grasslands. Specifically, we explored how the interaction between dominants and subordinates varied with climate by replicating the removal experiment across a climate grid consisting of 12 field sites spanning broad‐scale temperature and precipitation gradients in southern Norway. Biotic interactions affected population growth rates of all study species, and the net outcome of interactions between dominants and subordinates switched from facilitation to competition with increasing temperature along the temperature gradient. The impacts of competitive interactions on subordinates in the warmer sites could primarily be attributed to reduced plant survival. Whereas the response to dominant removal varied with temperature, there was no overall effect of precipitation on the balance between competition and facilitation. Our findings suggest that global warming may increase the relative importance of competitive interactions in seminatural grasslands across a wide range of precipitation levels, thereby favouring highly competitive dominant species over subordinate species. As a result, seminatural grasslands may become increasingly dependent on disturbance (i.e. traditional management such as grazing and mowing) to maintain viable populations of subordinate species and thereby biodiversity under future climates. Our study highlights the importance of population‐level studies replicated under different climatic conditions for understanding the underlying mechanisms of climate change impacts on plants.  相似文献   

4.
The association between demographic history, genealogy and geographical distribution of mitochondrial DNA cytochrome b haplotypes was studied in the wood lemming (Myopus schisticolor), a species that is closely associated with the boreal forest of the Eurasian taiga zone from Scandinavia to the Pacific coast. Except for a major phylogeographic discontinuity (0.9% nucleotide divergence) in southeastern Siberia, only shallow regional genetic structure was detected across northern Eurasia. Genetic signs of demographic expansions imply that successive range contractions and expansions on different spatial scales represented the primary historical events that shaped geographical patterns of genetic variation. Comparison of phylogeographic structure across a taxonomically diverse array of other species that are ecologically associated with the taiga forest revealed similar patterns and identified two general aspects. First, the major south-north phylogeographic discontinuity observed in five out of six species studied in southeastern Siberia and the Far East implies vicariant separation in two different refugial areas. The limited distribution range of the southeastern lineages provides no evidence of the importance of the putative southeastern refugial area for postglacial colonization of northern Eurasia by boreal forest species. Second, the lack of phylogeographic structure associated with significant reciprocal monophyly and genetic signatures of demographic expansion in all nine boreal forest animal species studied to date across most of northern Eurasia imply contraction of each species to a single refugial area during the late Pleistocene followed by range expansion on a continental scale. Similar phylogeographic patterns observed in this taxonomically diverse set of organisms with different life histories and dispersal potentials reflect the historical dynamics of their shared environment, the taiga forest in northern Eurasia.  相似文献   

5.
《Oikos》2004,104(2):410-416
The dynamics of populations inhabiting range margins are likely to be critically important in determining the response of species to climate change. Despite this, there is a lack of both empirical and theoretical work that examines the behaviour of these populations. Populations living on the edge of a species' range frequently inhabit a more patchily distributed habitat than those that live closer to the centre of the range. This difference is likely to play an important role in determining the dynamics of range margin populations, both when the range is static and when it is dynamic, for example shifting in response to climate change. Here, we present a simple method that simulates the distribution of suitable habitat sites at the edge of a range. Habitat availability is determined as a function of both latitudinal and local environmental variability, and the relative importance of the two can be adjusted. The method is readily extended to describe shifting habitat availability during a period of climate change. We suggest that there is a need for a greater effort to examine the ecology of range margin populations, and believe that the method presented here could be of considerable use in future theoretical studies.  相似文献   

6.
Tree species regeneration determines future forest structure and composition, but is often severely hampered in small forest relicts. To study succession, long-term field observations or simulation models are used but data, knowledge or resources to run such models are often scarce in tropical areas. We propose and implement a species accounting equation, which includes the co-occurring events extinction, colonization and recruitment and which can be solved by using data from a single inventory. We solved this species accounting equation for the 12 remaining Afromontane cloud forest relicts in Taita Hills, Kenya by comparing the tree species present among the seedling, sapling and mature tree layer in 82 plots. A simultaneous ordination of the seedling, sapling and mature tree layer data revealed that potential species extinctions, colonizations and recruitments may induce future species shifts. On landscape level, the potential extinction debt amounted to 9% (7 species) of the regional species pool. On forest relict level, the smallest relicts harbored an important proportion of the tree species diversity in the regeneration layer. The average potential recruitment credit, defined as species only present as seedling or sapling, was 3 and 6 species for large and small forest relicts, while the average potential extinction debt was 12 and 4 species, respectively. In total, both large and small relicts are expected to lose approximately 20% of their current local tree species pool. The species accounting equations provide a time and resource effective tool and give an improved understanding of the conservation status and possible future succession dynamics of forest relicts, which can be particularly useful in a context of participatory monitoring.  相似文献   

7.
Southwestern Australia is regarded as a global biodiversity hotspot. The region contains a high number of endemic species, ranging from Gondwanan relicts to much more recently evolved plant and animal species. Myobatrachid frogs are diverse in southwestern Australia, and while we know they have speciated in situ in the southwest, we know little about the temporal and geographical patterning of speciation events. Crinia georgiana is an ideal subject to test hypotheses concerning the effect of climatic history on southwestern Australian anurans, as it is an old lineage with a broad distribution covering the entire region. We compiled an extensive phylogeographical data set based on 1085 bp of the mitochondrial gene ND2 for 68 individuals from 18 sites across the species' range. Two major genetic clades were identified which were largely confined to the high rainfall and southeast coastal biogeographical zones, respectively. The clades appear to have diverged around the Plio-Pleistocene border (1.26-1.72 million years ago), concordant with increasing intensity and frequency of arid climate cycles. Subsequent phylogeographical structure appears to have developed primarily during the Pleistocene climatic fluctuations that also have been integral in generating species diversity in the endemic southwestern Australian flora. Phylogeographical analyses identified several dispersal routes, possible refugial areas within the range of the species and also regions of secondary contact. Dispersal routes identified may now be closed to the species because of habitat destruction and salinity problems in inland regions, posing concerns about the evolutionary potential of the species in light of predicted climate change.  相似文献   

8.
Tree species inhabiting riparian forests under Mediterranean climate have evolved to face summer water shortage but may fail to cope with future increases in drought severity. Thus, understanding tree growth phenological variations in response to environmental conditions is necessary to assess the impact of seasonal drought in riparian forests. In this study, we investigated the response of stem radial growth to climate in the narrow-leaved ash (Fraxinus angustifolia) over its distribution in southern Europe. We simulated intra- and inter-annual growth patterns using the Vaganov-Shashkin (VS) model considering five sites subjected to summer drought but showing different climate conditions. The growth pattern in this species varied from unimodal in cool-wet sites to facultative bimodal in warm-dry sites. Bimodal patterns were characterized by two growth peaks coinciding with favorable climate conditions in spring and autumn. The spring growth peak occurs earlier (May) in warm-dry sites than in wet-cool sites (June–July). The variation in the season growth length and growth timing suggests different strategies adopted by this species to cope with summer drought. The VS model revealed different growth patterns across which would be relevant in predicting the response of this and other riparian tree species to climate warming and aridification. Differences in the length of the growing season, timings of growth peaks and the shift from unimodal to bimodal growth patterns should be considered when assessing growth adjustments to future climate scenarios.  相似文献   

9.
Aim To identify potential source and sink locations for climate‐driven species range shifts in Europe since the Last Glacial Maximum (LGM). Location Europe. Methods We developed a new approach combining past‐climate simulations with the concept of analogous climate space. Our index gives a continuous measure of the potential of a location to have acted as a source or a sink for species that have shifted their ranges since the LGM. High glacial source potential is indicated by LGM climatic conditions that are widespread now; high post‐glacial sink potential is indicated by current climatic conditions that were widespread at the LGM. The degree of isolation of source and sink areas was calculated as the median distance to areas with analogous climate conditions. Results We identified areas of high glacial source potential in the previously recognized refugial areas in the southern European peninsulas, but also in large areas in central‐western Europe. The most climatically isolated source areas were located in northern Spain, in north‐western Europe and in eastern Turkey. From here species would have had to cover substantial distances to find current climate conditions analogous to LGM conditions of these areas. Areas with high post‐glacial sink potential were mainly located in Fennoscandia and in central and south‐eastern Europe. Some of the most isolated sink areas were located in the Spanish highlands and around the Baltic Sea. Main conclusions Our species‐independent approach successfully identified previously recognized glacial refugial areas with high source potential for species range shifts in southern Europe and in addition highlighted other potential source areas in central Europe. This study offers new insights into how the distribution of past and current climatic conditions may have influenced past species range shifts and current large‐scale biodiversity patterns.  相似文献   

10.
This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species'' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species'' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type) responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.  相似文献   

11.
Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7–10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics.  相似文献   

12.
Sugar maple (Acer saccharum) is a shade-tolerant, late successional dominant species in the North American eastern deciduous forest. The objective of this study was to quantify the relationship between climate and radial growth in sugar maple and to identify spatial and temporal patterns in dendroclimatic response. We used a combination of archived sugar maple tree-ring chronologies and newly sampled sites to calculate dendroclimatic response of sugar maple at 13 sites in the United States and Canada. At all sites, sugar maple growth was significantly correlated to monthly temperature, precipitation, or Palmer Drought Severity Index. However, there were no generalizable patterns in sugar maple’s growth response to climate. Individual sites had unique dendroclimatic responses with respect to: a) which climatic variables were correlated to radial growth; b) what months had significant correlations between climate and radial growth; and c) what years had significant correlations between climate and radial growth. The individualistic dendroclimatic response of sugar maple appears to reflect a plastic response of the species to changes in climate perhaps related to its status as a strong competitor in late-successional forests. This ability to survive a wide range of environmental conditions may bode well for the species persistence under variable future climatic conditions. It also points to the need for more research on late-successional species in examining forest response to potential climate change scenarios because these species may be more resilient than early-successional species.  相似文献   

13.
Forests around the world are undergoing rapid changes due to changing climate and increasing physiological stress, but forest response to climate at the ecosystem scale can be highly variable due to the mixed responses of different trees across heterogeneous landscapes. To determine the response of ecosystems in the Rocky Mountains to climate stress, we investigated the response of subalpine fir (Abies lasiocarpa) and Engelmann spruce (Picea engelmannii), two widely distributed subalpine forest species of Rocky Mountains, to climate warming across a region characterized by gradients of elevation, aspect and soil type. We investigated the growth trend of individual trees through time, determined the climate variables most important for driving growth and quantified the interactions between climate and topography that influence long-term growth trends and potential ecological changes across the study region. Growth trends of these two species are similar through the first part of the century, but diverge during the last several decades. Since 1975, subalpine fir growth decreased through time, while Engelmann spruce growth increased. We find that aspect and warm summer temperatures are the most important factors determining growth in subalpine fir, and subalpine fir growth declines are greatest on east- and south-facing aspects. In contrast, Engelmann spruce growth is uniformly unresponsive to climate. In addition to highlighting the importance of species-level differences in growth response to climate, our results also identify interactions between climate and local physiography as controls on long-term growth trends and suggest that the local landscape physiography can mediate climate-related stress in forested ecosystems. This work advances our understanding of how forest stress is mitigated by landscape factors at the ecosystem scale, and how interactions of species, landscape and climate will control future ecosystem composition and forest growth dynamics.  相似文献   

14.
Successful conservation and management of marine top predators rely on detailed documentation of spatiotemporal behavior. For cetacean species, this information is key to defining stocks, habitat use, and mitigating harmful interactions. Research focused on this goal is employing methodologies such as visual observations, tag data, and passive acoustic monitoring (PAM) data. However, many studies are temporally limited or focus on only one or few species. In this study, we make use of an existing long-term (2009–2019), labeled PAM data set to examine spatiotemporal patterning of at least 10 odontocete (toothed whale) species in the Hawaiian Islands using compositional analyses and modeling techniques. Species composition differs among considered sites, and this difference is robust to seasonal movement patterns. Temporally, hour of day was the most significant predictor of detection across species and sites, followed by season, though patterns differed among species. We describe long-term trends in species detection at one site and note that they are markedly similar for many species. These trends may be related to long-term, underlying oceanographic cycles that will be the focus of future study. We demonstrate the variability of temporal patterns even at relatively close sites, which may imply that wide-ranging models of species presence are missing key fine-scale movement patterns. Documented seasonal differences in detection also highlights the importance of considering season in survey design both regionally and elsewhere. We emphasize the utility of long-term, continuous monitoring in highlighting temporal patterns that may relate to underlying climatic states and help us predict responses to climate change. We conclude that long-term PAM records are a valuable resource for documenting spatiotemporal patterns and can contribute many insights into the lives of top predators, even in highly studied regions such as the Hawaiian Islands.  相似文献   

15.
With rates of climate change exceeding the rate at which many species are able to shift their range or adapt, it is important to understand how future changes are likely to affect biodiversity at all levels of organisation. Understanding past responses and extent of niche conservatism in climatic tolerance can help predict future consequences. We use an integrated approach to determine the genetic consequences of past and future climate changes on a bat species, Plecotus austriacus. Glacial refugia predicted by palaeo‐modelling match those identified from analyses of extant genetic diversity and model‐based inference of demographic history. Former refugial populations currently contain disproportionately high genetic diversity, but niche conservatism, shifts in suitable areas and barriers to migration mean that these hotspots of genetic diversity are under threat from future climate change. Evidence of population decline despite recent northward migration highlights the need to conserve leading‐edge populations for spearheading future range shifts.  相似文献   

16.
Ecological niche models (ENMs) provide a means of characterizing the spatial distribution of suitable conditions for species, and have recently been applied to the challenge of locating potential distributional areas at the Last Glacial Maximum (LGM) when unfavorable climate conditions led to range contractions and fragmentation. Here, we compare and contrast ENM-based reconstructions of LGM refugial locations with those resulting from the more traditional molecular genetic and phylogeographic predictions. We examined 20 North American terrestrial vertebrate species from different regions and with different range sizes for which refugia have been identified based on phylogeographic analyses, using ENM tools to make parallel predictions. We then assessed the correspondence between the two approaches based on spatial overlap and areal extent of the predicted refugia. In 14 of the 20 species, the predictions from ENM and predictions based on phylogeographic studies were significantly spatially correlated, suggesting that the two approaches to development of refugial maps are converging on a similar result. Our results confirm that ENM scenario exploration can provide a useful complement to molecular studies, offering a less subjective, spatially explicit hypothesis of past geographic patterns of distribution.  相似文献   

17.
Understanding the biological correlates of range sizes in plant species is important to predict the response of species to climate change. We used climate envelope models to estimate species’ potential range size and range filling for 48 European tree species. We hypothesized that potential range size relates to the climatic tolerances of plant species, and that the degree of range filling is influenced by species dispersal. We tested these hypotheses using, for each species, estimates for tolerance to cold and drought, type of dispersal, fruit size and seed size. Consistent with previous observations, we found that both the size of potential ranges and range filling increase from south to north. Species tolerance to temperature and water stress, as well as their dispersal-related traits also showed marked spatial patterns. There was, moreover, a significant positive partial correlation between cold tolerance and potential range size, when drought tolerance was partialed out, and a non-significant partial correlation between drought tolerance and potential range size, with cold tolerance partialed out. Range filling was not significantly larger in species dispersed by wind than in those dispersed by animals. There was a negative correlation between seed mass and range filling, but its statistical significance varied across different subsets of species and climate envelope algorithms; the correlation between fruit length and range filling was not significant. We conclude that climatic tolerances and dispersal traits influence species range size and range filling, and thus affect the range dynamics of species in response to global change. Using traits will therefore help to predict future distribution of species under climate change.  相似文献   

18.
Ice is one of the most important drivers of population dynamics in polar organisms, influencing the locations, sizes, and connectivity of populations. Antarctic fur seals, Arctocephalus gazella, are particularly interesting in this regard, as they are concomitantly reliant on both ice‐associated prey and ice‐free coastal breeding areas. We reconstructed the history of this species through the Last Glacial Maximum (LGM) using genomic sequence data from seals across their range. Population size trends and divergence events were investigated using continuous‐time size estimation analysis and divergence time estimation models. The combined results indicated that a panmictic population present prior to the LGM split into two small refugial populations during peak ice extent. Following ice decline, the western refugial population founded colonies at the South Shetlands, South Georgia, and Bouvetøya, while the eastern refugial population founded the colony on Iles Kerguelen. Postglacial population divergence times closely match geological estimates of when these coastal breeding areas became ice free. Given the predictions regarding continued future warming in polar oceans, these responses of Antarctic fur seals to past climate variation suggest it may be worthwhile giving conservation consideration to potential future breeding locations, such as areas further south along the Antarctic Peninsula, in addition to present colony areas.  相似文献   

19.
全球气候变化对野生动物的影响   总被引:13,自引:0,他引:13  
彭少麟  李勤奋  任海 《生态学报》2002,22(7):1153-1159
人类活动所引起的温室气体增加以及由此造成的全球气候变化和对全球生态环境的影响正越来越引起人们的关注,在全球气候变化对野生动物影响的研究中发现,随着全球气温变暖,野生动物的分布区整体上向北移,物修期提前,动物的繁殖及其种群大小,不同的种类做出不同的响应,有的受益于全球变暖,繁殖增加,成活率高,种群壮大,有的受制于这一变化,种群逐渐缩小甚至面临灭绝的威胁,总的来看,全球气候变暖使更多的野生动物无所适从,因此,加强对气候变化在不同层面上对野生动物影响机制的研究,调整野生动物保护措施,对野生动物及其生境的保护,维持生态系统多样性将显得十分重要。  相似文献   

20.
Understanding the impact of past climatic events on species may facilitate predictions of how species will respond to future climate change. To this end, we sampled populations of the common pond snail Radix balthica over the entire species range (northwestern Europe). Using a recently developed analytical framework that employs ecological niche modelling to obtain hypotheses that are subsequently tested with statistical phylogeography, we inferred the range dynamics of R. balthica over time. A Maxent modelling for present-day conditions was performed to infer the climate envelope for the species, and the modelled niche was used to hindcast climatically suitable range at the last glacial maximum (LGM) c . 21 000 years ago. Ecological niche modelling predicted two suitable areas at the LGM within the present species range. Phylogeographic model selection on a COI mitochondrial DNA data set confirmed that R. balthica most likely spread from these two disjunct refuges after the LGM. The match observed between the potential range of the species at the LGM given its present climatic requirements and the phylogeographically inferred refugial areas was a clear argument in favour of niche conservatism in R. balthica , thus allowing to predict the future range. The subsequent projection of the potential range under a global change scenario predicts a moderate pole-ward shift of the northern range limits, but a dramatic loss of areas currently occupied in France, western Great Britain and southern Germany.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号