首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Death-inducing ligands tumor necrosis factor alpha (TNFα) and Fas ligand (FasL) do not kill cultured astrocytes; instead they induce a variety of chemokines including macrophage-inflammatory protein-1α/CC chemokine ligand 3 (CCL3), monocyte chemoattractant protein-1 (CC CCL-2), macrophage-inflammatory protein-2/CXC chemokine ligand 2 (CXCL2, a murine homologue of interleukin 8), and interferon-induced protein of 10 kDa (CXCL10). Induction is enhanced by protein synthesis inhibition suggesting the existence of endogenous inhibitors. ERK, NF-κB, heat shock factor-1 (HSF-1) and heat shock proteins were examined for their possible roles in signal transduction. Inhibition of ERK activation by PD98059 partially inhibited expression of all but FasL-induced CXCL10. Although inhibition of NF-κB DNA binding inhibited chemokine induction, PD98059 did not inhibit TNFα-induced NF-κB DNA binding suggesting that ERK serves an NF-κB-independent pathway. Heat shock itself induced astrocytic chemokine expression; both TNFα and FasL induced HSF-1 DNA binding and Hsp72 production; and Hsp72-induced chemokine expression. Inhibition of either HSF-1 binding with quercetin or heat shock protein synthesis with KNK437 compromised chemokine induction without compromising cell survival. These data suggest that the induction of heat shock proteins via HSF-1 contribute to the TNFα- and FasL-induced expression of chemokines in astrocytes.  相似文献   

3.
4.
Hermann P  Dobbelaere DA 《FEBS letters》2006,580(21):5023-5028
The intracellular parasite Theileria induces uncontrolled proliferation and host cell transformation. Parasite-induced transformation is accompanied by constitutive activation of IkappaB kinase (IKK), resulting in permanently high levels of activated nuclear factor (NF)-kappaB. IKK activation pathways normally require heat shock protein 90 (Hsp90), a chaperone that regulates the stability and activity of signalling molecules and can be blocked by the benzoquinone ansamycin compound geldanamycin (GA). In Theileria-transformed cells, IkappaBalpha and p65 phosphorylation, NF-kappaB nuclear translocation and DNA binding activity are largely resistant to GA and also NF-kappaB-dependent reporter gene expression is only partly affected. Our findings indicate that parasite-induced IKK activity does not require functional Hsp90.  相似文献   

5.
6.
Heat shock (HS) treatment has been previously shown to suppress the IkappaB/nuclear factor-kappaB (NF-kappaB) cascade by denaturing, and thus inactivating IkappaB kinase (IKK). HS is characterized by the induction of a group of heat shock proteins (HSPs). However, their role in the HS-induced suppression of the IkappaB/NF-kappaB cascade is unclear. Adenovirus-mediated HSP70 overexpression was found not to suppress the TNF-alpha-induced activation of the IkappaB/NF-kappaB pathway, thus suggesting that HSP70 is unlikely to suppress this pathway. When TNF-alpha-induced activation of the IkappaB/NF-kappaB pathway was regained 24 h after HS, HSP70 was found to be highly up-regulated. Moreover, blocking HSP70 induction delayed TNF-alpha-induced IkappaBalpha degradation and the resolubilization of IKK. In addition, HSP70 associated physically with IKK, suggesting that HSP70 is involved in the recovery process via molecular chaperone effect. Adenovirus-mediated HSP70 overexpression prior to HS blocked the IkappaBalpha stabilizing effect of HS by suppressing IKK insolubilization. Moreover, the up-regulation of endogenous HSP70 by preheating, suppressed this subsequent HS-induced IKK insolubilization, and this effect was abrogated by blocking HSP70 induction. These findings indicate that HSP70 accumulates during HS and negatively regulates the HS-induced suppression of the IkappaB/NF-kappaB cascade by facilitating the renaturation of IKK and blocking its further denaturation.  相似文献   

7.
8.
Glutamine (GLN) has been shown to protect cells, tissues, and whole organisms from stress and injury. Enhanced expression of heat shock protein (HSP) has been hypothesized to be responsible for this protection. To date, there are no clear mechanistic data confirming this relationship. This study tested the hypothesis that GLN-mediated activation of the HSP pathway via heat shock factor-1 (HSF-1) is responsible for cellular protection. Wild-type HSF-1 (HSF-1+/+) and knockout (HSF-1–/–) mouse fibroblasts were used in all experiments. Cells were treated with GLN concentrations ranging from 0 to 16 mM and exposed to heat stress injury in a concurrent treatment model. Cell viability was assayed with phenazine methosulfate plus tetrazolium salt, HSP-70, HSP-25, and nuclear HSF-1 expression via Western blot analysis, and HSF-1/heat shock element (HSE) binding via EMSA. GLN significantly attenuated heat-stress induced cell death in HSF-1+/+ cells in a dose-dependent manner; however, the survival benefit of GLN was lost in HSF-1–/– cells. GLN led to a dose-dependent increase in HSP-70 and HSP-25 expression after heat stress. No inducible HSP expression was observed in HSF-1–/– cells. GLN increased unphosphorylated HSF-1 in the nucleus before heat stress. This was accompanied by a GLN-mediated increase in HSF-1/HSE binding and nuclear content of phosphorylated HSF-1 after heat stress. This is the first demonstration that GLN-mediated cellular protection after heat-stress injury is related to HSF-1 expression and cellular capacity to activate an HSP response. Furthermore, the mechanism of GLN-mediated protection against injury appears to involve an increase in nuclear HSF-1 content before stress and increased HSF-1 promoter binding and phosphorylation. knockout cells; amino acid; heat stress mechanism  相似文献   

9.
We have been interested in elucidating the role of intracellular phosphatase activity in the regulation of immune cell activation. To this end, we treated RAW 264.7 murine macrophages with the phosphatase inhibitor, calyculin-A. Treatment with calyculin-A led to activation of IkappaB kinase, degradation of IkappaBalpha, and induced nuclear translocation and DNA binding of NF-kappaB. Each of these effects occurred in both a time- and dose-dependent manner. In addition, each of these effects was negatively modulated by prior induction of the heat-shock response. Despite clear activation of the IkappaB kinase/IkappaBalpha/NF-kappaB pathway, however, phosphatase inhibition did not lead to increased expression of NF-kappaB-dependent genes. Thus, intracellular phosphatase activity is a central regulator of the NF-kappaB signal transduction pathway and is negatively modulated by heat shock. Inhibition of intracellular phosphatase activity with calyculin-A is not sufficient to induce NF-kappaB-dependent gene expression, demonstrating the complexity of NF-kappaB regulation in immune cells.  相似文献   

10.
11.
12.
13.
The heat shock response protects against sepsis-induced mortality, organ injury, cardiovascular dysfunction, and apoptosis. Several inducers of the heat shock response, such as hyperthermia, sodium arsenite, and pyrollidine dithiocarbonate, inhibit NF-κB activation and nitric oxide formation. The antioxidant lipoic acid (LA) has recently been found to inhibit NF-κB activation and nitric oxide formation. We therefore tested the hypothesis that LA induces a heat shock response. To test this hypothesis, we determined whether exposure to LA affects expression of both heat shock protein 70 (HSP-70) and nuclear heat shock factor-1 (HSF-1) in lipopolysaccharide (LPS) stimulated macrophages. LA and hyperthermia attenuated LPS-induced increases in nuclear NF-κB, iNOS protein, and media nitrite concentrations. LPS and hyperthermia increased HSP-70 concentrations 8-fold and 20-fold, respectively. No effect of LA treatment alone on HSP-70 protein expression was detected. Likewise, no effect of LA on HSF-1 protein expression was detected. These data suggest that LA inhibits LPS-induced activation of iNOS in macrophages independent of the heat shock response.  相似文献   

14.
15.
16.
Recent studies suggest that sodium arsenite downregulates NF-kappaB activity by inhibiting phosphorylation and subsequent degradation of IkappaBalpha. Many effects of sodium arsenite are secondary to induction of heat shock proteins. The role of the heat shock response in arsenite-induced inhibition of NF-kappaB, however, is not known. We examined the involvement of the heat shock response in arsenite-induced inhibition of NF-kappaB activity in IL-1beta-stimulated Caco-2 cells, a human colorectal adenocarcinoma cell line with enterocytic properties. Treatment of the cells with IL-1beta resulted in increased IkappaB kinase activity, reduced levels of IkappaBalpha and increased NF-kappaB DNA binding activity. Sodium arsenite blocked all of these responses to IL-1beta without inducing changes in heat shock factor activity or heat shock protein levels. Results from additional experiments showed that the protective effect of sodium arsenite on IkappaBalpha was not influenced by the oxygen radical scavenger catalase or by inhibitors of the MAP-kinase signaling pathway. The present results suggest that sodium arsenite stabilizes IkappaBalpha and prevents NF-kappaB activation in IL-1beta-stimulated Caco-2 cells independent of the heat shock response. In addition, stabilization of IkappaBalpha by sodium arsenite does not require oxygen radical formation or activation of the MAP kinase signaling pathway.  相似文献   

17.
The heat shock response protects against sepsis-induced mortality, organ injury, cardiovascular dysfunction, and apoptosis. Several inducers of the heat shock response, such as hyperthermia, sodium arsenite, and pyrollidine dithiocarbonate, inhibit NF-κB activation and nitric oxide formation. The antioxidant lipoic acid (LA) has recently been found to inhibit NF-κB activation and nitric oxide formation. We therefore tested the hypothesis that LA induces a heat shock response. To test this hypothesis, we determined whether exposure to LA affects expression of both heat shock protein 70 (HSP-70) and nuclear heat shock factor-1 (HSF-1) in lipopolysaccharide (LPS) stimulated macrophages. LA and hyperthermia attenuated LPS-induced increases in nuclear NF-κB, iNOS protein, and media nitrite concentrations. LPS and hyperthermia increased HSP-70 concentrations 8-fold and 20-fold, respectively. No effect of LA treatment alone on HSP-70 protein expression was detected. Likewise, no effect of LA on HSF-1 protein expression was detected. These data suggest that LA inhibits LPS-induced activation of iNOS in macrophages independent of the heat shock response.  相似文献   

18.
Heat Shock Proteins (HSP) are molecular chaperones activated upon cellular stress/stimuli. HSP gene expression is regulated by Heat Shock Factors (HSF). We have recently demonstrated a functional role for heat shock factor-2 (HSF-2) in fibroblast growth factor-2 (FGF-2)-induced RANK ligand (RANKL), a critical osteoclastogenic factor expression on stromal/preosteoblast cells. In the present study, we show that FGF-2 treatment did not induce RANKL expression in HSF-2-/-stromal/preosteoblast cells. Interestingly, HSF-2 deficiency resulted in rapid induction of alkaline phosphatase (ALP) activity and osteocalcin mRNA expression in these cells. Furthermore, FGF-2 did not induce osteoclast formation in co-culture of normal mouse spleen cells and HSF-2-/-stromal/preosteoblast cells. Electron microscopy analysis demonstrated that osteoclasts from HSF-2-/-mice have poorly developed ruffled borders. These data further confirm that HSF-2 plays an important role in FGF-2-induced RANKL expression in stromal/preosteoblast cells. HSF-2 deficiency has pleotropic effects on gene expression during osteoblast differentiation and osteoclastogenesis in the bone microenvironment. Novel therapeutic agents that modulate HSF-2 activation may have therapeutic utility against increased levels of FGF-2 and bone destruction associated with pathologic conditions.  相似文献   

19.
20.
We have been interested in elucidating how simultaneous stimuli modulate inflammation-related signal transduction pathways in lung parenchymal cells. We previously demonstrated that exposing respiratory epithelial cells to 95% oxygen (hyperoxia) synergistically increased tumor necrosis factor-alpha (TNF-alpha)-mediated activation of NF-kappaB and NF-kappaB-dependent gene expression by a mechanism involving increased activation of IkappaB kinase (IKK). Because the signal transduction mechanisms induced by IL-1beta are distinct to that of TNF-alpha, herein we sought to determine whether hyperoxia modulates IL-1beta-dependent signal transduction. In A549 cells, simultaneous treatment with hyperoxia and IL-1beta caused increased activation of IKK, prolonged the degradation of IkappaBalpha, and prolonged the nuclear translocation and DNA binding of NF-kappaB compared with cells treated with IL-1beta alone in room air. Hyperoxia did not affect IL-1beta-dependent degradation of the interleukin receptor-associated kinase differently from treatment with IL-beta alone. In contrast to the effects on the IKK/IkappaBalpha/NF-kappaB pathway, simultaneous treatment with hyperoxia and IL-1beta did not augment NF-kappaB-dependent gene expression compared with treatment with IL-1beta alone. Similar observations were made in a different human respiratory epithelial cell line, BEAS-2B cells. In addition, simultaneous treatment with hyperoxia and IL-1beta caused hyperphosphorlyation of the NF-kappaB p65 subunit compared with treatment with IL-1beta alone. In summary, concomitant treatment of A549 cells with hyperoxia and IL-1beta augments activation of IKK, prolongs degradation of IkappaBalpha, and prolongs nuclear translocation and DNA binding of NF-kappaB. This activation, however, is not coupled to increased expression of NF-kappaB-dependent genes, and the mechanism of this decoupling is not related to decreased phosphorylation of p65.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号