首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider two-stage sampling designs, including so-called nested case control studies, where one takes a random sample from a target population and completes measurements on each subject in the first stage. The second stage involves drawing a subsample from the original sample, collecting additional data on the subsample. This data structure can be viewed as a missing data structure on the full-data structure collected in the second-stage of the study. Methods for analyzing two-stage designs include parametric maximum likelihood estimation and estimating equation methodology. We propose an inverse probability of censoring weighted targeted maximum likelihood estimator (IPCW-TMLE) in two-stage sampling designs and present simulation studies featuring this estimator.  相似文献   

2.
A concrete example of the collaborative double-robust targeted likelihood estimator (C-TMLE) introduced in a companion article in this issue is presented, and applied to the estimation of causal effects and variable importance parameters in genomic data. The focus is on non-parametric estimation in a point treatment data structure. Simulations illustrate the performance of C-TMLE relative to current competitors such as the augmented inverse probability of treatment weighted estimator that relies on an external non-collaborative estimator of the treatment mechanism, and inefficient estimation procedures including propensity score matching and standard inverse probability of treatment weighting. C-TMLE is also applied to the estimation of the covariate-adjusted marginal effect of individual HIV mutations on resistance to the anti-retroviral drug lopinavir. The influence curve of the C-TMLE is used to establish asymptotically valid statistical inference. The list of mutations found to have a statistically significant association with resistance is in excellent agreement with mutation scores provided by the Stanford HIVdb mutation scores database.  相似文献   

3.
A restricted maximum likelihood estimator for truncated height samples   总被引:1,自引:0,他引:1  
A restricted maximum likelihood (ML) estimator is presented and evaluated for use with truncated height samples. In the common situation of a small sample truncated at a point not far below the mean, the ordinary ML estimator suffers from high sampling variability. The restricted estimator imposes an a priori value on the standard deviation and freely estimates the mean, exploiting the known empirical stability of the former to obtain less variable estimates of the latter. Simulation results validate the conjecture that restricted ML behaves like restricted ordinary least squares (OLS), whose properties are well established on theoretical grounds. Both estimators display smaller sampling variability when constrained, whether the restrictions are correct or not. The bias induced by incorrect restrictions sets up a decision problem involving a bias-precision tradeoff, which can be evaluated using the mean squared error (MSE) criterion. Simulated MSEs suggest that restricted ML estimation offers important advantages when samples are small and truncation points are high, so long as the true standard deviation is within roughly 0.5 cm of the chosen value.  相似文献   

4.
MCCLEAN  SALLY; DEVINE  COLUM 《Biometrika》1995,82(4):791-803
The problem of estimating the lifetime distribution based ondata from independently and identically distributed stationaryrenewal processes is addressed. The data are incomplete. A nonparametricmaximum likelihood estimate of the Lifetime distribution isderived using the em algorithm. The missing information principleis used to estimate the standard error of the estimated distribution.The methodology is applied to a problem in the nursing professionwhere nurses withdraw from active service for a period of timebefore returning to take up post at a later date. It is importantthat nurse manpower planners accurately predict this patternof return. The data analysed are from the Northern Ireland nursingprofession.  相似文献   

5.
Summary A bias correction was derived for the maximum likelihood estimator (MLE) of the intraclass correlation. The bias consisted of two parts: a correction from MLE to the analysis of variance estimator (ANOVA) and the bias of ANOVA. The total possible bias was always negative and depended upon both the degree of correlation and the design size and balance. The first part of the bias was an exact algebraic expression from MLE to ANOVA, and the corrected estimator by this part was ANOVA. It was also shown that the first correction term was equivalent to Fisher's reciprocal bias correction on hisZ scores. The total possible bias of MLE was large for small and moderate samples. Relative biases were larger for small parametric values and vice versa. To ensure a relative bias less than 10% assuming an intraclass correlation of 0.025, which is not unusual in most of the animal genetic studies, the total number of observations (N) should be not less than 500. From a design point of view, minimum bias occurred atn = 2, the minimum family size possible, underN fixed.  相似文献   

6.
7.
On a formula for the distribution of the maximum likelihood estimator   总被引:9,自引:0,他引:9  
BARNDORFF-NIELSEN  O. 《Biometrika》1983,70(2):343-365
  相似文献   

8.
9.
10.
Saha K  Paul S 《Biometrics》2005,61(1):179-185
We derive a first-order bias-corrected maximum likelihood estimator for the negative binomial dispersion parameter. This estimator is compared, in terms of bias and efficiency, with the maximum likelihood estimator investigated by Piegorsch (1990, Biometrics46, 863-867), the moment and the maximum extended quasi-likelihood estimators investigated by Clark and Perry (1989, Biometrics45, 309-316), and a double-extended quasi-likelihood estimator. The bias-corrected maximum likelihood estimator has superior bias and efficiency properties in most instances. For ease of comparison we give results for the two-parameter negative binomial model. However, an example involving negative binomial regression is given.  相似文献   

11.
Researchers in observational survival analysis are interested in not only estimating survival curve nonparametrically but also having statistical inference for the parameter. We consider right-censored failure time data where we observe n independent and identically distributed observations of a vector random variable consisting of baseline covariates, a binary treatment at baseline, a survival time subject to right censoring, and the censoring indicator. We assume the baseline covariates are allowed to affect the treatment and censoring so that an estimator that ignores covariate information would be inconsistent. The goal is to use these data to estimate the counterfactual average survival curve of the population if all subjects are assigned the same treatment at baseline. Existing observational survival analysis methods do not result in monotone survival curve estimators, which is undesirable and may lose efficiency by not constraining the shape of the estimator using the prior knowledge of the estimand. In this paper, we present a one-step Targeted Maximum Likelihood Estimator (TMLE) for estimating the counterfactual average survival curve. We show that this new TMLE can be executed via recursion in small local updates. We demonstrate the finite sample performance of this one-step TMLE in simulations and an application to a monoclonal gammopathy data.  相似文献   

12.
In this article, we provide a template for the practical implementation of the targeted maximum likelihood estimator for analyzing causal effects of multiple time point interventions, for which the methodology was developed and presented in Part I. In addition, the application of this template is demonstrated in two important estimation problems: estimation of the effect of individualized treatment rules based on marginal structural models for treatment rules, and the effect of a baseline treatment on survival in a randomized clinical trial in which the time till event is subject to right censoring.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号