首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Despite aggressive research, central nervous system (CNS) disorders, including blood-brain barrier (BBB) injury caused by microbial infection, stroke, abused drugs [e.g., methamphetamine (METH) and nicotine], and other pathogenic insults, remain the world''s leading cause of disabilities. In our previous work, we found that dysfunction of brain microvascular endothelial cells (BMECs), which are a major component of the BBB, could be caused by nicotine, meningitic pathogens and microbial factors, including HIV-1 virulence factors gp41 and gp120. One of the most challenging issues in this area is that there are no available cell-based biomarkers in peripheral blood for BBB disorders caused by microbial and non-microbial insults. To identify such cellular biomarkers for BBB injuries, our studies have shown that mice treated with nicotine, METH and gp120 resulted in increased blood levels of CD146+(endothelial marker)/S100B+ (brain marker) circulating BMECs (cBMECs) and CD133+[progenitor cell (PC) marker]/CD146+ endothelial PCs (EPCs), along with enhanced Evans blue and albumin extravasation into the brain. Nicotine and gp120 were able to significantly increase the serum levels of ubiquitin C-terminal hydrolase 1 (UCHL1) (a new BBB marker) as well as S100B in mice, which are correlated with the changes in cBMECs and EPCs. Nicotine- and meningitic E. coli K1-induced enhancement of cBMEC levels, leukocyte migration across the BBB and albumin extravasation into the brain were significantly reduced in alpha7 nAChR knockout mice, suggesting that this inflammatory regulator plays an important role in CNS inflammation and BBB disorders caused by microbial and non-microbial factors. These results demonstrated that cBMECs as well as EPCs may be used as potential cell-based biomarkers for indexing of BBB injury.  相似文献   

3.
This review aims to elucidate the different mechanisms of blood brain barrier (BBB) disruption that may occur due to invasion by different types of bacteria, as well as to show the bacteria–host interactions that assist the bacterial pathogen in invading the brain. For example, platelet-activating factor receptor (PAFR) is responsible for brain invasion during the adhesion of pneumococci to brain endothelial cells, which might lead to brain invasion. Additionally, the major adhesin of the pneumococcal pilus-1, RrgA is able to bind the BBB endothelial receptors: polymeric immunoglobulin receptor (pIgR) and platelet endothelial cell adhesion molecule (PECAM-1), thus leading to invasion of the brain. Moreover, Streptococcus pneumoniae choline binding protein A (CbpA) targets the common carboxy-terminal domain of the laminin receptor (LR) establishing initial contact with brain endothelium that might result in BBB invasion. Furthermore, BBB disruption may occur by S. pneumoniae penetration through increasing in pro-inflammatory markers and endothelial permeability. In contrast, adhesion, invasion, and translocation through or between endothelial cells can be done by S. pneumoniae without any disruption to the vascular endothelium, upon BBB penetration. Internalins (InlA and InlB) of Listeria monocytogenes interact with its cellular receptors E-cadherin and mesenchymal-epithelial transition (MET) to facilitate invading the brain. L. monocytogenes species activate NF-κB in endothelial cells, encouraging the expression of P- and E-selectin, intercellular adhesion molecule 1 (ICAM-1), and Vascular cell adhesion protein 1 (VCAM-1), as well as IL-6 and IL-8 and monocyte chemoattractant protein-1 (MCP-1), all these markers assist in BBB disruption. Bacillus anthracis species interrupt both adherens junctions (AJs) and tight junctions (TJs), leading to BBB disruption. Brain microvascular endothelial cells (BMECs) permeability and BBB disruption are induced via interendothelial junction proteins reduction as well as up-regulation of IL-1α, IL-1β, IL-6, TNF-α, MCP-1, macrophage inflammatory proteins-1 alpha (MIP1α) markers in Staphylococcus aureus species. Streptococcus agalactiae or Group B Streptococcus toxins (GBS) enhance IL-8 and ICAM-1 as well as nitric oxide (NO) production from endothelial cells via the expression of inducible nitric oxide synthase (iNOS) enhancement, resulting in BBB disruption. While Gram-negative bacteria, Haemophilus influenza OmpP2 is able to target the common carboxy-terminal domain of LR to start initial interaction with brain endothelium, then invade the brain. H. influenza type b (HiB), can induce BBB permeability through TJ disruption. LR and PAFR binding sites have been recognized as common routes of CNS entrance by Neisseria meningitidis. N. meningitidis species also initiate binding to BMECs and induces AJs deformation, as well as inducing specific cleavage of the TJ component occludin through the release of host MMP-8. Escherichia coli bind to BMECs through LR, resulting in IL-6 and IL-8 release and iNOS production, as well as resulting in disassembly of TJs between endothelial cells, facilitating BBB disruption. Therefore, obtaining knowledge of BBB disruption by different types of bacterial species will provide a picture of how the bacteria enter the central nervous system (CNS) which might support the discovery of therapeutic strategies for each bacteria to control and manage infection.  相似文献   

4.
A major contributing factor to high mortality and morbidity associated with CNS infection is the incomplete understanding of the pathogenesis of this disease. Relatively small numbers of pathogens account for most cases of CNS infections in humans, but it is unclear how such pathogens cross the blood-brain barrier (BBB) and cause infections. The development of the in vitro BBB model using human brain microvascular endothelial cells has facilitated our understanding of the microbial translocation of the BBB, a key step for the acquisition of CNS infections. Recent studies have revealed that microbial translocation of the BBB involves host cell actin cytoskeletal rearrangements, most likely as the result of specific microbial-host interactions. A better understanding of microbial-host interactions that are involved in microbial translocation of the BBB should help in developing new strategies to prevent CNS infections. This review summarises our current understanding of the pathogenic mechanisms involved in translocation of the BBB by meningitis-causing bacteria, fungi and parasites.  相似文献   

5.
Hu X  Li JH  Lan L  Wu FF  Zhang EP  Song ZM  Huang HC  Luo FJ  Pan CW  Tan F 《PloS one》2012,7(2):e32161
It has been hypothesized that blood-brain barrier (BBB) dysfunction in Angiostrongylus cantonensis infection might be due to the apoptosis of the hosts' BBB cells. Here, we evaluated this hypothesis through several methods, all based on an in vitro mouse BBB model consisting of primary culture brain microvascular endothelial cells (BMECs) and brain astrocytic cells (BACs). In the present study, a four-hour percolation and HRP permeability experiment showed that A. cantonensis larvae extracts can increase the permeability of the BBB. Apoptosis among BMECs and BACs after exposure to larvae extracts was monitored by TUNEL and annexin-V-FITC/PI double staining. A. cantonensis larvae extracts were found to induce apoptosis in both BMECs and BACs. For this reason, we concluded that the induction of apoptosis might participate in the BBB dysfunction observed during angiostrongyliasis. Improved fundamental understanding of how A. cantonensis induces apoptosis may lead to new approaches to the treatment or prevention of this parasitic disease.  相似文献   

6.
The blood-brain barrier (BBB), which protects the CNS from pathogens, is composed of specialized brain microvascular endothelial cells (BMECs) joined by tight junctions and ensheathed by pericytes and astrocyte endfeet. The stability of the BBB structure and function is of great significance for the maintenance of brain homeostasis. When a neurotropic virus invades the CNS via a hematogenous or non-hematogenous route, it may cause structural and functional disorders of the BBB, and also activate the BBB anti-inflammatory or pro-inflammatory innate immune response. This article focuses on the structural and functional changes that occur in the three main components of the BBB (endothelial cells, astrocytes, and pericytes) in response to infection with neurotropic viruses transmitted by hematogenous routes, and also briefly describes the supportive effect of three cells on the BBB under normal physiological conditions. For example, all three types of cells express several PRRs, which can quickly sense the virus and make corresponding immune responses. The pro-inflammatory immune response will exacerbate the destruction of the BBB, while the anti-inflammatory immune response, based on type I IFN, consolidates the stability of the BBB. Exploring the details of the interaction between the host and the pathogen at the BBB during neurotropic virus infection will help to propose new treatments for viral encephalitis. Enhancing the defense function of the BBB, maintaining the integrity of the BBB, and suppressing the pro-inflammatory immune response of the BBB provide more ideas for limiting the neuroinvasion of neurotropic viruses. In the future, these new treatments are expected to cooperate with traditional antiviral methods to improve the therapeutic effect of viral encephalitis.  相似文献   

7.
One of the least understood issues in the pathogenesis and pathophysiology of microbial infection of the central nervous system (CNS) is how microorganisms cross the blood–brain barrier (BBB), which separates brain interstitial space from blood and is formed by the tight junctions of brain microvascular endothelial cells (BMEC). BMEC monolayer and bilayer culture systems have been developed as in vitro models to dissect the mechanisms of adhesion and invasion involved in pathogenesis of CNS infection caused by microbes. Viral, bacterial, fungal and parasitic pathogens may breach the BBB and enter the CNS through paracellular, transcellular and/or Trojan horse mechanisms. Conceivable evidence suggests that microbial proteins are the major genetic determinants mediating penetration across the BBB. Several bacterial proteins including IbeA, IbeB, AslA,YijP, OmpA, PilC and InlB contribute to transcellular invasion of BMEC. Viral proteins such as gp120 of HIV have been shown to play a role in penetration of the BBB. Fungal and parasitic pathothogens may follow similar mechanisms. SAG1 of Toxoplasma gondii has been suggested as a ligand to mediate host-cell invasion. Understanding the fundamental mechanisms of microbial penetration of the BBB may help develop novel approaches to prevent the mortality and morbidity associated with central nervous system (CNS) infectious diseases.  相似文献   

8.
Venezuelan equine encephalitis (VEE) virus is a mosquito-borne alphavirus associated with sporadic outbreaks in human and equid populations in the Western Hemisphere. After the bite of an infected mosquito, the virus initiates a biphasic disease: a peripheral phase with viral replication in lymphoid and myeloid tissues, followed by a neurotropic phase with infection of central nervous system (CNS) neurons, causing neuropathology and in some cases fatal encephalitis. The mechanisms allowing VEE virus to enter the CNS are currently poorly understood. Previous data have shown that the virus gains access to the CNS by infecting olfactory sensory neurons in the nasal mucosa of mice. However, at day 5 after inoculation, the infection of the brain is multifocal, indicating that virus particles are able to cross the blood-brain barrier (BBB). To better understand the role of the BBB during VEE virus infection, we used a well-characterized mouse model system. Using VEE virus replicon particles (VRP), we modeled the early events of neuroinvasion, showing that the replication of VRP in the nasal mucosa induced the opening of the BBB, allowing peripherally administered VRP to invade the brain. Peripheral VEE virus infection was characterized by a biphasic opening of the BBB. Further, inhibition of BBB opening resulted in a delayed viral neuroinvasion and pathogenesis. Overall, these results suggest that VEE virus initially enters the CNS through the olfactory pathways and initiates viral replication in the brain, which induces the opening of the BBB, allowing a second wave of invading virus from the periphery to enter the brain.  相似文献   

9.
As a neurotropic virus, human immunodeficiency virus type 1 (HIV-1) invades the brain and causes severe neuronal, astrocyte, and myelin damage in AIDS patients. To gain access to the brain, HIV-1 must migrate through brain microvascular endothelial cells (BMECs), which compose the blood-brain barrier (BBB). Given that BMECs lack the entry receptor CD4, HIV-1 must use receptors distinct from CD4 to enter these cells. We previously reported that cell surface proteoglycans serve as major HIV-1 receptors on primary human endothelial cells. In this study, we examined whether proteoglycans also impact cell-free HIV-1 invasion of the brain. Using an artificial BBB transmigration assay, we found that both heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) are abundantly expressed on primary BMECs and promote HIV-1 attachment and entry. In contrast, the classical entry receptors, CXCR4 and CCR5, only moderately enhanced these processes. HSPGs and CSPGs captured HIV-1 in a gp120-dependent manner. However, no correlation between coreceptor usage and transmigration was identified. Furthermore, brain-derived viruses did not transmigrate more efficiently than lymphoid-derived viruses, suggesting that the ability of HIV-1 to replicate in the brain does not correlate with its capacity to migrate through the BBB as cell-free virus. Given that HIV-1-proteoglycan interactions are based on electrostatic contacts between basic residues in gp120 and sulfate groups in proteoglycans, HIV-1 may exploit these interactions to rapidly enter and migrate through the BBB to invade the brain.  相似文献   

10.
Group B Streptococcus (GBS) is a major causative agent of neonatal meningitis due to its ability to efficiently cross the blood-brain barrier (BBB) and enter the central nervous system (CNS). It has been demonstrated that GBS can invade human brain microvascular endothelial cells (hBMEC), a primary component of the BBB; however, the mechanism of intracellular survival and trafficking is unclear. We previously identified a two component regulatory system, CiaR/H, which promotes GBS intracellular survival in hBMEC. Here we show that a GBS strain deficient in the response regulator, CiaR, localized more frequently with Rab5, Rab7 and LAMP1 positive vesicles. Further, lysosomes isolated from hBMEC contained fewer viable bacteria following initial infection with the ΔciaR mutant compared to the WT strain. To characterize the contribution of CiaR-regulated genes, we constructed isogenic mutant strains lacking the two most down-regulated genes in the CiaR-deficient mutant, SAN_2180 and SAN_0039. These genes contributed to bacterial uptake and intracellular survival. Furthermore, competition experiments in mice showed that WT GBS had a significant survival advantage over the Δ2180 and Δ0039 mutants in the bloodstream and brain.  相似文献   

11.
Cerebral fungal infections represent an important public health concern, where a key element of pathophysiology is the ability of the fungi to cross the blood-brain barrier (BBB). Yet the mechanism used by micro-organisms to cross such a barrier and invade the brain parenchyma remains unclear. This study investigated the effects of gliotoxin (GTX), a mycotoxin secreted by Aspergillus fumigatus, on the BBB using brain microvascular endothelial cells (BMECs) derived from induced pluripotent stem cells (iPSCs). We observed that both acute (2 h) and prolonged (24 h) exposure to GTX at the level of 1 μM or higher compromised BMECs monolayer integrity. Notably, acute exposure was sufficient to disrupt the barrier function in iPSC-derived BMECs, resulting in decreased transendothelial electrical resistance (TEER) and increased fluorescein permeability. Further, our data suggest that such disruption occurred without affecting tight junction complexes, via alteration of cell-matrix interactions, alterations in F-actin distribution, through a protein kinase C-independent signaling. In addition to its effect on the barrier function, we have observed a low permeability of GTX across the BBB. This fact can be partially explained by possible interactions of GTX with membrane proteins. Taken together, this study suggests that GTX may contribute in cerebral invasion processes of Aspergillus fumigatus by altering the blood-brain barrier integrity without disrupting tight junction complexes.  相似文献   

12.
The blood-brain barrier (BBB) is a network formed mainly by brain microvascular endothelial cells (BMECs). The integrity of the BBB is critical for brain function. Breakdown of the BBB is commonly seen in AIDS patients with HIV-1-associated dementia despite the lack of productive HIV infection of the brain endothelium. The processes by which HIV causes these pathological conditions are not well understood. In this study we characterized the molecular mechanisms by which Tat mediates its pathogenic effects in vitro on primary human BMECs (HBMECs). Tat treatment of HBMECs stimulated cytoskeletal organization and increased focal adhesion sites compared with control cells or cells treated with heat-inactivated Tat. Pretreatment with Tat Abs or with the specific inhibitor SU-1498, which interferes with vascular endothelial growth factor receptor type 2 (Flk-1/KDR) phosphorylation, blocked the ability of Tat to stimulate focal adhesion assembly and the migration of HBMECs. Focal adhesion kinase (FAK) was tyrosine-phosphorylated by Tat and was found to be an important component of focal adhesion sites. Inhibition of FAK by the dominant interfering mutant form, FAK-related nonkinase, significantly blocked HBMEC migration and disrupted focal adhesions upon Tat activation. Furthermore, HIV-Tat induced permeability changes in HBMECs in a time-dependent manner. Tat also impaired BBB permeability, as observed in HIV-1 Tat transgenic mice. These studies define a mechanism for HIV-1 Tat in focal adhesion complex assembly in HBMECs via activation of FAK, leading to cytoskeletal reorganization and permeability changes.  相似文献   

13.
Bacterial meningitis occurs when bloodborne pathogens invade and penetrate the blood-brain barrier (BBB), provoking inflammation and disease. Group B Streptococcus (GBS), the leading cause of neonatal meningitis, can enter human brain microvascular endothelial cells (hBMECs), but the host response to intracellular GBS has not been characterized. Here we sought to determine whether antibacterial autophagy, which involves selective recognition of intracellular organisms and their targeting to autophagosomes for degradation, is activated in BBB endothelium during bacterial infection. GBS infection resulted in increased punctate distribution of GFP-microtubule-associated protein 1 light chain 3 (LC3) and increased levels of endogenous LC3-II and p62 turnover, two hallmark indicators of active autophagic flux. Infection with GBS mutants revealed that bacterial invasion and the GBS pore-forming β-hemolysin/cytolysin (β-h/c) trigger autophagic activation. Cell-free bacterial extracts containing β-h/c activity induced LC3-II conversion, identifying this toxin as a principal provocative factor for autophagy activation. These results were confirmed in vivo using a mouse model of GBS meningitis as infection with WT GBS induced autophagy in brain tissue more frequently than a β-h/c-deficient mutant. Elimination of autophagy using Atg5-deficient fibroblasts or siRNA-mediated impairment of autophagy in hBMECs led to increased recovery of intracellular GBS. However, electron microscopy revealed that GBS was rarely found within double membrane autophagic structures even though we observed GBS-LC3 co-localization. These results suggest that although autophagy may act as a BBB cellular defense mechanism in response to invading and toxin-producing bacteria, GBS may actively thwart the autophagic pathway.  相似文献   

14.
The blood-brain-barrier is ultrastructurally assembled by a monolayer of brain microvascular endothelial cells (BMEC) interconnected by a junctional complex of tight and adherens junctions. Together with other cell-types such as astrocytes or pericytes, they form the neurovascular unit (NVU), which specifically regulates the interchange of fluids, molecules and cells between the peripheral blood and the CNS. Through this complex and dynamic system BMECs are involved in various processes maintaining the homeostasis of the CNS. A dysfunction of the BBB is observed as an essential step in the pathogenesis of many severe CNS diseases. However, specific and targeted therapies are very limited, as the underlying mechanisms are still far from being understood. Animal and in vitro models have been extensively used to gain in-depth understanding of complex physiological and pathophysiological processes. By reduction and simplification it is possible to focus the investigation on the subject of interest and to exclude a variety of confounding factors. However, comparability and transferability are also reduced in model systems, which have to be taken into account for evaluation. The most common animal models are based on mice, among other reasons, mainly due to the constantly increasing possibilities of methodology. In vitro studies of isolated murine BMECs might enable an in-depth analysis of their properties and of the blood-brain-barrier under physiological and pathophysiological conditions. Further insights into the complex mechanisms at the BBB potentially provide the basis for new therapeutic strategies.This protocol describes a method to isolate primary murine microvascular endothelial cells by a sequence of physical and chemical purification steps. Special considerations for purity and cultivation of MBMECs as well as quality control, potential applications and limitations are discussed.  相似文献   

15.
Group B Streptococcus (GBS) colonizes mucosal surfaces of the human gastrointestinal and gynecological tracts and causes disease in a wide range of patients. Invasive illness occurs after organisms traverse an epithelial boundary and enter deeper tissues. Previously we have reported that the alpha C protein (ACP) on the surface of GBS mediates GBS entry into ME180 cervical epithelial cells and GBS translocation across layers of these cells. We now demonstrate that ACP interacts with host cell glycosaminoglycan (GAG); the interaction of ACP with ME180 cells is inhibited if cells are pretreated with sodium chlorate, an inhibitor of sulfate incorporation, or with heparitinases. The interaction is also inhibited in the presence of soluble heparin or heparan sulfate or host cell-derived GAG. In addition, ACP binds soluble heparin specifically in inhibition and dot blot assays. After interaction with host GAG, soluble ACP enters ME180 cells and fractionates to the eukaryotic cell cytosol. These events are inhibited in cells pretreated with cytochalasin D or with Clostridium difficile toxin B. These data indicate that full-length ACP interacts with ME180 cell GAG and enters the eukaryotic cell cytosol by a mechanism that involves Rho GTPase-dependent actin rearrangements. We suggest that these molecular interactions drive ACP-mediated translocation of GBS across epithelial barriers, thereby facilitating invasive GBS infection.  相似文献   

16.
Blood–brain barrier (BBB) destruction is associated with a variety of neurological diseases. Brain microvascular endothelial cells (BMECs) are the key constituent of BBB. Both matrix metalloproteinases-2/9 (MMP-2/9) and toll-like receptor-2 (TLR2) are coexpressed in BMECs and have been shown to play important roles in BBB breakdown. It is unknown whether TLR2 can regulate MMP-2/9 in BMECs. In this study, Pam3CSK4 was used to activate TLR2, and the expression of MMP-2/9 and tight junctions (TJs) in BBB was measured by quantitative real-time PCR and western blotting. Phosphoproteins were determined by western blotting. The inhibitors of mitogen-activated protein kinases (MAPKs) and NF-κB were used to identify the signaling pathways by which TLR2 regulates the expression of MMP-2/9 in BMECs. This study showed that Pam3CSK4 upregulated the mRNA and protein expression of MMP-9 and downregulated MMP-2 and TJ expression in BMECs simultaneously. Pam3CSK4 also induced the phosphorylation of MAPKs and NF-κB signaling pathways in BMECs. MMP-9 expression was found to decrease by pretreatment with inhibitors of ERK1/2 and JNK but not p38. However, the mRNA and protein expression of MMP-2 and MMP-9 increased after addition of a NF-κB inhibitor. Our results indicated that Pam3CSK4 was able to upregulate MMP-9 expression through ERK1/2 and JNK signaling pathways, but the NF-κB signaling pathway negatively regulated the effect of TLR2 on MMP-2 and MMP-9 expression in BMECs. The finding provides novel insight into the molecular mechanism of MMP-2/9 expression in BMECs.  相似文献   

17.
The blood brain barrier (BBB) is formed by brain microvascular endothelial cells (BMECs) and tightly regulates the transport of molecules from blood to neural tissues. In vitro BBB models from human pluripotent stem cell (PSCs)-derived BMECs would be useful not only for the research on the BBB development and function but also for drug-screening for neurological diseases. However, little is known about the differentiation of human PSCs to BMECs. In the present study, human induced PSCs (iPSCs) were differentiated into endothelial cells (ECs), and further maturated to BMECs. Interestingly, C6 rat glioma cell-conditioned medium (C6CM), in addition to C6 co-culture, induced the differentiation of human iPSC-derived ECs (iPS-ECs) to BMEC-like cells, increase in the trans-endothelial electrical resistance, decreased in the dextran transport and up-regulation of gene expression of tight junction molecules in human iPS-ECs. Moreover, Wnt inhibitors attenuated the effects of C6CM. In summary, we have established a simple protocol of the generation of BMEC-like cells from human iPSCs, and have demonstrated that differentiation of iPS-ECs to BMEC-like cells is induced by C6CM-derived signals, including canonical Wnt signals.  相似文献   

18.
19.
20.

Objective

Effect of fingolimod in multiple sclerosis (MS) is thought to involve the prevention of lymphocyte egress from lymphoid tissues, thereby reducing autoaggressive lymphocyte infiltration into the central nervous system across blood-brain barrier (BBB). However, brain microvascular endothelial cells (BMECs) represent a possible additional target for fingolimod in MS patients by directly repairing the function of BBB, as S1P receptors are also expressed by BMECs. In this study, we evaluated the effects of fingolimod on BMECs and clarified whether fingolimod-phosphate restores the BBB function after exposure to MS sera.

Methods

Changes in tight junction proteins, adhesion molecules and transendothelial electrical resistance (TEER) in BMECs were evaluated following incubation in conditioned medium with or without fingolimod/fingolimod-phosphate. In addition, the effects of sera derived from MS patients, including those in the relapse phase of relapse-remitting (RR) MS, stable phase of RRMS and secondary progressive MS (SPMS), on the function of BBB in the presence of fingolimod-phosphate were assessed.

Results

Incubation with fingolimod-phosphate increased the claudin-5 protein levels and TEER values in BMECs, although it did not change the amount of occludin, ICAM-1 or MelCAM proteins. Pretreatment with fingolimod-phosphate restored the changes in the claudin-5 and VCAM-1 protein/mRNA levels and TEER values in BMECs after exposure to MS sera.

Conclusions

Pretreatment with fingolimod-phosphate prevents BBB disruption caused by both RRMS and SPMS sera via the upregulation of claudin-5 and downregulation of VCAM-1 in BMECs, suggesting that fingolimod-phosphate is capable of directly modifying the BBB. BMECs represent a possible therapeutic target for fingolimod in MS patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号