首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disentangling the selective factors that act on male colour in wild guppies   总被引:1,自引:0,他引:1  
The colour pattern of male guppies ( Poecilia reticulata ) is thought to evolve as a compromise between sexual selection (favouring conspicuousness) and natural selection (favouring crypsis). Underpinning this classic explanation is the observation that guppies living with dangerous fish predators are less colourful than guppies living without these predators. However, high fish-predation sites are generally farther downstream than low fish-predation sites, and so may also differ in physical habitat features related to stream size, as well as in the abundance of predatory prawns ( Macrobrachium crenulatum ). The goal of our study was to disentangle the effects of fish predation on colour evolution from the potential effects of physical habitat features and predation by prawns. We collected 20 male guppies from each of 29 sites in two Trinidadian rivers. We then quantified the colour pattern of these fish; each spot was measured for size and assigned to a colour category. For each site, we determined the fish predation regime and quantified stream size, water colour, canopy openness, and prawn abundance. We then used regressions to assess the relative importance of these factors in explaining variation in guppy colour. Supporting previous work, the presence of predatory fishes was the most important explanatory variable for many components of colour pattern. Physical habitat features explained some of the remaining variation, but in inconsistent ways between the two rivers. The abundance of predatory prawns also explained variation in male colour. Our results suggest that predatory fishes impose the strongest selection on the colour pattern of male guppies but that other factors are also important.  相似文献   

2.
Sensory bias, a predisposition towards certain signals, has been implicated in the origin of mate preferences in some species. A risk associated with these biases is that they can be co-opted by predators as sensory lures. Here we propose that the orange spots on the brown pincers of a diurnal, predatory species of prawn function as lures for Trinidadian guppies, which have a sensory bias for orange. We exposed female guppies to (i) a life-like model of this Trinidadian prawn with orange, green or no spots on the pincers or (ii) a live, novel (non-Trinidadian) crustacean (crayfish), also with spotted pincers. First, we provide evidence that guppies sympatric with the prawn recognized our model as a potential predator. Next, we found that guppies spent more time in the dangerous head region of the model prawn with orange-spotted pincers compared with unspotted pincers. Finally, we show that allopatric, but not sympatric, guppies spent more time in the vicinity of the head of a live crayfish when orange spots were added to its pincers than when brown spots were added. Our results suggest that the orange spots on prawn pincers can act as a sensory lure.  相似文献   

3.
The evolution of exaggerated sexual ornamentation is classically thought to proceed as a compromise between opposing vectors of sexual and natural selection. In colour‐based ornamentation, as exhibited by guppies (Poecilia reticulata), heightened trait expression may be beneficial in promoting attractiveness, but costly in terms of predation. Opportunities to reconcile this compromise will exist if there are differences between conspecifics and predators in their sensory systems; in such situations guppies should evolve to exploit the ways in which their ornamentation would appear maximally conspicuous to conspecifics. In the present study, we addressed this hypothesis via a study of geographic variation employing the most sophisticated colour analysis yet attempted for Trinidadian guppies. We made two paired contrasts, one between two Aripo populations that vary in the presence of the potential predator Aequidens pulcher, and another between Quare and Marianne populations that vary in exposure to a predatory prawn, Macrobrachium crenulatum. We predicted that, if ornamentation is constrained by the presence of either predator, then guppy conspicuousness should change most markedly across each of the two paired populations as viewed by that predator. Although disparity analysis of entire colour patterns indicated significant differences in both contrasts, this prediction was most clearly supported for the Marianne/Quare contrast. Marianne fish, which co‐exist with prawns, exhibited larger black spots coupled with less extensive, less bright flank iridescence. The brightness reductions are notable because, as the only potential guppy predator with a dedicated ultraviolet (UV) photoreceptor, prawns may detect passing male guppies via their UV‐bright blues, violets and ‘UV/oranges’. We discuss our findings in light of the additional insights that might be obtained by combining spectral assessments and visual modeling with more traditional methods of colour pattern appraisal. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 734–747.  相似文献   

4.
It is important to understand the role that different predators can have to be able to predict how changes in the predator assemblage may affect the prey community and ecosystem attributes. We tested the effects of different stream predators on macroinvertebrates and ecosystem attributes, in terms of benthic algal biomass and accumulation of detritus, in artificial stream channels. Predator richness was manipulated from zero to three predators, using two fish and one crayfish species, while density was kept equal (n = 6) in all treatments with predators. Predators differed in their foraging strategies (benthic vs. drift feeding fish and omnivorous crayfish) but had overlapping food preferences. We found effects of both predator species richness and identity, but the direction of effects differed depending on the response variable. While there was no effect on macroinvertebrate biomass, diversity of predatory macroinvertebrates decreased with increasing predator species richness, which suggests complementarity between predators for this functional feeding group. Moreover, the accumulation of detritus was affected by both predator species richness and predator identity. Increasing predator species richness decreased detritus accumulation and presence of the benthic fish resulted in the lowest amounts of detritus. Predator identity (the benthic fish), but not predator species richness had a positive effect on benthic algal biomass. Furthermore, the results indicate indirect negative effects between the two ecosystem attributes, with a negative correlation between the amount of detritus and algal biomass. Hence, interactions between different predators directly affected stream community structure, while predator identity had the strongest impact on ecosystem attributes.  相似文献   

5.
Ecological research has focused on understanding how changes in consumer abundance affects community structure and ecosystem processes. However, there is increasing evidence that evolutionary changes in consumers can also alter community structure and ecosystem processes. Typically, the effects of consumer phenotype on communities and ecosystem processes are measured as net effects that integrate numerous ecological pathways. Here, we analyze new data from experimental manipulations of Trinidadian guppy Poecilia reticulata presence, density and phenotype to examine how effects on the algal community cause changes in gross‐primary production (GPP). We combine analytical tools borrowed from path analysis with experimental exclosures in mesocosms to separate the ecological and evolutionary effects of guppies into direct and indirect components. We show that the evolutionary effects of guppy phenotype act through different ecological pathways than the effects of guppy presence and density on GPP. As reported in previous studies that used a different measure of algal biomass, adding guppies and doubling their densities decreased algal biovolume through direct effects. In contrast to these previously reported results, exchanging guppy phenotypes that live without predators for phenotypes that live with predators did not affect algal biovolume. Instead, guppies from populations that live with predators increased the diversity of algal species and increased GPP compared to guppies that live without predators. These changes in the algal community were driven primarily by guppy phenotypes that live with predators—algal communities in mesocosms without fish were similar to those with guppies from predator‐free locations, but both were different from mesocosms with guppies from populations that live with predators. Changes in the algal community were driven directly by differences in foraging behavior between the two consumer phenotypes. We reconcile these results with our previous findings, thereby enhancing our understanding of the relationship between ecological and evolutionary processes.  相似文献   

6.
M. Jennions  S. Telford 《Oecologia》2002,132(1):44-50
Variation among populations in extrinsic mortality schedules selects for different patterns of investment in key life-history traits. We compared life-history phenotypes among 12 populations of the live-bearing fish Brachyrhaphis episcopi. Five populations co-occurred with predatory fish large enough to prey upon adults, while the other seven populations lacked these predators. At sites with large predatory fish, both sexes reached maturity at a smaller size. Females of small to average length that co-occurred with predators had higher fecundity and greater reproductive allotment than those from populations that lacked predators, but the fecundity and reproductive allotment of females one standard deviation larger than mean body length did not differ among sites. In populations with large predatory fish, offspring mass was significantly reduced. In each population, fecundity, offspring size and reproductive allotment increased with female body size. When controlling for maternal size, offspring mass and number were significantly negatively correlated, indicating a phenotypic trade-off. This trade-off was non-linear, however, because reproductive allotment still increased with brood size after controlling for maternal size. Similar differences in life-history phenotypes among populations with and without large aquatic predators have been reported for Brachyrhaphis rhabdophora in Costa Rica and Poecilia reticulata (a guppy) in Trinidad. This may represent a convergent adaptation in life-history strategies attributable to predator-mediated effects or environmental correlates of predator presence.  相似文献   

7.
Natural selection is often invoked to explain differences in brain size among vertebrates. However, the particular agents of selection that shape brain size variation remain obscure. Recent studies suggest that predators may select for larger brains because increased cognitive and sensory abilities allow prey to better elude predators. Yet, there is little direct evidence that exposure to predators causes the evolution of larger brains in prey species. We experimentally tested this prediction by exposing families of 1000–2000 F2 hybrid benthic‐limnetic threespine stickleback to predators under naturalistic conditions, along with matched controls. After two generations of selection, we found that fish from the predator addition treatment had significantly smaller brains (specifically smaller telencephalons and optic lobes) than fish from the control treatment. After an additional generation of selection, we reared experimental fish in a common environment and found that this difference in brain size was maintained in the offspring of fish from the predator addition treatment. Our results provide direct experimental evidence that (a) predators can indeed drive the evolution of brain size–‐but not in the fashion commonly expected and (b) that the tools of experimental evolution can be used to the study the evolution of the vertebrate brain.  相似文献   

8.
Brain size, brain architecture, and eye size vary extensively in vertebrates. However, the extent to which the evolution of these components is intricately connected remains unclear. Trinidadian killifish, Anablepsoides hartii, are found in sites that differ in the presence and absence of large predatory fish. Decreased rates of predation are associated with evolutionary shifts in brain size; males from sites without predators have evolved a relatively larger brain and eye size than males from sites with predators. Here, we evaluated the extent to which the evolution of brain size, brain structure, and eye size covary in male killifish. We utilized wild‐caught and common garden‐reared specimens to determine whether specific components of the brain have evolved in response to differences in predation and to determine if there is covariation between the evolution of brain size, brain structure, and eye size. We observed consistent shifts in brain architecture in second generation common garden reared, but not wild caught preserved fish. Male killifish from sites that lack predators exhibited a significantly larger telencephalon, optic tectum, cerebellum, and dorsal medulla when compared with fish from sites with predators. We also found positive connections between the evolution of brain structure and eye size but not between overall brain size and eye size. These results provide evidence for evolutionary covariation between the components of the brain and eye size. Such results suggest that selection, directly or indirectly, acts upon specific regions of the brain, rather than overall brain size, to enhance visual capabilities.  相似文献   

9.
The role of infaunal predators in structuring marine soft-bottomcommunities was evaluated according to these predators': 1)effects on prey density based on manipulative field experiments,2) feeding rates, 3) effects on prey distribution, 4) effectson species diversity, and 5) interactions with their prey. Estimatesof feeding rates indicate that many predatory taxa have thepotential to reduce the size of prey populations and suggestthat nemerteans are likely to have a larger impact on infaunalabundances than polychaetes. Infaunal predators have been demonstratedto have a significant effect on infaunal densities and to affectthe spatial and temporal distribution of their prey. The effectsof these predators on species diversity apparently depend onthe predator and the diversity of the system. These conclusionsmay not be applicable to all soft-bottom habitats or all groupsof infaunal predators because they are based on studies of veryfew taxa conducted almost exclusively in intertidal, unvegetated,mud habitats. Additional studies are needed on the effects ofpredation by infauna on infaunal population dynamics and onthe mechanisms of interactions between predator and prey. Furtherinvestigation will probably reveal that different groups ofinfaunal predators play different roles in structuring soft-bottomcommunities.  相似文献   

10.
Understanding the strength and diversity of predator‐prey interactions among species is essential to understand ecosystem consequences of population‐level variation. Directly quantifying the predatory behaviour of wild fishes at large spatial scales (>100 m) in the open sea is fraught with difficulties. To date the only empirical approach has been to search for correlations in the abundance of predators and their putative prey. As an example we use this approach to search for predators of the keystone crown‐of‐thorns starfish. We show that this approach is unlikely to detect predator–prey linkages because the theoretical relationship is non‐linear, resulting in multiple possible prey responses for single given predator abundance. Instead we suggest some indication of the strength and ecosystem importance of a predator–prey relationship can be gained by using the abundance of both predators and their putative prey to parameterize functional response models.  相似文献   

11.
Jeff Scott Wesner 《Oikos》2012,121(1):53-60
Food webs in different ecosystems are often connected through spatial resource subsidies. As a result, biodiversity effects in one ecosystem may cascade to adjacent ecosystems. I tested the hypothesis that aquatic predator diversity effects cascade to terrestrial food webs by altering a prey subsidy (biomass and trophic structure of emerging aquatic insects) entering terrestrial food webs, in turn altering the distribution of a terrestrial consumer (spider) that feeds on emerging aquatic insects. Fish presence, but not diversity, altered the trophic structure of emerging aquatic insects by strongly reducing the biomass of emerging predators (dragonflies) relative to non‐feeding taxa (chironomid midges). Fish diversity reduced emerging insect biomass through enhanced effects on the most common prey taxa: predatory dragonflies Pantala flavescens and non‐feeding chironomids. Terrestrial spiders (Tetragnathidae) primarily captured emerging chironomids, which were reduced in the high richness (3 spp.) treatment relative to the 1 and 2 species treatments. As a result, terrestrial spider abundance was lower above pools with high fish richness (3 species) than pools with 1 and 2 species. Synergistic predation effects were mostly limited to the high richness treatment, in which fish occupied each level of vertical microhabitat in the water‐column (benthic, middle, surface). This study demonstrates that predator diversity effects are not limited to the habitat of the predator, but can propagate to adjacent ecosystems, and demonstrates the utility of using simple predator functional traits (foraging domain) to more accurately predict the direction of predator diversity effects.  相似文献   

12.
Predatory fishes play critical roles in the trophodynamics of coral reefs, and the biomass of predatory fish can be a strong determinant of the structure of reef fish assemblages. In this study, we used variations in predator biomass between management zones on the Great Barrier Reef to examine how predators influence the biomass, mortality, condition, and reproductive potential of a common prey species Scolopsis bilineatus (bridled monocle bream; Nemipteridae). Despite no numerical differences in biomass or mortality, we found significant differences in a variety of demographic traits for S. bilineatus between multiple areas of high and low predator biomass. The size-at-age, condition, and reproductive potential of fish were reduced in marine reserves where predator biomass was high. The response of fish to predators was highly sex dependent; females suffered the greatest reductions in condition and reproductive potential. This study supports the notion that predators can play important roles in regulating prey dynamics and emphasises the importance of understanding top-down control by predators when considering fisheries management techniques and conservation strategies.  相似文献   

13.
Predators strongly influence species assemblages and shape morphological defenses of prey. Interestingly, adaptations that constitute effective defenses against one type of predator may render the prey susceptible to other types of predators. Hence, prey may evolve different strategies to escape predation, which may facilitate adaptive radiation of prey organisms. Larvae of different species in the dragonfly genus Leucorrhinia have various morphological defenses. We studied the distribution of these larvae in relation to the presence of predatory fish. In addition, we examined the variation in morphological defenses within species with respect to the occurrence of fish. We found that well-defended species, those with more and longer spines, were more closely associated with habitats inhabited by predatory fish and that species with weakly developed morphological defenses were more abundant in habitats without fish. The species predominantly connected to lakes with or without fish, respectively, were not restricted to a single clade in the phylogeny of the genus. Our data is suggestive of phenotypic plasticity in morphological defense in three of the studied species since these species showed longer spines in lakes with fish. We suggest that adaptive phenotypic plasticity may have broadened the range of habitats accessible to Leucorrhinia. It may have facilitated colonization of new habitats with different types of predators, and ultimately, speciation through adaptive radiation.  相似文献   

14.
Both habitat area and predators are known to affect the diversity and composition of species that live in a locality. In addition, habitat area can influence the presence of predators, indirectly affecting the diversity of prey. Thus, habitat area may influence species diversity directly and indirectly through the presence of top predators. Here we examine the effects of habitat area and predators on the species richness and composition of a foliage living arthropod community in a fragmented complex of glades (small grassland patches within a forested matrix) in the Ozark Plateau, Missouri. We find that a top predator, the eastern collared lizard Crotaphytus collaris collaris , occurs primarily on larger glades. Glade area was positively correlated with arthropod diversity, but only after removing the effect of collared lizard presence. Moreover, collared lizards reduced overall arthropod richness, and shifted the dominance from predatory arthropods (e.g. spiders) and Orthopteran grasshoppers to Homopterans (planthoppers). This study shows the importance of accounting for variation in the presence of a top predator when studying the effect of landscape-level processes on species richness and composition.  相似文献   

15.
Although conspicuous visual sexual signals, such as bright colors,in males serve to attract females in numerous species, theymay also attract the attention of potential predators and thusmay be costly in terms of increasing individual risk of mortalityto predation. Most models of the evolution of extravagant malesexual traits and female preferences for them assume that thesexually preferred male trait is costly to produce and maintain.However, there is surprisingly little empirical evidence fordirect fitness costs associated with sexually selected visualtraits that enhance male mating success. In the present study,we report a direct fitness cost for sexually selected, brightbody-color patterns in males in the form of an associated greaterrisk of mortality to predation. By using the guppy (Poeciliareticulata) and the blue acara cichlid fish (Aequidens pulcher)as a model prey–predator system, we demonstrate experimentallythat individual cichlids preferentially and consistently approached,attacked, and captured the more brightly colored of two size-matchedmale guppies presented simultaneously in staged encounters.This resulted in the brightly colored male incurring, on average,a significantly higher risk of mortality given an encounterwith the predator than with the drabber male in matched pairs.Our results constitute strong behavioral evidence for a directviability cost associated with bright coloration in male guppies,and they corroborate the generally accepted paradigm that directionalpredation by visual fish predators against brightly colored,adult male guppies underlies the evolution of the known divergentcolor patterns in natural guppy populations that experiencedifferent intensities of predation. The viability cost associatedwith bright conspicuous coloration in male guppies potentiallyreinforces for females the reliability of this sexually selectedtrait as an indicator trait of male quality.  相似文献   

16.
A. Prejs 《Oecologia》1987,72(2):259-262
Summary In a previous study (A. Prejs and K. Prejs in press) we found that at the end of the dry season small fish species trapped together with piscivorous fish in small, shallow pool varied in their level of food intake. The two smallest of these species fed little, whereas larger species fed at high rate. By examining the species and size composition of the diet and gape limitations of predatory species, I found that the decreased feeding rate of small fish was in response to a high risk of predation by gape-limited predators. The reduction of feeding rate was very substantial when compared to that of the same species in predator free area.  相似文献   

17.
In this review and synthesis, new data from field and laboratory experiments on red drum, Sciaenops ocellatus , larvae as prey to larger fishes are presented to illustrate two approaches to the study of developmental effects on predation. Various sizes and species of predatory fishes imposed very different levels of mortality on experimental populations of red drum larvae. Differences in predator size explained little of the overall variation in mortality rates. In the laboratory, responsiveness of red drum to a single size and species of predatory fish was relatively low through much of the developmental period but increased steadily. Response effectiveness improved and the predator's capture success decreased once the prey exceeded 20 mm in length. General ontogenetic trends in the behavioural interaction of various larvae and their piscine predators are described by combining 22 data sets on a scale of roughly comparable ontogenetic state. This scale, together with absolute and relative measures of predator and prey size, are used to assess the roles of ontogeny and scaling in the predation interaction. Ontogeny is shown to be a significant contributor to changes in responsiveness, response effectiveness, and capture success. The influence of scaling always took the form of an interaction with ontogeny and not a main effect.  相似文献   

18.
Vertebrates exhibit extensive variation in brain size. The long‐standing assumption is that this variation is driven by ecologically mediated selection. Recent work has shown that an increase in predator‐induced mortality is associated with evolved increases and decreases in brain size. Thus, the manner in which predators induce shifts in brain size remains unclear. Increased predation early in life is a key driver of many adult traits, including life‐history and behavioral traits. Such results foreshadow a connection between age‐specific mortality and selection on adult brain size. Trinidadian killifish, Rivulus hartii, are found in sites with and without guppies, Poecilia reticulata. The densities of Rivulus drop dramatically in sites with guppies because guppies prey upon juvenile Rivulus. Previous work has shown that guppy predation is associated with the evolution of adult life‐history traits in Rivulus. In this study, we compared second‐generation laboratory‐born Rivulus from sites with and without guppies for differences in brain size and associated trade‐offs between brain size and other components of fitness. Despite the large amount of existing research on the importance of early‐life events on the evolution of adult traits, and the role of predation on both behavior and brain size, we did not find an association between the presence of guppies and evolutionary shifts in Rivulus brain size. Such results argue that increased rates of juvenile mortality may not alter selection on adult brain size.  相似文献   

19.
Compared with laboratory environments, complex natural environments promote brain cell proliferation and neurogenesis. Predators are one important feature of many natural environments, but, in the laboratory, predatory stimuli tend to inhibit brain cell proliferation. Often, laboratory predatory stimuli also elevate plasma glucocorticoids, which can then reduce brain cell proliferation. However, it is unknown how natural predators affect cell proliferation or whether glucocorticoids mediate the neurogenic response to natural predators. We examined brain cell proliferation in six populations of the electric fish, Brachyhypopomus occidentalis, exposed to three forms of predator stimuli: (i) natural variation in the density of predatory catfish; (ii) tail injury, presumably from predation attempts; and (iii) the acute stress of capture. Populations with higher predation pressure had lower density of proliferating (PCNA+) cells, and fish with injured tails had lower proliferating cell density than those with intact tails. However, plasma cortisol did not vary at the population level according to predation pressure or at the individual level according to tail injury. Capture stress significantly increased cortisol, but only marginally decreased cell proliferation. Thus, it appears that the presence of natural predators inhibits brain cell proliferation, but not via mechanisms that depend on changes in basal cortisol levels. This study is the first demonstration of predator-induced alteration of brain cell proliferation in a free-living vertebrate.  相似文献   

20.
Crucian carp Carassius carassius was sampled during 1993 and 1994 in 21 lakes and ponds in east Norway In 10 of these lakes and ponds no piscivorous fish species was present, and in the remaining 11 lakes and ponds predators such as perch Perca fluvtalilis. pike Esox lucius, and trout Salmo trutta were common In general, crucian carp was larger in the lakes with predators than in those without predators The relative body depth (body height/body length) of crucian carp was significantly deeper in populations sympatric with predators (mean 0 358), compared to allopatric populations (mean 0 286) The variation in relative body depth was larger among the sympatric populations than among the allopatric populations The observed difference in relative body depth may be due to 1) predator induced changes m body morphology, 2) increased growth rates in lakes containing predator due to reduced intraspecific competition, and 3) size-selective predation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号