首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Duché D 《Journal of bacteriology》2007,189(11):4217-4222
Colicins reach their targets in susceptible Escherichia coli strains through two envelope protein systems: the Tol system is used by group A colicins and the TonB system by group B colicins. Colicin E2 (ColE2) is a cytotoxic protein that recognizes the outer membrane receptor BtuB. After gaining access to the cytoplasmic membrane of sensitive Escherichia coli cells, ColE2 enters the cytoplasm to cleave DNA. After binding to BtuB, ColE2 interacts with the Tol system to reach its target. However, it is not known if the entire colicin or only the nuclease domain of ColE2 enters the cell. Here I show that preincubation of ColE2 with Escherichia coli cells prevents binding and translocation of pore-forming colicins of group A but not of group B. This inhibition persisted even when cells were incubated with ColE2 for 30 min before the addition of pore-forming colicins, indicating that ColE2 releases neither its receptor nor its translocation machinery when its nuclease domain enters the cells. These competition experiments enabled me to estimate the time required for ColE2 binding to its receptor and translocation.  相似文献   

2.
Data suggest a two-receptor model for colicin E1 (ColE1) translocation across the outer membrane of Escherichia coli. ColE1 initially binds to the vitamin B(12) receptor BtuB and then translocates through the TolC channel-tunnel, presumably in a mostly unfolded state. Here, we studied the early events in the import of ColE1. Using in vivo approaches, we show that ColE1 is cleaved when added to whole cells. This cleavage requires the presence of the receptor BtuB and the protease OmpT, but not that of TolC. Strains expressing OmpT cleaved ColE1 at K84 and K95 in the N-terminal translocation domain, leading to the removal of the TolQA box, which is essential for ColE1's cytotoxicity. Supported by additional in vivo data, this suggests that a function of OmpT is to degrade colicin at the cell surface and thus protect sensitive E. coli cells from infection by E colicins. A genetic strategy for isolating tolC mutations that confer resistance to ColE1, without affecting other TolC functions, is also described. We provide further in vivo evidence of the multistep interaction between TolC and ColE1 by using cross-linking followed by copurification via histidine-tagged TolC. First, secondary binding of ColE1 to TolC is dependent on primary binding to BtuB. Second, alterations to a residue in the TolC channel interfere with the translocation of ColE1 across the TolC pore rather than with the binding of ColE1 to TolC. In contrast, a substitution at a residue exposed on the cell surface abolishes both binding and translocation of ColE1.  相似文献   

3.
The X-ray structures of the channel-forming colicins Ia and N, and endoribonucleolytic colicin E3, as well as of the channel domains of colicins A and E1, and spectroscopic and calorimetric data for intact colicin E1, are discussed in the context of the mechanisms and pathways by which colicins are imported into cells. The extensive helical coiled-coil in the R domain and internal hydrophobic hairpin in the C domain are important features relevant to colicin import and channel formation. The concept of outer membrane translocation mediated by two receptors, one mainly used for initial binding and second for translocation, such as BtuB and TolC, respectively, is discussed. Helix elongation and conformational flexibility are prerequisites for import of soluble toxin-like proteins into membranes. Helix elongation contradicts suggestions that the colicin import involves a molten globule intermediate. The nature of the open-channel structure is discussed.  相似文献   

4.
The X-ray structures of the channel-forming colicins Ia and N, and endoribonucleolytic colicin E3, as well as of the channel domains of colicins A and E1, and spectroscopic and calorimetric data for intact colicin E1, are discussed in the context of the mechanisms and pathways by which colicins are imported into cells. The extensive helical coiled-coil in the R domain and internal hydrophobic hairpin in the C domain are important features relevant to colicin import and channel formation. The concept of outer membrane translocation mediated by two receptors, one mainly used for initial binding and second for translocation, such as BtuB and TolC, respectively, is discussed. Helix elongation and conformational flexibility are prerequisites for import of soluble toxin-like proteins into membranes. Helix elongation contradicts suggestions that the colicin import involves a molten globule intermediate. The nature of the open-channel structure is discussed.  相似文献   

5.
The interaction of colicins with target cells is a paradigm for protein import. To enter cells, bactericidal colicins parasitize Escherichia coli outer membrane receptors whose physiological purpose is the import of essential metabolites. Colicins E1 and E3 initially bind to the BtuB receptor, whose beta-barrel pore is occluded by an N-terminal globular "plug". The x-ray structure of a complex of BtuB with the coiled-coil BtuB-binding domain of colicin E3 did not reveal displacement of the BtuB plug that would allow passage of the colicin (Kurisu, G., S. D. Zakharov, M. V. Zhalnina, S. Bano, V. Y. Eroukova, T. I. Rokitskaya, Y. N. Antonenko, M. C. Wiener, and W. A. Cramer. 2003. Nat. Struct. Biol. 10:948-954). This correlates with the inability of BtuB to form ion channels in planar bilayers, shown in this work, suggesting that an additional outer membrane protein(s) is required for colicin import across the outer membrane. The identity and interaction properties of this OMP were analyzed in planar bilayer experiments.OmpF and TolC channels in planar bilayers were occluded by colicins E3 and E1, respectively, from the trans-side of the membrane. Occlusion was dependent upon a cis-negative transmembrane potential. A positive potential reversibly opened OmpF and TolC channels. Colicin N, which uses only OmpF for entry, occludes OmpF in planar bilayers with the same orientation constraints as colicins E1 and E3. The OmpF recognition sites of colicins E3 and N, and the TolC recognition site of colicin E1, were found to reside in the N-terminal translocation domains. These data are considered in the context of a two-receptor translocon model for colicin entry into cells.  相似文献   

6.
Enzymatic colicins such as colicin E9 (ColE9) bind to BtuB on the cell surface of Escherichia coli and rapidly recruit a second coreceptor, either OmpF or OmpC, through which the N-terminal natively disordered region (NDR) of their translocation domain gains entry into the cell periplasm and interacts with TolB. Previously, we constructed an inactive disulfide-locked mutant ColE9 (ColE9(s-s)) that binds to BtuB and can be reduced with dithiothreitol (DTT) to synchronize cell killing. By introducing unique enterokinase (EK) cleavage sites in ColE9(s-s), we showed that the first 61 residues of the NDR were inaccessible to cleavage when bound to BtuB, whereas an EK cleavage site inserted at residue 82 of the NDR remained accessible. This suggests that most of the NDR is occluded by OmpF shortly after binding to BtuB, whereas the extreme distal region of the NDR is surface exposed before unfolding of the receptor-binding domain occurs. EK cleavage of unique cleavage sites located in the ordered region of the translocation domain or in the distal region of the receptor-binding domain confirmed that these regions of ColE9 remained accessible at the E. coli cell surface. Lack of EK cleavage of the DNase domain of the cell-bound, oxidized ColE9/Im9 complex, and the rapid detection of Alexa Fluor 594-labeled Im9 (Im9(AF)) in the cell supernatant following treatment of cells with DTT, suggested that immunity release occurred immediately after unfolding of the colicin and was not driven by binding to BtuB.  相似文献   

7.
Interaction of the TolB box of Group A colicins with the TolB protein in the periplasm of Escherichia coli cells promotes transport of the cytotoxic domain of the colicin across the cell envelope. The crystal structure of a complex between a 107‐residue peptide (TA1–107) of the translocation domain of colicin A (ColA) and TolB identified the TolB box as a 12‐residue peptide that folded into a distorted hairpin within a central canyon of the β‐propeller domain of TolB. Comparison of this structure with that of the colicin E9 (ColE9) TolB box–TolB complex, together with site‐directed mutagenesis of the ColA TolB box residues, revealed important differences in the interaction of the two TolB boxes with an overlapping binding site on TolB. Substitution of the TolB box residues of ColA with those of ColE9 conferred the ability to competitively recruit TolB from Pal but reduced the biological activity of the mutant ColA. This datum explains (i) the difference in binding affinities of ColA and ColE9 with TolB, and (ii) the inability of ColA, unlike ColE9, to competitively recruit TolB from Pal, allowing an understanding of how these two colicins interact in a different way with a common translocation portal in E. coli cells.  相似文献   

8.
The mechanism by which E colicins recognize and then bind to BtuB receptors in the outer membrane of Escherichia coli cells is a poorly understood first step in the process that results in cell killing. Using N- and C-terminal deletions of the N-terminal 448 residues of colicin E9, we demonstrated that the smallest polypeptide encoded by one of these constructs that retained receptor-binding activity consisted of residues 343-418. The results of the in vivo receptor-binding assay were supported by an alternative competition assay that we developed using a fusion protein consisting of residues 1-497 of colicin E9 fused to the green fluorescent protein as a fluorescent probe of binding to BtuB in E. coli cells. Using this improved assay, we demonstrated competitive inhibition of the binding of the fluorescent fusion protein by the minimal receptor-binding domain of colicin E9 and by vitamin B12. Mutations located in the minimum R domain that abolished or reduced the biological activity of colicin E9 similarly affected the competitive binding of the mutant colicin protein to BtuB. The sequence of the 76-residue R domain in colicin E9 is identical to that found in colicin E3, an RNase type E colicin. Comparative sequence analysis of colicin E3 and cloacin DF13, which is also an RNase-type colicin but uses the IutA receptor to bind to E. coli cells, revealed significant sequence homology throughout the two proteins, with the exception of a region of 92 residues that included the minimum R domain. We constructed two chimeras between cloacin DF13 and colicin E9 in which (i) the DNase domain of colicin E9 was fused onto the T+R domains of cloacin DF13; and (ii) the R domain and DNase domain of colicin E9 were fused onto the T domain of cloacin DF13. The killing activities of these two chimeric colicins against indicator strains expressing BtuB or IutA receptors support the conclusion that the 76 residues of colicin E9 confer receptor specificity. The minimum receptor-binding domain polypeptide inhibited the growth of the vitamin B12-dependent E. coli 113/3 mutant cells, demonstrating that vitamin B12 and colicin E9 binding is mutually exclusive.  相似文献   

9.
Colicin Ia, a channel‐forming bactericidal protein, uses the outer membrane protein, Cir, as its primary receptor. To kill Escherichia coli, it must cross this membrane. The crystal structure of Ia receptor‐binding domain bound to Cir, a 22‐stranded plugged β‐barrel protein, suggests that the plug does not move. Therefore, another pathway is needed for the colicin to cross the outer membrane, but no ‘second receptor’ has ever been identified for TonB‐dependent colicins, such as Ia. We show that if the receptor‐binding domain of colicin Ia is replaced by that of colicin E3, this chimera effectively kills cells, provided they have the E3 receptor (BtuB), Cir, and TonB. This is consistent with wild‐type Ia using one Cir as its primary receptor (BtuB in the chimera) and a second Cir as the translocation pathway for its N‐terminal translocation (T) domain and its channel‐forming C‐terminal domain. Deletion of colicin Ia's receptor‐binding domain results in a protein that kills E. coli, albeit less effectively, provided they have Cir and TonB. We show that purified T domain competes with Ia and protects E. coli from being killed by it. Thus, in addition to binding to colicin Ia's receptor‐binding domain, Cir also binds weakly to its translocation domain.  相似文献   

10.
Colicins A, E1, E2 and E3 belong to the BtuB group of colicins. The NH2-terminal region of colicin A is required for translocation, and defects in this region cannot be overcome by osmotic shock of sensitive cells. In addition to BtuB, colicin A requires OmpF for efficient uptake by sensitive cells. The roles of BtuB and OmpF in translocation and binding to the receptor of the colicins A, E1, E2 and E3 were compared. The results suggest that for colicin A OmpF is used both as a receptor and for translocation across the outer membrane. In contrast, for colicin E1, OmpF is used neither as a receptor nor for translocation. For colicins E2 and E3, the situation is intermediate: only BtuB is used as a receptor but both BtuB and OmpF are involved in the translocation step.  相似文献   

11.
Cellular import of colicin E3 is initiated by the Escherichia coli outer membrane cobalamin transporter, BtuB. The 135-residue 100-A coiled-coil receptor-binding domain (R135) of colicin E3 forms a 1:1 complex with BtuB whose structure at a resolution of 2.75 A is reported. Binding of R135 to the BtuB extracellular surface (DeltaG(o) = -12 kcal mol(-1)) is mediated by 27 residues of R135 near the coiled-coil apex. Formation of the R135-BtuB complex results in unfolding of R135 N- and C-terminal ends, inferred to be important for unfolding of the colicin T-domain. Small conformational changes occur in the BtuB cork and barrel domains but are insufficient to form a translocation channel. The absence of a channel and the peripheral binding of R135 imply that BtuB serves to bind the colicin, and that the coiled-coil delivers the colicin to a neighboring outer membrane protein for translocation, thus forming a colicin translocon. The translocator was concluded to be OmpF from the occlusion of OmpF channels by colicin E3.  相似文献   

12.
BACKGROUND: E colicin proteins have three functional domains, each of which is implicated in one of the stages of killing Escherichia coli cells: receptor binding, translocation and cytotoxicity. The central (R) domain is responsible for receptor-binding activity whereas the N-terminal (T) domain mediates translocation, the process by which the C-terminal cytotoxic domain is transported from the receptor to the site of its cytotoxicity. The translocation of enzymatic E colicins like colicin E9 is dependent upon TolB but the details of the process are not known. RESULTS: We have demonstrated a protein-protein interaction between the T domain of colicin E9 and TolB, an essential component of the tol-dependent translocation system in E. coli, using the yeast two-hybrid system. The crystal structure of TolB, a procaryotic tryptophan-aspartate (WD) repeat protein, reveals an N-terminal alpha + beta domain based on a five-stranded mixed beta sheet and a C-terminal six-bladed beta-propeller domain. CONCLUSIONS: The results suggest that the TolB-box residues of the T domain of colicin E9 interact with the beta-propeller domain of TolB. The protein-protein interactions of other beta-propeller-containing proteins, the yeast yPrp4 protein and G proteins, are mediated by the loops or outer sheets of the propeller blades. The determination of the three-dimensional structure of the T domain-TolB complex and the isolation of mutations in TolB that abolish the interaction with the T domain will reveal fine details of the protein-protein interaction of TolB and the T domain of E colicins.  相似文献   

13.
ColE7 is a nuclease-type colicin released from Escherichia coli to kill sensitive bacterial cells by degrading the nucleic acid molecules in their cytoplasm. ColE7 is classified as one of the group A colicins, since the N-terminal translocation domain (T-domain) of the nuclease-type colicins interact with specific membrane-bound or periplasmic Tol proteins during protein import. Here, we show that if the N-terminal tail of ColE7 is deleted, ColE7 (residues 63-576) loses its bactericidal activity against E.coli. Moreover, TolB protein interacts directly with the T-domain of ColE7 (residues 1-316), but not with the N-terminal deleted T-domain (residues 60-316), as detected by co-immunoprecipitation experiments, confirming that the N-terminal tail is required for ColE7 interactions with TolB. The crystal structure of the N-terminal tail deleted ColE7 T-domain was determined by the multi-wavelength anomalous dispersion method at a resolution of 1.7 angstroms. The structure of the ColE7 T-domain superimposes well with the T-domain of ColE3 and TR-domain of ColB, a group A Tol-dependent colicin and a group B TonB-dependent colicin, respectively. The structural resemblance of group A and B colicins implies that the two groups of colicins may share a mechanistic connection during cellular import.  相似文献   

14.
The crystal structure of the complex of the BtuB receptor and the 135-residue coiled-coil receptor-binding R-domain of colicin E3 (E3R135) suggested a novel mechanism for import of colicin proteins across the outer membrane. It was proposed that one function of the R-domain, which extends along the outer membrane surface, is to recruit an additional outer membrane protein(s) to form a translocon for passage colicin activity domain. A 3.5-A crystal structure of the complex of E2R135 and BtuB (E2R135-BtuB) was obtained, which revealed E2R135 bound to BtuB in an oblique orientation identical to that previously found for E3R135. The only significant difference between the two structures was that the bound coiled-coil R-domain of colicin E2, compared with that of colicin E3, was extended by two and five residues at the N and C termini, respectively. There was no detectable displacement of the BtuB plug domain in either structure, implying that colicin is not imported through the outer membrane by BtuB alone. It was concluded that the oblique orientation of the R-domain of the nuclease E colicins has a function in the recruitment of another member(s) of an outer membrane translocon. Screening of porin knock-out mutants showed that either OmpF or OmpC can function in such a translocon. Arg(452) at the R/C-domain interface in colicin E2 was found have an essential role at a putative site of protease cleavage, which would liberate the C-terminal activity domain for passage through the outer membrane translocon.  相似文献   

15.
Colicin E7 (ColE7), a nuclease toxin released from Escherichia coli, kills susceptible bacteria under environmental stress. Nuclease colicins are processed during translocation with only the cytotoxic nuclease domains traversing the inner membrane to cleave tRNA, rRNA, or DNA in the cytoplasm of target cells. In this study, we show that the E. coli periplasmic extract cleaves ColE7 between Lys(446) and Arg(447) in the presence or absence of its inhibitor Im7 protein. Several residues near cleavage sites were mutated, but only mutants of Arg(447) completely lost in vivo cell-killing activity. Both the full-length and the nuclease domain of Arg(447) mutants retained their nuclease activities, indicating that failure to kill cells was not a consequence of damage to the endonuclease activity of the enzyme. Moreover, the R447E ColE7 mutant was not cleaved at its 447 site by periplasmic extracts or transported into the cytoplasm of target cells. Collectively, these results suggest that ColE7 is cleaved at Arg(447) during translocation and that cleavage is an essential step for ColE7 import into the cytoplasm of target cells and its cell-killing activity. Conserved basic residues aligned with Arg(447) have also been found in other nuclease colicins, implying that the processing at this position may be common to other colicins during translocation.  相似文献   

16.
Zakharov SD  Sharma O  Zhalnina MV  Cramer WA 《Biochemistry》2008,47(48):12802-12809
Cellular import of colicin E3 is initiated by high affinity binding of the colicin receptor-binding (R) domain to the vitamin B(12) (BtuB) receptor in the Escherichia coli outer membrane. The BtuB binding site, at the apex of its extended coiled-coil R-domain, is distant from the C-terminal nuclease domain that must be imported for expression of cytotoxicity. Based on genetic analysis and previously determined crystal structures of the R-domain bound to BtuB, and of an N-terminal disordered segment of the translocation (T) domain inserted into the OmpF porin, a translocon model for colicin import has been inferred. Implicit in the model is the requirement for unfolding of the colicin segments inserted into OmpF. FRET analysis was employed to study colicin unfolding upon interaction with BtuB and OmpF. A novel method of Cys-specific dual labeling of a native polypeptide, which allows precise placement of donor and acceptor fluorescent dyes on the same polypeptide chain, was developed. A decrease in FRET efficiency between the translocation and cytotoxic domains of the colicin E3 was observed upon colicin binding in vitro to BtuB or OmpF. The two events were independent and additive. The colicin interactions with BtuB and OmpF have a major electrostatic component. The R-domain Arg399 is responsible for electrostatic interaction with BtuB. It is concluded that free energy for colicin unfolding is provided by binding of the R- domain to BtuB and binding/insertion of the T-domain to/into OmpF.  相似文献   

17.
Abstract Sensitivity of Escherichia coli bacteria to colicins A and E1 was significantly increased by overproduction of the BtuB receptor protein. The amount of vitamin B12 needed before colicins A and E1 treatment to protect cells against killing was found to be a function of the number of BtuB molecules present at the cell surface. Cells treated by colicins A and E were rescued from killing by addition of vitamin B12 shortly after colicin treatment. The rate of reversal by vitamin B12 may correspond to the kinetics of irreversible binding to BtuB of the various colicins.  相似文献   

18.
It has long been suggested that the import of nuclease colicins requires protein processing; however it had never been formally demonstrated. Here we show that two RNase colicins, E3 and D, which appropriate two different translocation machineries to cross the outer membrane (BtuB/Tol and FepA/TonB, respectively), undergo a processing step inside the cell that is essential to their killing action. We have detected the presence of the C-terminal catalytic domains of these colicins in the cytoplasm of target bacteria. The same processed forms were identified in both colicin-sensitive cells and in cells immune to colicin because of the expression of the cognate immunity protein. We demonstrate that the inner membrane protease FtsH is necessary for the processing of colicins D and E3 during their import. We also show that the signal peptidase LepB interacts directly with the central domain of colicin D in vitro and that it is a specific but not a catalytic requirement for in vivo processing of colicin D. The interaction of colicin D with LepB may ensure a stable association with the inner membrane that in turn allows the colicin recognition by FtsH. We have also shown that the outer membrane protease OmpT is responsible for alternative and distinct endoproteolytic cleavages of colicins D and E3 in vitro, presumably reflecting its known role in the bacterial defense against antimicrobial peptides. Even though the OmpT-catalyzed in vitro cleavage also liberates the catalytic domain from colicins D and E3, it is not involved in the processing of nuclease colicins during their import into the cytoplasm.  相似文献   

19.
A Akutsu  H Masaki    T Ohta 《Journal of bacteriology》1989,171(12):6430-6436
The primary structure of a 3.1-kilobase E6 or E3 segment carrying colicin and related genes was determined. Plasmid ColE6-CT14 showed striking homology to ColE3-CA38 throughout this segment, including homology to the secondary immunity gene, immE8, downstream of the E6 or E3 immunity gene. The ColE3-CA38 and ColE6-CT14 sequences, however, contained an exceptional hot spot region encoding both the colicin-active domain (RNase region) and the immunity protein, reflecting their different immunity specificities. On the other hand, some chimeric plasmids were constructed through homologous recombination between colicin E3 and cloacin DF13 operons. The resulting plasmids were deduced to produce chimeric colicins with a colicin E3-type N-terminal part, a cloacin DF13-type C-terminal-active domain, and the DF13 immunity protein. The killing spectra of the chimeric colicins and the immunities of the plasmids were identical to those of colicin E6 and ColE6-CT14, respectively, showing that the colicin E6 immunity specificity is completely equivalent to that of cloacin DF13. Nevertheless, colicin E6 has been found to show a sequence diversity from cloacin DF13 almost to the same extent as that from colicin E3 in their RNase and immunity regions, indicating that only a small number of amino acids defines the immunity specificity for discrimination between colicins E3 and E6 (or cloacin DF13).  相似文献   

20.
The mechanism by which enzymatic E colicins such as colicin E3 (ColE3) and ColE9 cross the outer membrane, periplasm, and cytoplasmic membrane to reach the cytoplasm and thus kill Escherichia coli cells is unique in prokaryotic biology but is poorly understood. This requires an interaction between TolB in the periplasm and three essential residues, D35, S37, and W39, of a pentapeptide sequence called the TolB box located in the N-terminal translocation domain of the enzymatic E colicins. Here we used site-directed mutagenesis to demonstrate that the TolB box sequence in ColE9 is actually larger than the pentapeptide and extends from residues 34 to 46. The affinity of the TolB box mutants for TolB was determined by surface plasmon resonance to confirm that the loss of biological activity in all except one (N44A) of the extended TolB box mutants correlates with a reduced affinity of binding to TolB. We used a PCR mutagenesis protocol to isolate residues that restored activity to the inactive ColE9 D35A, S37A, and W39A mutants. A serine residue at position 35, a threonine residue at position 37, and phenylalanine or tyrosine residues at position 39 restored biological activity of the mutant ColE9. The average area predicted to be buried upon folding (AABUF) was correlated with the activity of the variants at positions 35, 37, and 39 of the TolB box. All active variants had AABUF profiles that were similar to the wild-type residues at those positions and provided information on the size, stereochemistry, and potential folding pattern of the residues of the TolB Box.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号