首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We explored the role of hypocretins in human narcolepsy through histopathology of six narcolepsy brains and mutation screening of Hcrt, Hcrtr1 and Hcrtr2 in 74 patients of various human leukocyte antigen and family history status. One Hcrt mutation, impairing peptide trafficking and processing, was found in a single case with early onset narcolepsy. In situ hybridization of the perifornical area and peptide radioimmunoassays indicated global loss of hypocretins, without gliosis or signs of inflammation in all human cases examined. Although hypocretin loci do not contribute significantly to genetic predisposition, most cases of human narcolepsy are associated with a deficient hypocretin system.  相似文献   

2.
3.
The lateral hypothalamic hypocretin (also called orexin) neurons have emerged as instrumental in triggering arousal and regulating energy metabolism. The lack of hypocretin signaling is the cause of narcolepsy while elevated hypocretin levels induce arousal, elevated food intake, and adiposity. Here, we report an unorthodox synaptic organization on the hypocretin neurons in which excitatory synaptic currents and asymmetric synapses exert control on the cell bodies of these long-projective neurons with minimal inhibitory input. Overnight food deprivation promotes the formation of more excitatory synapses and synaptic currents onto hypocretin cells; this is reversed by re-feeding and blocked by leptin administration. This unique wiring and acute stress-induced plasticity of the hypocretin neurons correlates well with their being involved in the control of arousal and alertness that are so vital to survival, but this circuitry may also be an underlying cause of insomnia and associated metabolic disturbances, including obesity.  相似文献   

4.
Hypocretins (orexins) are wake-promoting neuropeptides produced by hypothalamic neurons. These hypocretin-producing cells are lost in people with narcolepsy, possibly due to an autoimmune attack. Prior studies described hypocretin neurons in the enteric nervous system, and these cells could be an additional target of an autoimmune process. We sought to determine whether enteric hypocretin neurons are lost in narcoleptic subjects. Even though we tried several methods (including whole mounts, sectioned tissue, pre-treatment of mice with colchicine, and the use of various primary antisera), we could not identify hypocretin-producing cells in enteric nervous tissue collected from mice or normal human subjects. These results raise doubts about whether enteric neurons produce hypocretin.  相似文献   

5.
We showed earlier that a specific neuron population of the rat lateral hypothalamus, differing from the codistributed melanin-concentrating hormone (MCH) neurons, express both dynorphin (DYN) and secretogranin II (SgII) genes. We demonstrated later that this population corresponds in fact to the newly identified orexin/hypocretin (OX/Hcrt) neurons. In the present study, by revisiting the chemical phenotype of these neurons, we confirm that all of them contain DYN B- and SgII-immunoreactive materials. The roles played by these peptide/protein in OX/Hcrt neurons are still unclear.Double immunocytochemical stainings highlight putative somasomatic, axosomatic and axodendritic contacts between OX/Hcrt and MCH neurons. Adding OX/Hcrt to the culture medium of hypothalamic slices from 8-day-old rats results either in a significant increase of MCH mRNA after 24 h survival or a strong fall after 10 days culture. These results taken together suggest that OX/Hcrt can directly and/or indirectly affect MCH expression, and that both OX/Hcrt and MCH neuron populations interact to respond in a coordinated manner to central and peripheral signals.  相似文献   

6.
The sleep disorder narcolepsy is now linked with a loss of neurons containing the neuropeptide hypocretin (also known as orexin). The hypocretin neurons are located exclusively in the lateral hypothalamus, a brain region that has been implicated in arousal based on observations made by von Economo during the viral encephalitic epidemic of 1916–1926. There are other neuronal phenotypes located in the lateral hypothalamus that are distinct and separate from the hypocretin neurons. Here the authors identify these neurons based on peptides and neurotransmitters that they express and review roles of these neurons in sleep. Given the heterogeneity of the neuronal phenotypes in the lateral hypothalamus, it is likely that hypocretin neurons, as well as other types of neurons in the lateral hypothalamus, influence sleep and provide state-dependent regulation of physiological functions.  相似文献   

7.
The discovery that hypocretins are involved in narcolepsy, a disorder associated with excessive daytime sleepiness, cataplexy and unusually rapid transitions to rapid-eye-movement sleep, opens a new field of investigation in the area of sleep control physiology. Hypocretin-1 and -2 (also called orexin-A and -B) are newly discovered neuropeptides processed from a common precursor, preprohypocretin. Hypocretin-containing cells are located exclusively in the lateral hypothalamus, with widespread projections to the entire neuroaxis. Two known receptors, Hcrtr1 and Hcrtr2, have been reported. The functional significance of the hypocretin system is rapidly emerging in both animals and humans. Hypocretin abnormalities cause narcolepsy in dogs, human and mice. The role of the hypocretin system in normal sleep regulation is more uncertain. We believe hypocretin cells drive cholinergic and monoaminergic activity across the sleep cycle. Input from the suprachiasmatic nucleus to hypocretin-containing neurons may explain the occurrence of clock-dependent alertness. Other functions are suggested by pharmacological and neurochemical experiments. These include regulation of food intake, neuroendocrine function, autonomic nervous system activity and energy balance.  相似文献   

8.
Hypocretin (Hcrt) has been implicated in the control of motor activity and in respiration and cardiovascular changes. Loss of Hcrt in narcolepsy is linked to sleepiness and to cataplexy, a sudden loss of muscle tone which is triggered by sudden strong emotions. In the current study we have compared the effects of treadmill running, to yard play on cerebrospinal fluid (CSF) Hcrt level in normal dogs. We find that treadmill locomotion, at a wide range of speeds, does not increase Hcrt level beyond baseline, whereas yard play produces a substantial increase in Hcrt, even though both activities produce comparable increases in heart rate, respiration and body temperature. We conclude that motor and cardiovascular changes are not sufficient to elevate CSF levels of Hcrt and we hypothesize that the emotional aspects of yard play account for the observed increase in Hcrt.  相似文献   

9.
The sleep disorder narcolepsy is now considered a neurodegenerative disease because there is a massive loss of neurons containing the neuropeptide hypocretin/orexin (HCRT). In consequence, narcoleptic patients have very low cerebrospinal fluid (CSF) levels of HCRT. Studies in animal models of narcolepsy have shown the neurophysiological role of the HCRT system in the development of this disease. For example, the injection of the neurotoxin named hypocretin-2-saporin (HCRT2/SAP) into the lateral hypothalamus (LH) destroys the HCRT neurons, therefore diminishes the contents of HCRT in the CSF and induces narcoleptic-like behavior in rats. Transplants of various cell types have been used to induce recovery in a variety of neurodegenerative animal models. In models such as Parkinson''s disease, cell survival has been shown to be small but satisfactory. Similarly, cell transplantation could be employed to implant grafts of HCRT cells into the LH or even other brain regions to treat narcolepsy. Here, we report for the first time that transplantation of HCRT neurons into the LH of HCRT2/SAP-lesioned rats diminishes narcoleptic-like sleep behavior. Therefore, cell transplantation may provide an effective method to treat narcolepsy.  相似文献   

10.
Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation.   总被引:59,自引:0,他引:59  
Neurons containing the neuropeptide orexin (hypocretin) are located exclusively in the lateral hypothalamus and send axons to numerous regions throughout the central nervous system, including the major nuclei implicated in sleep regulation. Here, we report that, by behavioral and electroencephalographic criteria, orexin knockout mice exhibit a phenotype strikingly similar to human narcolepsy patients, as well as canarc-1 mutant dogs, the only known monogenic model of narcolepsy. Moreover, modafinil, an anti-narcoleptic drug with ill-defined mechanisms of action, activates orexin-containing neurons. We propose that orexin regulates sleep/wakefulness states, and that orexin knockout mice are a model of human narcolepsy, a disorder characterized primarily by rapid eye movement (REM) sleep dysregulation.  相似文献   

11.
Orexin A and B, also known as hypocretin 1 and 2, are two recently isolated hypothalamic peptides. As orexin-containing neurons are strategically located in the lateral hypothalamus, which has long been suspected to play an important role in feeding behaviors, initial studies were focused on the involvement of orexins in positive food intake and energy metabolism. Recent studies implicate a more diverse biological role of orexins, which can be manifested at different level of the neuraxis. For example, canine narcolepsy, a disorder with close phenotypic similarity to human narcolepsy, is caused by a mutation of hypocretin receptor 2 gene. Results from our immunohistochemical and functional studies, which will be summarized here, suggest that the peptide acting on neurons in the rostral ventrolateral medulla augment sympathoexcitatory outflow to the spinal cord. This finding is discussed in the context of increased sympathetic activity frequently associated with obesity.  相似文献   

12.
Linkage of human narcolepsy with HLA association to chromosome 4p13-q21   总被引:2,自引:0,他引:2  
Although narcolepsy is highly associated with human leukocyte antigen (HLA) DQ6/DQB1*0602 and/or DR2/DRB1*1501, most individuals with the HLA haplotype are free of narcolepsy. This indicates that HLA alone makes a relatively small contribution to the development of narcolepsy and that a non-HLA gene(s) can contribute to the genetic predisposition even in narcoleptic cases with HLA association. We conducted a genome-wide linkage search for narcolepsy in eight Japanese families with 21 DR2-positive patients (14 narcoleptic cases with cataplexy and 7 cases with an incomplete form of narcolepsy). A lod score of 3.09 suggested linkage to chromosome 4p13-q21. A lod score of 1.53 was obtained at the HLA-DRB1 locus, though this lod score may be biased since all the affected patients and many of the family members were DR2-positive. No other loci including hypocretin, hypocretin receptor 1, and hypocretin receptor 2 had lod scores greater than 1.0. The present study suggests that chromosome 4p13-q21 contains a second locus for HLA-associated human narcolepsy.  相似文献   

13.
Breathing and vigilance are regulated by pH and CO2 levels in the central nervous system. The hypocretin/orexin (Hcrt/Orx)- and histamine (HA)-containing hypothalamic neurons synergistically control different aspects of the waking state. Acidification inhibits firing of most neurons but these two groups in the caudal hypothalamus are excited by hypercapnia and protons, similar to the chemosensory neurons in the brain stem. Activation of hypothalamic wake-on neurons in response to hypercapnia, seen with the c-Fos assay, is supported by patch-clamp recordings in rodent brain slices: Hcrt/Orx and HA neurons are excited by acidification in the physiological range (pH from 7.4 to 7.0). Multiple molecular mechanisms mediate wake-promoting effects of protons in HA neurons in the tuberomamillary nucleus (TMN): among them are acid-sensing ion channels, Na+,K+-ATPase, group I metabotropic glutamate receptors (mGluRI). HA neurons are remarkably sensitive to the mGluRI agonist DHPG (threshold concentration 0.5 µM) and mGluRI antagonists abolish proton-induced excitation of HA neurons. Hcrt/Orx neurons are excited through block of a potassium conductance and release glutamate with their peptides in TMN. The two hypothalamic nuclei and the serotonergic dorsal raphe cooperate toward CO2/acid-induced arousal. Their interactions and molecular mechanisms of H+/CO2-induced activation are relevant for the understanding and treatment of respiratory and metabolic disorders related to sleep-waking such as obstructive sleep apnea and sudden infant death syndrome.  相似文献   

14.
Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose   总被引:13,自引:0,他引:13  
Glucose-inhibited neurons orchestrate behavior and metabolism according to body energy levels, but how glucose inhibits these cells is unknown. We studied glucose inhibition of orexin/hypocretin neurons, which promote wakefulness (their loss causes narcolepsy) and also regulate metabolism and reward. Here we demonstrate that their inhibition by glucose is mediated by ion channels not previously implicated in central or peripheral glucose sensing: tandem-pore K(+) (K(2P)) channels. Importantly, we show that this electrical mechanism is sufficiently sensitive to encode variations in glucose levels reflecting those occurring physiologically between normal meals. Moreover, we provide evidence that glucose acts at an extracellular site on orexin neurons, and this information is transmitted to the channels by an intracellular intermediary that is not ATP, Ca(2+), or glucose itself. These results reveal an unexpected energy-sensing pathway in neurons that regulate states of consciousness and energy balance.  相似文献   

15.
Over a short period in the late 1990s, three groups converged on the discovery of a neuropeptide system, centred in the dorsolateral hypothalamus, that regulates arousal states, influences feeding and is implicated in the sleep disorder narcolepsy. Subsequent studies have illuminated many aspects of the circuitry of the hypocretin (also called orexin) system, which also influences hormone secretion and autonomic homeostasis, and have led to the hypothesis that most human narcolepsies result from an autoimmune attack against the hypocretin-producing neurons. The biochemical, physiological and anatomical components that regulate the switch between waking and sleeping are becoming clear. The rapidity with which the hypocretin story has emerged is a testament to both the conceptual and the technical evolution of genomic science in the past two decades.  相似文献   

16.

Narcolepsy is a debilitating sleep disorder characterized by excessive daytime sleepiness, cataplexy and intrusive rapid–eye movement sleep. Deficits in endogenous orexins are a major pathogenic component of the disease. This disorder is also associated with the gene marker HLADQB1*0602. Orexins as hypothalamic neuropeptides have multiple physiological functions, and their primary functions are regulation of the sleep–wake cycle and feeding. Evidence from animal studies using orexin knockout mice and focal microdialysis of an orexin receptor antagonist at the retrotrapezoid nucleus and medullary raphe in rats demonstrated that orexins also contribute to respiratory regulation in a vigilance state–dependent manner, as animals with orexin dysregulation have attenuated hypercapnic ventilatory responses predominantly in wakefulness. These findings are consistent with the notion that the activity of orexinergic neurons is higher during wake than sleep periods. Orexin neurons seem to be a pivotal link between conscious and unconscious brain functions in animals. The human model of hypocretin deficiency is patients with narcolepsy–cataplexy. In contrast to the findings suggested by animal studies, we found significant decreases in hypoxic responsiveness, but not in hypercapnic responsiveness, in narcoleptics, and further analysis indicated that decreased ventilatory responses to hypoxia in human narcolepsy–cataplexy is in relation to HLA-DQB1*0602 status, not hypocretin deficiency. This is confirmed by the fact that the hypoxic responsiveness was lower in HLA positive versus negative controls. Unlike in mice, hypocretin-1 is not a major factor contributing to depressed hypoxic responses in humans. Species differences may exist.

  相似文献   

17.
The loss of hypothalamic hypocretin/orexin (hcrt) producing neurons causes narcolepsy with cataplexy. An autoimmune basis for the disease has long been suspected and recent results have greatly strengthened this hypothesis. Narcolepsy with hcrt deficiency is now known to be associated with a Human Leukocyte Antigen (HLA) and T-cell receptor (TCR) polymorphisms, suggesting that an autoimmune process targets a single peptide unique to hcrt-cells via specific HLA-peptide-TCR interactions. Recent data have shown a robust seasonality of disease onset in children and associations with Streptococcus Pyogenes, and influenza A H1N1-infection and H1N1-vaccination, pointing towards processes such as molecular mimicry or bystander activation as crucial for disease development. We speculate that upper airway infections may be common precipitants of a whole host of CNS autoimmune complications including narcolepsy.  相似文献   

18.
Holoprosencephaly (HPE) is a common forebrain malformation associated with mental retardation and craniofacial anomalies. Multiple lines of evidence indicate that loss of ventral neurons is associated with HPE. The condition is etiologically heterogeneous, and abnormalities in any of several genes can cause human HPE. Among these genes, mutations in SONIC HEDGEHOG ( SHH) are the most commonly identified single gene defect causing human HPE. SHH mediates a number of processes in central nervous system development and is required for the normal induction of ventral cell types in the brain and spinal cord. Although a number of missense mutations in SHH have been identified in patients with HPE, the functional significance of these mutations has not yet been determined. We demonstrate that two SHH mutations that cause human HPE result in decreased in vivo activity of SHH in the developing nervous system. These mutant forms of SHH fail to regulate genes properly that are normally responsive to SHH signaling and do not induce ventrally expressed genes. In addition, the immunoreactivity of the mutant proteins is altered, suggesting that the conformation of the SHH protein has been disrupted. These studies are the first demonstration that mutations in SHH associated with human HPE perturb the in vivo patterning function of SHH in the developing nervous system.  相似文献   

19.
Ten years ago the sleep disorder narcolepsy was linked to the neuropeptide hypocretin (HCRT), also known as orexin. This disorder is characterized by excessive day time sleepiness, inappropriate triggering of rapid-eye movement (REM) sleep and cataplexy, which is a sudden loss of muscle tone during waking. It is still not known how HCRT regulates REM sleep or muscle tone since HCRT neurons are localized only in the lateral hypothalamus while REM sleep and muscle atonia are generated from the brainstem. To identify a potential neuronal circuit, the neurotoxin hypocretin-2-saporin (HCRT2-SAP) was used to lesion neurons in the ventral lateral periaquaductal gray (vlPAG). The first experiment utilized hypocretin knock-out (HCRT-ko) mice with the expectation that deletion of both HCRT and its target neurons would exacerbate narcoleptic symptoms. Indeed, HCRT-ko mice (n = 8) given the neurotoxin HCRT2-SAP (16.5 ng/23nl/sec each side) in the vlPAG had levels of REM sleep and sleep fragmentation that were considerably higher compared to HCRT-ko given saline (+39%; n = 7) or wildtype mice (+177%; n = 9). However, cataplexy attacks did not increase, nor were levels of wake or non-REM sleep changed. Experiment 2 determined the effects in mice where HCRT was present but the downstream target neurons in the vlPAG were deleted by the neurotoxin. This experiment utilized an FVB-transgenic strain of mice where eGFP identifies GABA neurons. We verified this and also determined that eGFP neurons were immunopositive for the HCRT-2 receptor. vlPAG lesions in these mice increased REM sleep (+79% versus saline controls) and it was significantly correlated (r = 0.89) with loss of eGFP neurons. These results identify the vlPAG as one site that loses its inhibitory control over REM sleep, but does not cause cataplexy, as a result of hypocretin deficiency.  相似文献   

20.
The central neural pathways underlying the physiological coordination between thermoregulation and the controls of the wake-sleep behavior and cardiovascular function remain insufficiently understood. Growing evidence supports the involvement of hypocretin (orexin) peptides in behavioral, cardiovascular, and thermoregulatory functions. We investigated whether the effects of ambient temperature on wake-sleep behavior and cardiovascular control depend on the hypothalamic neurons that release hypocretin peptides. Orexin-ataxin3 transgenic mice with genetic ablation of hypocretin neurons (n = 11) and wild-type controls (n = 12) were instrumented with electrodes for sleep scoring and a telemetric blood pressure transducer. Simultaneous sleep and blood pressure recordings were performed on freely-behaving mice at ambient temperatures ranging between mild cold (20°C) and the thermoneutral zone (30°C). In both mouse groups, the time spent awake and blood pressure were higher at 20°C than at 30°C. The cold-related increase in blood pressure was significantly smaller in rapid-eye-movement sleep (REMS) than either in non-rapid-eye-movement sleep (NREMS) or wakefulness. Blood pressure was higher in wakefulness than either in NREMS or REMS at both ambient temperatures. This effect was significantly blunted in orexin-ataxin3 mice irrespective of ambient temperature and particularly during REMS. These data demonstrate that hypocretin neurons are not a necessary part of the central pathways that coordinate thermoregulation with wake-sleep behavior and cardiovascular control. Data also support the hypothesis that hypocretin neurons modulate changes in blood pressure between wakefulness and the sleep states. These concepts may have clinical implications in patients with narcolepsy with cataplexy, who lack hypocretin neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号