首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neural cell adhesion molecule NCAM and its glycosylation with polysialic acid (polySia) are crucially involved in proliferation, migration and differentiation of neural progenitors. Modification with polySia, homophilic and heterophilic interactions set the function of NCAM, but little is known on their interplay. We have shown recently that removal of polySia induces neuronal differentiation via heterophilic NCAM interactions at cell contacts between SH-SY5Y neuroblastoma cells. Here we analyze the additional impact of NCAM-positive fibroblasts as a ligand-presenting cellular environment, a model often used to demonstrate the neuritogenic effect of homophilic NCAM interactions. Native SH-SY5Y cells did not respond to interactions with fibroblast NCAM. However, after induction of neuronal differentiation by retinoic acid the previously ineffective NCAM signals activated extracellular signal-regulated kinase (ERK) and promoted neuritogenesis. Removal of polySia increased neuritogenesis in retinoic acid-treated cells additive to the NCAM substrate effect. The change in responsiveness to substrate NCAM was associated with a rearrangement of polysialylated NCAM away from its enrichment at homotypic cell-cell contacts and with the appearance of non-polysialylated NCAM, i.e. changes facilitating NCAM interactions with the substrate. Thus, heterophilic and homophilic NCAM interactions are integrated into the cell's response yet they have the capacity to independently trigger neuritogenesis. The actual occurrence of each of these interactions, however, depends on the cellular context, targeted cell surface presentation of NCAM and the dynamic regulation of its modification by polysialic acid. In summary, this study reveals how the complex interplay of NCAM interactions and polysialylation provides an elaborate system to regulate neuritogenesis.  相似文献   

2.
The vertebrate neural cell adhesion molecule NCAM mediates adhesion by both homophilic and heterophilic mechanisms, with heparan sulfate proteoglycans (HSPGs) being likely heterophilic ligands. In this study, transfected chicken NCAM polypeptides expressed on mouse L cells mediated the adhesion of these cells to several different heparan sulfate proteoglycans in nonionic detergent extracts of Embryonic Day 10 chicken brain membranes. In addition, adhesion inhibition experiments suggested a hitherto-undetected role for chondroitin sulfate proteoglycans in the stimulation of NCAM-mediated adhesion to some, but not all, of the HSPG ligands. Our experiments support the view that NCAM is a multivalent adhesive molecule whose function is affected by interactions with extracellular matrix and cell surface molecules.  相似文献   

3.
E10 chick sympathetic ganglion cells display a cell contact-dependent rise in choline acetyltransferase (ChAT) specific activity over the first several days in culture. This effect can be mimicked by addition of crude membrane fractions prepared from E10 retina and adult chicken brain, but not by those from E10 brain. The effects of both cell-cell and membrane-cell contact are inhibited by the addition of anti-NCAM Fab fragments. The membranes capable of increasing ChAT and those which are ineffective all contain NCAM, however their relative levels of NCAM polysialic acid differ. Whereas membranes with high polysialic acid NCAM are ineffective, selective enzymatic removal of polysialic acid renders them capable of producing an increase in ChAT. The inhibition of NCAM-mediated adhesion produced by Fab fragments can be compensated for by addition of wheat germ agglutinin, but only with membranes whose NCAM has low levels of polysialic acid. Taken together, these data suggest that NCAM can regulate cell contact-mediated increases in ChAT activity. We propose that NCAM-mediated adhesion promotes contact between cell membranes to allow the transmission of an otherwise NCAM-independent signal. In addition, NCAM's polysialic acid moiety appears to influence the ability of cells to transmit this signal, even in the presence of an alternative adhesion mechanism.  相似文献   

4.
The neural cell adhesion molecule, NCAM, is involved in multiple cis- and trans-homophilic interactions (NCAM binding to NCAM) thereby facilitating cell–cell adhesion through the formation of zipper-like NCAM-complexes. NCAM is also involved in heterophilic interactions with a number of proteins and extracellular matrix molecules. Some of these heterophilic interactions are mutually exclusive, and some interfere with or are dependent on homophilic NCAM interactions. Furthermore, both homo- and heterophilic interactions are modulated by posttranslational modifications of NCAM. Heterophilic NCAM-interactions initiate several intracellular signal transduction pathways ultimately leading to biological responses involving cellular differentiation, proliferation, migration and survival. Both homo- and heterophilic NCAM-interactions can be mimicked by synthetic peptides, which can induce NCAM-like signalling, and in vitroand in vivo studies suggest that such NCAM mimetics may be used for the treatment of neurodegenerative disorders.Special issue dedicated to Lawrence F. Eng.  相似文献   

5.
The neural cell adhesion molecule, NCAM, mediates Ca(2+)-independent cell-cell and cell-substratum adhesion via homophilic (NCAM-NCAM) and heterophilic (NCAM-non-NCAM molecules) binding. NCAM plays a key role in neural development, regeneration, and synaptic plasticity, including learning and memory consolidation. The crystal structure of a fragment comprising the three N-terminal Ig modules of rat NCAM has been determined to 2.0 A resolution. Based on crystallographic data and biological experiments we present a novel model for NCAM homophilic binding. The Ig1 and Ig2 modules mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), whereas the Ig3 module mediates interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions) through simultaneous binding to the Ig1 and Ig2 modules. This arrangement results in two perpendicular zippers forming a double zipper-like NCAM adhesion complex.  相似文献   

6.
Structural biology of NCAM homophilic binding and activation of FGFR   总被引:10,自引:0,他引:10  
In this review, we analyse the structural basis of the homophilic interactions of the neural cell adhesion molecule (NCAM) and the NCAM-mediated activation of the fibroblast growth factor receptor (FGFR). Recent structural evidence suggests that NCAM molecules form cis-dimers in the cell membrane through a high affinity interaction. These cis-dimers, in turn, mediate low affinity trans-interactions between cells via formation of either one- or two-dimensional 'zippers'. We provide evidence that FGFR is probably activated by NCAM very differently from the way by which it is activated by FGFs, reflecting the different conditions for NCAM-FGFR and FGF-FGFR interactions. The affinity of FGF for FGFR is approximately 10(6) times higher than that of NCAM for FGFR. Moreover, in the brain NCAM is constantly present on the cell surface in a concentration of about 50 microm, whereas FGFs only appear transiently in the extracellular environment and in concentrations in the nanomolar range. We discuss the structural basis for the regulation of NCAM-FGFR interactions by two molecular 'switches', polysialic acid (PSA) and adenosine triphosphate (ATP), which determine whether NCAM acts as a signalling or an adhesion molecule.  相似文献   

7.
The post-translational modification of the neural cell adhesion molecule (NCAM) by polysialic acid (polySia) represents a remarkable example of dynamic modulation of homo- and heterophilic cell interactions by glycosylation. The synthesis of this unique carbohydrate polymer depends on the polysialyltransferases ST8SiaII and ST8SiaIV. Aiming to understand in more detail the contributions of ST8SiaII and ST8SiaIV to polySia biosynthesis in vivo, we used mutant mouse lines that differ in the number of functional polysialyltransferase alleles. The 1,2-diamino-4,5-methylenedioxybenzene method was used to qualitatively and quantitatively assess the polySia patterns. Similar to the wild-type genotype, long polySia chains (>50 residues) were detected in all genotypes expressing at least one functional polysialyltransferase allele. However, variant allelic combinations resulted in distinct alterations in the total amount of poly-Sia; the relative abundance of long, medium, and short polymers; and the ratio of polysialylated to non-polysialylated NCAM. In ST8SiaII-null mice, 45% of the brain NCAM was non-polysialylated, whereas a single functional allele of ST8SiaII was sufficient to polysialylate approximately 90% of the NCAM pool. Our data reveal a complex polysialylation pattern and show that, under in vivo conditions, the coordinated action of ST8SiaII and ST8SiaIV is crucial to fine-tune the amount and structure of polySia on NCAM.  相似文献   

8.
9.
The neural cell adhesion molecule (NCAM) is known to take part in the cohesion of cellular interactions through a homophilic binding mechanism. During development, NCAM shifts from an embryonic polysialic acid-rich form to a poorer adult one. This conversion reflects a loss of plasticity to the benefit of more stability. We have shown here an inverse process, namely the reexpression of the embryonic form of NCAM in adult rats following a status epilepticus induced through systemic administration of kainic acid.  相似文献   

10.
Molecular force measurements quantified the impact of polysialylation on the adhesive properties both of membrane-bound neural cell adhesion molecule (NCAM) and of other proteins on the same membrane. These results show quantitatively that NCAM polysialylation increases the range and magnitude of intermembrane repulsion. The repulsion is sufficient to overwhelm both homophilic NCAM and cadherin attraction at physiological ionic strength, and it abrogates the protein-mediated intermembrane adhesion. The steric repulsion is ionic strength dependent and decreases substantially at high monovalent salt concentrations with a concomitant increase in the intermembrane attraction. The magnitude of the repulsion also depends on the amount of polysialic acid (PSA) on the membranes, and the PSA-dependent attenuation of cadherin adhesion increases with increasing PSA-NCAM:cadherin ratios. These findings agree qualitatively with independent reports based on cell adhesion studies and reveal the likely molecular mechanism by which NCAM polysialylation regulates cell adhesion and intermembrane space.  相似文献   

11.
The neural cell adhesion molecule (NCAM) plays a pivotal role in the development of the nervous system, promoting neuronal differentiation via homophilic (NCAM-NCAM) as well as heterophilic (NCAM-fibroblast growth factor receptor [FGFR]) interactions. NCAM-induced intracellular signaling has been shown to affect and be dependent on the cytoplasmic Ca2+ concentration ([Ca2+]i). However, the molecular basis of this remains unclear. In this study, we determined [Ca2+]i regulating mechanisms involved in intracellular signaling induced by NCAM. To mimic the effect of homophilic NCAM interaction on [Ca2+]i in vitro, we used a peptide derived from a homophilic binding site of NCAM, termed P2, which triggers signaling cascades similar to those activated by NCAM-NCAM interaction. We found that P2 increased [Ca2+]i in primary hippocampal neurons. This effect depended on two signaling pathways. The first pathway was associated with activation of FGFR, phospholipase Cgamma, and production of diacylglycerol, and the second pathway involved Src-family kinases. Moreover, NCAM-mediated Ca2+ entry required activation of nonselective cation and T-type voltage-gated Ca2+ channels. These channels, together with the Src-family kinases, were also involved in neuritogenesis induced by physiological, homophilic NCAM interactions. Thus, unanticipated mechanisms of Ca2+ homeostasis are shown to be activated by NCAM and to contribute to neuronal differentiation.  相似文献   

12.
Polysialylation of the neural cell adhesion molecule (NCAM) is thought to play a critical role in neural development. Two polysialyltransferases, ST8Sia II and ST8Sia IV, play dominant roles in polysialic acid synthesis on NCAM. However, the individual roles and mechanisms by which these two enzymes form large amounts of polysialic acid on NCAM were heretofore unknown. Previous studies indicate that ST8Sia IV forms more highly polysialylated N-glycans on NCAM than ST8Sia II in vitro. In the present study, we first demonstrated that a combination of ST8Sia II and ST8Sia IV cooperatively polysialylated NCAM, resulting in NCAM N-glycans containing more, and thus longer, polysialic acid than when the enzymes were used individually. There was also an increase in polysialylated NCAM when we used ST8Sia II and ST8Sia IV sequentially, whereas there appeared to be a subtle increase when the enzymes were used in the reverse order. Furthermore, ST8Sia IV was able to add polysialic acid to oligosialylated oligosaccharides and unpolysialylated antennas in N-glycans attached to NCAM, even when polysialic acid was attached to at least one of the other antennas. By contrast, ST8Sia II added little polysialic acid to the same acceptors. On the other hand, neither ST8Sia II nor ST8Sia IV could add polysialic acid to a polysialylated antenna of NCAM N-glycans. These combined results indicate that the synergistic effect of ST8Sia II and ST8Sia IV is caused by: 1) the ability of ST8Sia IV to add polysialic acid to oligosialic acid formed by ST8Sia II, 2) the potential of ST8Sia IV to act on more antennas of N-glycans than ST8Sia II, and 3) the ability of ST8Sia II and ST8Sia IV in combination to act on the fifth and sixth N-glycosylation sites of NCAM.  相似文献   

13.
The glycan polysialic acid is well-known as a unique posttranslational modification of the neural cell adhesion molecule NCAM. Despite remarkable acceptor specificity, however, a few other proteins can be targets of polysialylation. Here, we recapitulate the biosynthesis of polysialic acid by the two polysialyltransferases ST8SIA2 and ST8SIA4 and highlight the increasing evidence that variation in the human ST8SIA2 gene is linked to schizophrenia and possibly other neuropsychiatric disorders. Moreover, we summarize the knowledge on the role of NCAM polysialylation in brain development gained by the analysis of NCAM- and polysialyltransferase-deficient mouse models. The last part of this review is focused on recent advances in identifying SynCAM 1 and neuropilin-2 as novel acceptors of polysialic acid in NG2 cells of the perinatal brain and in dendritic cells of the immune system, respectively.  相似文献   

14.
The Neural Cell Adhesion Molecule (NCAM) plays a crucial role in development of the central nervous system regulating cell migration, differentiation and synaptogenesis. NCAM mediates cell-cell adhesion through homophilic NCAM binding, subsequently resulting in activation of the fibroblast growth factor receptor (FGFR). NCAM-mediated adhesion leads to activation of various intracellular signal transduction pathways, including the Ras-mitogen activated protein kinase (MAPK) and the phosphatidylinositol-3-kinase (PI3K)-Akt pathways. A synthetic peptide derived from the second fibronectin type III module of NCAM, the FGL peptide, binds to and induces phosphorylation of FGFR without prior homophilic NCAM binding. We here present evidence that this peptide is able to mimic NCAM heterophilic binding to the FGFR by inducing neuronal differentiation as reflected by neurite outgrowth through a direct interaction with FGFR in primary cultures of three different neuronal cell types all expressing FGFR subtype 1: dopaminergic, hippocampal and cerebellar granule neurons. Moreover, we show that the FGL peptide promotes neuronal survival upon induction of cell death in the same three cell types. The effects of the FGL peptide are shown to depend on activation of FGFR and the MAPK and PI3K intracellular signalling pathways, all three kinases being necessary for the effects of FGL on neurite outgrowth and neuronal survival.  相似文献   

15.
Understanding the mechanisms that regulate neurogenesis is a prerequisite for brain repair approaches based on neuronal precursor cells. One important regulator of postnatal neurogenesis is polysialic acid (polySia), a post-translational modification of the neural cell adhesion molecule NCAM. In the present study, we investigated the role of polySia in differentiation of neuronal precursors isolated from the subventricular zone of early postnatal mice. Removal of polySia promoted neurite induction and selectively enhanced maturation into a calretinin-positive phenotype. Expression of calbindin and Pax6, indicative for other lineages of olfactory bulb interneurons, were not affected. A decrease in the number of TUNEL-positive cells indicated that cell survival was slightly improved by removing polySia. Time lapse imaging revealed the absence of chain migration and low cell motility, in the presence and absence of polySia. The changes in survival and differentiation, therefore, could be dissected from the well-known function of polySia as a promoter of precursor migration. The differentiation response was mimicked by exposure of cells to soluble or substrate-bound NCAM and prevented by the C3d-peptide, a synthetic ligand blocking NCAM interactions. Moreover, a higher degree of differentiation was observed in cultures from polysialyltransferase-depleted mice and after NCAM exposure of precursors from NCAM-knockout mice demonstrating that the NCAM function is mediated via heterophilic binding partners. In conclusion, these data reveal that polySia controls instructive NCAM signals, which direct the differentiation of subventricular zone-derived precursors towards the calretinin-positive phenotype of olfactory bulb interneurons.  相似文献   

16.
The neural cell adhesion molecule (NCAM) plays a pivotal role in the development and maintenance of the nervous system via homophilic (NCAM–NCAM) and heterophilic (NCAM-other molecules) interactions. Many synthetic peptides have been engineered to mimic these interactions and induce NCAM-downstream signaling pathways. Such NCAM mimetics have displayed neuritogenic and neuroprotective properties, as well as synaptic modulation in vitro and in vivo. Furthermore, they have been used successfully in preclinical studies to treat neurological disorders including stroke, traumatic brain injury and Alzheimer’s disease. This review focuses on recent progress in the development of NCAM mimetic peptides, in particular, on establishing C3, plannexin, and FGL as therapeutic candidates for neurological disorders.  相似文献   

17.
Platelet/endothelial cell adhesion molecule (PECAM-1) is a cell adhesion molecule of the immunoglobulin superfamily that plays a role in a number of vascular processes including leukocyte transmigration through endothelium. The presence of a specific 19– amino acid exon within the cytoplasmic domain of PECAM-1 regulates the binding specificity of the molecule; specifically, isoforms containing exon 14 mediate heterophilic cell–cell aggregation while those variants missing exon 14 mediate homophilic cell–cell aggregation. To more precisely identify the region of exon 14 responsible for ligand specificity, a series of deletion mutants were created in which smaller regions of exon 14 were removed. After transfection into L cells, they were tested for their ability to mediate aggregation. For heterophilic aggregation to occur, a conserved 5–amino acid region (VYSEI in the murine sequence or VYSEV in the human sequence) in the mid-portion of the exon was required. A final construct, in which this tyrosine was mutated into a phenylalanine, aggregated in a homophilic manner when transfected into L cells. Inhibition of phosphatase activity by exposure of cells expressing wild type or mutant forms of PECAM-1 to sodium orthovanadate resulted in high levels of cytoplasmic tyrosine phosphorylation and led to a switch from heterophilic to homophilic aggregation. Our data thus indicate either loss of this tyrosine from exon 14 or its phosphorylation results in a change in ligand specificity from heterophilic to homophilic binding. Vascular cells could thus determine whether PECAM-1 functions as a heterophilic or homophilic adhesion molecule by processes such as alternative splicing or by regulation of the balance between tyrosine phosphorylation or dephosphorylation. Defining the conditions under which these changes occur will be important in understanding the biology of PECAM-1 in transmigration, angiogenesis, development, and other processes in which this molecule plays a role.  相似文献   

18.
The neural cell adhesion molecule (NCAM) and its associated glycan polysialic acid play important roles in the development of the nervous system and N-methyl-D-aspartate(NMDA)receptor-dependent synaptic plasticity in the adult. Here, we investigated the influence of polysialic acid on NMDA receptor activity. We found that glutamate-elicited NMDA receptor currents in cultured hippocampal neurons were reduced by approximately 30% with the application of polysialic acid or polysialylated NCAM but not by the sialic acid monomer, chondroitin sulfate, or non-polysialylated NCAM. Polysialic acid inhibited NMDA receptor currents elicited by 3 microm glutamate but not by 30 microm glutamate, suggesting that polysialic acid acts as a competitive antagonist, possibly at the glutamate binding site. The polysialic acid induced effects were mimicked and fully occluded by the NR2B subunit specific antagonist, ifenprodil. Recordings from single synaptosomal NMDA receptors reconstituted in lipid bilayers revealed that polysialic acid reduced open probability but not the conductance of NR2B-containing NMDA receptors in a polysialic acid and glutamate concentration-dependent manner. The activity of single NR2B-lacking synaptosomal NMDA receptors was not affected by polysialic acid. Application of polysialic acid to hippocampal cultures reduced excitotoxic cell death induced by low micromolar concentration of glutamate via activation of NR2B-containing NMDA receptors, whereas enzymatic removal of polysialic acid resulted in increased cell death that occluded glutamate-induced excitotoxicity. These observations indicate that the cell adhesion molecule-associated glycan polysialic acid is able to prevent excitotoxicity via inhibition of NR2B subunit-containing NMDA receptors.  相似文献   

19.
Thormann T  Soroka V  Nielbo S  Berezin V  Bock E  Poulsen FM 《Biochemistry》2004,43(32):10364-10369
The neural cell adhesion molecule (NCAM) is a cell surface multimodular protein, which plays an important role in cell-cell adhesion by homophilic (NCAM-NCAM) and heterophilic (NCAM-non-NCAM molecules) binding. In the present study, the backbone dynamics of the first three immunoglobulin-like (Ig) modules of NCAM have been investigated by NMR spectroscopy. Ig1, Ig2, and Ig3 share low sequence identity but possess the same fold and have very similar three-dimensional structures. (15)N longitudinal and transverse relaxation rates and heteronuclear NOEs have been measured and subsequently analyzed by the axial symmetric Lipari-Szabo modelfree formalism to characterize fast (pico- to nanosecond) and slow (micro- to millisecond) motions in the three protein modules. We found that backbone motions of residues located in the beta-strand regions are generally restricted, while increased flexibility is observed in turns and loops. In all three modules, residues located in the segments connecting the C- and D-strand plus residues located in the segment connecting the E- and F-strand show significant chemical exchange on the micro- to millisecond time scale. In addition, a number of residues with small chemical exchange contribution seem to form contiguous regions in the beta sheets, suggesting that these motions might be correlated. Only few residues in the homophilic binding sites in the NCAM Ig1 and Ig2 modules show increased flexibility, indicating that the Ig1-Ig2-mediated NCAM homophilic binding does not depend on the local backbone mobility of the interacting modules.  相似文献   

20.
Intercellular adhesion molecule-5 (ICAM-5) is a dendritically polarized membrane glycoprotein in telencephalic neurons, which shows heterophilic binding to leukocyte beta(2)-integrins. Here, we show that the human ICAM-5 protein interacts in a homophilic manner through the binding of the immunoglobulin domain 1 to domains 4-5. Surface coated ICAM-5-Fc promoted dendritic outgrowth and arborization of ICAM- 5-expressing hippocampal neurons. During dendritogenesis in developing rat brain, ICAM-5 was in monomer form, whereas in mature neurons it migrated as a high molecular weight complex. The findings indicate that its homophilic binding activity was regulated by nonmonomer/monomer transition. Thus, ICAM-5 displays two types of adhesion activity, homophilic binding between neurons and heterophilic binding between neurons and leukocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号