首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We have investigated the morphology and migratory behavior of quail neural crest cells on isolated embryonic basal laminae or substrata coated with fibronectin or tenascin. Each of these substrata have been implicated in directing neural crest cell migration in situ. We also observed the altered behavior of cells in response to the addition of tenascin to the culture medium independent of its effect as a migratory substratum. On tenascin-coated substrata, the rate of neural crest cell migration from neural tube explants was significantly greater than on uncoated tissue culture plastic, on fibronectin-coated plastic, or on basal lamina isolated from embryonic chick retinae. Neural crest cells on tenascin were rounded and lacked lamellipodia, in contrast to the flattened cells seen on basal lamina and fibronectin-coated plastic. In contrast, when tenascin was added to the culture medium of neural crest cells migrating on isolated basal lamina, a significant reduction in the rate of cell migration was observed. To study the nature of this effect, we used human melanoma cells, which have a number of characteristics in common with quail neural crest cells though they would be expected to have a distinct family of integrin receptors. A dose-dependent reduction in the rate of translocation was observed when tenascin was added to the culture medium of the human melanoma cell line plated on isolated basal laminae, indicating that the inhibitory effect of tenascin bound to the quail neural crest surface is probably not solely the result of competitive inhibition by tenascin for the integrin receptor. Our results show that tenascin can be used as a migratory substratum by avian neural crest cells and that tenascin as a substratum can stimulate neural crest cell migration, probably by permitting rapid detachment. Tenascin in the medium, on the other hand, inhibits both the migration rates and spreading of motile cells on basal lamina because it binds only the cell surface and not the underlying basal lamina. Cell surface-bound tenascin may decrease cell-substratum interactions and thus weaken the tractional forces generated by migrating cells. This is in contrast to the action of fibronectin, which when added to the medium stimulates cell migration by binding both to neural crest cells and the basal lamina, thus providing a bridge between the motile cells and the substratum.  相似文献   

2.
Vascular endothelial cells synthesize an extracellular matrix or basal lamina composed of collagens, proteoglycans and glycoproteins such as fibronectin (FN). Using affinity-purified anti-FN, we have examined the role of FN in adherence of metastatic B16 melanoma cells to endothelial cell monolayers which lack FN on apical cell surfaces and to their basal lamina which contains FN. B16 melanoma cells, which do not contain significant amounts of FN, attached at much higher rates to endothelial basal lamina and polyvinyl-immobilized FN compared with intact endothelial cell monolayers. Anti-FN failed to inhibit attachment of melanoma sublines of low (B16-F1) or high (B16-F10) metastatic potential to intact endothelial cell monolayers, inhibited slightly B16 cell attachment to basal lamina and completely abolished attachment of B16 cells to polyvinyl-immobilized FN. The antibiotic tunicamycin which inhibits glycosylation of B16 cell surface glycoproteins and blocks experimental metastasis [18] inhibited B16 attachment to endothelial cells, basal lamina and immobilized FN. The results suggest that FN mediates, only in part, the adhesion of B16 melanoma cells to basal lamina through glycoprotein receptors on B16 cells.  相似文献   

3.
In the developing CNS alpha- and beta-dystroglycan are highly concentrated in the endfeet of radial neuroepithelial cells at the contact site to the basal lamina. We show that injection of anti-dystroglycan Fab fragments, knockdown of dystroglycan using RNAi, and overexpression of a dominant-negative dystroglycan protein by microelectroporation in neuroepithelial cells of the chick retina and optic tectum in vivo leads to the loss of their radial morphology, to hyperproliferation, to an increased number of postmitotic neurons, and to an altered distribution of several basally concentrated proteins. Moreover, these treatments also altered the oriented growth of axons from retinal ganglion cells and from tectal projection neurons. In contrast, expression of non-cleavable dystroglycan protein in neuroepithelial cells reduced their proliferation and their differentiation to postmitotic neurons. These results demonstrate that dystroglycan plays a key role in maintaining neuroepithelial cell morphology, and that interfering with dystroglycan function influences proliferation and differentiation of neuroepithelial cells. These data also suggest that an impaired dystroglycan function in neuroepithelial cells might be responsible for some of the severe brain abnormalities observed in certain forms of congenital muscular dystrophy.  相似文献   

4.
An experimental paradigm was devised to remove the retinal basal lamina for defined periods of development: the basal lamina was dissolved by injecting collagenase into the vitreous of embryonic chick eyes, and its regeneration was induced by a chase with mouse laminin-1 and alpha2-macroglobulin. The laminin-1 was essential in reconstituting a new basal lamina and could not be replaced by laminin-2 or collagen IV, whereas the macroglobulin served as a collagenase inhibitor that did not directly contribute to basal lamina regeneration. The regeneration occurred within 6 h after the laminin-1 chase by forming a morphologically complete basal lamina that included all known basal lamina proteins from chick embryos, such as laminin-1, nidogen-1, collagens IV and XVIII, perlecan, and agrin. The temporary absence of the basal lamina had dramatic effects on retinal histogenesis, such as an irreversible retraction of the endfeet of the neuroepithelial cells from the vitreal surface of the retina, the formation of a disorganized ganglion cell layer with an increase in ganglion cells by 30%, and the appearance of multiple retinal ectopias. Finally, basal lamina regeneration was associated with aberrant axons failing to correctly enter the optic nerve. The present data demonstrate that a transient disruption of the basal lamina leads to dramatic and probably irreversible aberrations in the histogenesis in the developing central nervous system.  相似文献   

5.
To study the biology of basal laminae in the developing nervous system the protein composition of the embryonic retinal basal lamina was investigated, the site of synthesis of its proteins in the eye was determined, and basal lamina assembly was studied in vivo in two assay systems. Laminin, nidogen, agrin, collagen IV, and XVIII are major constituents of the retinal basal lamina. However, only agrin is synthesized by the retina, whereas the other matrix constituents originate from cells of the ciliary body, the lens, or the optic disc. The synthesis from extraretinal tissues infers that the retinal basal lamina proteins must be shed from their tissues of origin into the vitreous body and from there bind to receptor proteins provided by the retinal neuroepithelium. The fact that all proteins typical for the retinal basal lamina are abundant in the vitreous body and a new basal lamina is only formed when the vitreous body was directly adjacent to the retina is consistent with the contention of the vitreous body having a function in retinal basal lamina formation. Basal lamina assembly was also studied after disrupting the retinal basal lamina by intraocular injection of collagenase. The basal lamina regenerated after chasing the collagenase with Matrigel, which served as a collagenase inhibitor. The basal lamina was reconstituted within 6 h. However, the regenerated basal lamina was located deeper in the retina than normal by reconstituting along the retracted neuroepithelial endfeet demonstrating that these endfeet are the preferred site of basal lamina assembly.  相似文献   

6.
Migrating embryonic cells have high levels of cell surface galactosyltransferase (GalTase) activity. It has been proposed that GalTase participates during migration by recognizing and binding to terminal N-acetylglucosamine (GlcNAc) residues on glycoconjugates within the extracellular matrix (Shur, B. D., 1982, Dev. Biol. 91:149-162). We tested this hypothesis using migrating neural crest cells as an in vitro model system. Cell surface GalTase activity was perturbed using three independent sets of reagents, and the effects on cell migration were analyzed by time-lapse microphotography. The GalTase modifier protein, alpha-lactalbumin (alpha-LA), was used to inhibit surface GalTase binding to terminal GlcNAc residues in the underlying substrate. alpha-LA inhibited neural crest cell migration on basal lamina-like matrices in a dose-dependent manner, while under identical conditions, alpha-LA had no effect on cell migration on fibronectin. Control proteins, such as lysozyme (structurally homologous to alpha-LA) and bovine serum albumin, did not effect migration on either matrix. Second, the addition of competitive GalTase substrates significantly inhibited neural crest cell migration on basal lamina-like matrices, but as above, had no effect on migration on fibronectin. Comparable concentrations of inappropriate sugars also had no effect on cell migration. Third, addition of the GalTase catalytic substrate, UDPgalactose, produced a dose-dependent increase in the rate of cell migration. Under identical conditions, the inappropriate sugar nucleotide, UDPglucose, had no effect. Quantitative enzyme assays confirmed the presence of GalTase substrates in basal lamina matrices, their absence in fibronectin matrices, and the ability of alpha-LA to inhibit GalTase activity towards basal lamina substrates. Laminin was found to be a principle GalTase substrate in the basal lamina, and when tested in vitro, alpha-LA inhibited cell migration on laminin. Together, these experiments show that neural crest cells have at least two distinct mechanisms for interacting with the substrate during migration, one that is fibronectin-dependent and one that uses GalTase recognition of basal lamina glycoconjugates.  相似文献   

7.
Summary Fibroblasts from rat, mouse and chick embryos cultured on poly-lysine/fibronectin- or poly-lysine/laminin-coated dishes were stained with antibodies directed to extracellular matrix molecules. The staining showed that cells had migrated during culture and deposited extracellular matrix components along their migration trails. Depending on the antigen, the staining of the matrix revealed fibrils, spots or a diffuse smear along the migration pathways. The major matrix components were fibronectin and heparan sulfate proteoglycan; however, laminin nidogen, tenascin, glia-derived nexin (GDN) and chondroitin-4-sulfate proteoglycan were also found. The migration trails were also detectable by scanning electron microscopy. Here, the fibrils were the prominent structures. The deposition of matrix was independent from the substratum: fibronectin was deposited on laminin, plain poly-lysine, basal lamina and even on fibronectin. Functional assays using anti-fibronectin or an antiserum to embryonic pigment epithelium basement membrane disturbed the formation of matrix fibrils, but did not inhibit cell attachment and translocation. Likewise, heparin in the culture medium only partially inhibited cell migration, despite the fact that it disturbed the formation of proper matrix fibrils. Our results suggest that the deposition of extracellular matrix by cells may not be mandatory for attachment and translocation. However, the deposition of matrix along defined trails might be important for the pathfinding of cells or nerve fibers that appear later in development.  相似文献   

8.
The distribution in the cellular monolayer of the de novo synthetized pre-labeled glycoproteins and fibronectin upon culturing of fibroblasts in the medium with low serum content was analyzed. It was found that in rheumatoid arthritis (RA) the amount of total glycoproteins on the surface and within fibroblasts is higher and in the extracellular matrix is lower than in skin fibroblasts of healthy donors (HD). However, the amount of pre-labeled fibronectin on the surface of skin fibroblasts from patients with RA was considerably lower than in those from HD This finding as well as a rapid decrease in the amount of pre-labeled fibronectin in the extracellular matrix of RA fibroblasts is indicative of a more rapid metabolism of this protein in RA. In the skin fibroblasts from HD there was a practically uniform decrease in the amount of pre-labeled fibronectin in the cellular monolayer. The presence of caseinolytic activity in the culture medium even upon the first day of cell culturing in the serum-free medium, as well as the effect of various proteinase inhibitors on glycoprotein content in the cellular monolayer provide evidence that the rate of glycoprotein and fibronectin metabolism, especially in connective tissue cells of patients with RA, might possibly be determined not only by the level of their synthesis but also by the level of proteolytic activity in the connective tissue cells.  相似文献   

9.
Summary Antibodies against laminin (LN), fibronectin (FN), collagen type IV (Col IV), neural cell adhesion molecule (N-CAM), T-61 antigen, actin, tubulin and neurofilament protein were injected into the eyes of quail embryos (Coturnix coturnix japonica) of different ages. Twenty h after injection, the heads of the embryos were fixed and the antibodies visualized in sections with the use of fluorescein-isothiocyanate (FITC) or peroxidase-labeled second antibodies by light- and electron microscopy. Antibodies against cell surface molecules, such as N-CAM, LN, Col IV and T 61, labeled matrix and membrane components of the retinal cells in different antigen-specific patterns. Antibodies against intracellular antigens, such as actin, tubulin and neurofilament protein labeled nonspecifically the vitreous body and the inner basal lamina of the retina, but resulted in only a very weak and diffuse labeling of retinal cells. N-CAM was detected in high concentration in the optic fiber layer on the surface of axons and on the membranes of all retinal cells. Col IV, LN and T 61 antigen were found predominantly in the optic fiber layer. LN and Col IV were located on the surface of axons and the endfeet of ventricular (neuroepithelial) cells in a patchy distribution. The T-61 antigen was found in early stages in the cell-free space of the optic fiber layer, on the surface of ventricular cells and axons, and at later stages also in high-density patches between nerve fibers. The distribution of LN and T-61 antigen together with data from in vitro experiments suggests a crucial role of these proteins in axon extension in the avian retina during early development of the optic fiber layer.  相似文献   

10.
We report here a unique system for tracking normal human urothelial cell migration in serum-free culture medium (HMRI-1). The key observation was that urothelial cells deposited red blood cell surface antigen on the culture dish in a remarkable pattern. Scrutiny of this pattern showed that each migrating cell left behind antigen imprints which formed parallel tracks the width of the cell. Hence the previous migratory history of the cells was instantly mapped by simply visualizing the antigen tracks deposited by the cells on the dish. Apart from providing a simple method for tracking urothelial cells, this observation has wider implications for mechanistic studies of epithelial cell movement in general. It also highlights the complicating effects associated with the addition of serum as a traditional culture supplement, since the inclusion of serum in the HMRI-1 medium abolished the above effect by inhibiting cell migration.  相似文献   

11.
Epithelial–mesenchymal transition (EMT) and cellular invasiveness are two pivotal processes for the development of metastatic tumor phenotypes. The metastatic profile of non-metastatic MCF-7 cells growing as multi-cellular tumor microspheroids (MCTSs) was analyzed by determining the contents of the EMT, invasive and migratory proteins, as well as their migration and invasiveness potential and capacity to secrete active cytokines such as the glucose phosphate isomerase/AMF (GPI/AMF). As for the control, the same analysis was also performed in MCF-7 and MDA-MB-231 (highly metastatic, MDA) monolayer cells, and in stage IIIB and IV human metastatic breast biopsies. The proliferative cell layers (PRL) of mature MCF-7 MCTSs, MDA monolayer cells and metastatic biopsies exhibited increased cellular contents (2–15 times) of EMT (β-catenin, SNAIL), migratory (vimentin, cytokeratin, and fibronectin) and invasive (MMP-1, VEGF) proteins versus MCF-7 monolayer cells, quiescent cell layers of mature MCF-7 MCTS and non-metastatic breast biopsies. The increase in metastatic proteins correlated with substantially elevated cellular abilities for migration (18-times) and invasiveness (13-times) and with the higher level (6-times) of the cytokine GPI/AMF in the extracellular medium of PRL, as compared to MCF-7 monolayer cells. Interestingly, the addition of the GPI/AMF inhibitors erythrose-4-phosphate or 6-phosphogluconate at micromolar doses significantly decreased its extracellular activity (> 80%), with a concomitant diminution in the metastatic protein content and migratory tumor cell capacity, and with no inhibitory effect on tumor lactate production or toxicity on 3T3 mouse fibroblasts. The present findings provide new insights into the discovery of metabolic inhibitors to be used as complementary therapy against metastatic and aggressive tumors.  相似文献   

12.
The localization of the extracellular matrix recognition molecule J1/tenascin was investigated in the crypt-villus unit of the adult mouse ileum by immunoelectron microscopic techniques. In the villus region, J1/tenascin was detected strongly in the extracellular matrix (ECM) between fibroblasts of the lamina propria. It was generally absent in the ECM at the interface between subepithelial fibroblasts and intestinal epithelium, except for some restricted areas along the epithelial basal lamina of villi, but not of crypts. These restricted areas corresponded approximately to the basal part of one epithelial cell. In J1/tenascin-positive areas, epithelial cells contacted the basal lamina with numerous microvillus-like processes, whereas in J1/tenascin-negative areas the basal surface membranes of epithelial cells contacted their basal lamina in a smooth and continuous apposition. In order to characterize the functional role of J1/tenascin in the interaction between epithelial cells and ECM, the intestinal epithelial cell line HT-29 was tested for its ability to adhere to different ECM components. Cells adhered to substratum-immobilized fibronectin, laminin and collagen types I to IV, but not to J1/tenascin. When laminin or collagen types I to IV were mixed with J1/tenascin, cell adhesion was as effective as without J1/tenascin. However, adhesion was completely abolished when cells were offered a mixture of fibronectin and J1/tenascin as substratum. The ability of J1/tenascin to reduce the adhesion of intestinal epithelial cells to their fibronectin-containing basal lamina suggests that J1/tenascin may be involved in the process of physiological cell shedding from the villus.  相似文献   

13.
Summary The development of the rat lung is a process of continuing morphological change. Indications from work in other mammalian systems suggest that fibronectin may be important in the control of this process. The present study has examined embryonic, neonatal, and adult lung tissue of the rat by means of the peroxidase-antiperoxidase (PAP) technique to demonstrate fibronectin at the light-microscopic level. Positive reaction was observed with anti-fibronectin serum in all stages examined. Control sections treated with pre-immune serum or no primary serum gave negative results in each case. Fibronectin in adult tissue was localized to the alveolar surface and alveolar basal lamina. Neonatal tissue showed fibronectin on pulmonary tubule walls and in basal lamina while embryonic tissue revealed localization of the protein in the basal lamina and in association with small groups of cells at the base of septal buds. These findings suggest a role for fibronectin in the control of rat lung development. The results are discussed in terms of the known functions of fibronectin as a preliminary matrix for the subsequent deposition of collagenous connective tissue, as a cellular adhesion protein, and as surface-bound material for cellular migration.  相似文献   

14.
Summary The ultrastructural distribution of fibronectin immunoreactivity was investigated in the chicken embryo during late gastrulation. Sites of binding of anti-fibronectin antibodies were ascribed to the basal lamina and associated structures, and to the cell surface. The fibronectin-rich basal lamina was resolved into (1) a lamina densa, which appears as a continuous, dense sheet, (2) a lamina lucida, consisting of anchoring cords between lamina densa and epithelial cells, and (3) a lamina intima, closely juxtaposed to the cell surface. Cell-surface labelling was also observed in mesoblast cells, and along the dorsal side of the deep-layer cells. The ventral side of the latter cells was poorly stained in the endophyllic crescent, except in coated pits, and more regularly stained at the level of definitive endoblast. Some structures associated with the basal lamina reacted intensely with anti-fibronectin antibodies. These are (1) the interstitial bodies, which are aggregates of extracellular material, and (2) a kind of fibril or tubule, embedded in a fibronectin matrix and mainly found in the endophyllic crescent. Some intracellular labelling was found in most deep-layer cells, in few epiblast cells, never in mesoblast cells. These results extend previous studies on the localization of fibronectin, and correlate its presence and surface topology with its postulated role in migration of mesoblast cells on the basal lamina which, chemically, constitutes an appropriate substrate.  相似文献   

15.
The trunk neural crest originates by transformation of dorsal neuroepithelial cells into mesenchymal cells that migrate into embryonic interstices. Fibronectin (FN) is thought to be essential for the process, although other extracellular matrix (ECM) molecules are potentially important. We have examined the ability of three dimensional (3D) ECM to promote crest formation in vitro. Neural tubes from stage 12 chick embryos were suspended within gelling solutions of either basement membrane (BM) components or rat tail collagen, and the extent of crest outgrowth was measured after 22 hr. Fetal calf serum inhibits outgrowth in both gels and was not used unless specified. Neither BM gel nor collagen gel contains fibronectin. Extensive crest migration occurs into the BM gel, whereas outgrowth is less in rat tail collagen. Addition of fibronectin or embryo extract (EE), which is rich in fibronectin, does not increase the extent of neural crest outgrowth in BM, which is already maximal, but does stimulate migration into collagen gel. Removal of FN from EE with gelatin-Sepharose does not remove the ability of EE to stimulate migration. Endogenous FN is localized by immunofluorescence to the basal surface of cultured neural tubes, but is not seen in the proximity of migrating neural crest cells. Addition of the FN cell-binding hexapeptide GRGDSP does not affect migration into either the BM gel or the collagen gel with EE, although it does block spreading on FN-coated plastic. Thus, although crest cells appear to use exogenous fibronectin to migrate on planar substrata in vitro, they can interact with 3D collagenous matrices in the absence of exogenous or endogenous fibronectin. In BM gels, the laminin cell-binding peptide, YIGSR, completely inhibits migration of crest away from the neural tube, suggesting that laminin is the migratory substratum. Indeed, laminin as well as collagen and fibronectin is present in the embryonic ECM. Thus, it is possible that ECM molecules in addition to or instead of fibronectin may serve as migratory substrata for neural crest in vivo.  相似文献   

16.
The mechanism of primary mesenchyme cell migration in the sea urchin, Lytechinus pictus, was studied in normal embryos and in sulfate-deprived embryos in which primary mesenchyme cells do not migrate. Based on scanning electron microscopy (SEM), cell processes were classified into six morphological types. Time-lapse cinematographic studies showed that two types of cell processes, a short finger-like process and a long process which accounted for 40 and 30% of the cell processes formed, respectively, in normal embryos, functioned as kinetic appendages during cell migration. Although the short finger-like process was formed to some extent in sulfate-deprived embryos, these processes were not able to attach to the ectodermal basal lamina, which is the migratory substratum. The long type of cell process was not observed at all in sulfate-deprived embryos. Transmission electron microscopy (TEM) demonstrated that cell processes in normal embryos were associated with 30 nm diameter granules in the basal lamina. Because these granules were absent in sulfate-deprived embryos, it is suggested that a specific component of the basal lamina substratum can be a limiting factor in cell migratory behavior.  相似文献   

17.
Laminin 5 (alpha3beta3gamma2) is specifically present in the basal lamina underneath epithelia with secretory or protective functions, where it is essential for anchoring basal epithelial cells to the underlying extracellular matrix. Laminin 5 is produced by epithelial cells as a 480-kDa precursor that is converted into forms of 440 and 400 kDa. To analyse the processing of laminin 5, we have used monolayer and co-cultures of epithelial cells and fibroblasts. The processing of the 180-kDa laminin alpha3 chain to 165 kDa in the cell culture medium, and to both 165 and 145 kDa polypeptides in the cell layer, are not modified by the presence of fibroblasts. In contrast, cleavage of the laminin gamma2 chain, occurring in the cell culture medium and in the cell layer, is enhanced by the presence of fibroblasts. Further analysis by immunofluorescence staining and laser-scanning microscopy reveals that deposited laminin 5 is present in a fibroblast-associated filamentous meshwork. Only laminin 5 containing a fully processed gamma2 chain is present in this fibroblast-associated fraction. These studies show that, although laminin 5 is a product of epithelial cells, fibroblasts contribute to its integration into the extracellular matrix architecture.  相似文献   

18.
Summary Human fetal skin fibroblasts (TIG-3S) were found to migrate into a denuded area in a cell monolayer when cultured in both serum-depleted and serum-supplemented media, unlike adult-donor skin fibroblasts which migrated well only when cultured in serum-supplemented medium. Therefore, a series of experiments was carried out to determine whether autocrine factors are involved in their migration. The migration of TIG-3S cells in serum-depleted medium was suppressed by the addition of suramin, a factor with growth factor antagonist properties, which suggests that growth factors are important for cell migration. The suramin-induced inhibition was reversed completely by adding excess basic fibroblast growth factor (bFGF) to the culture medium and partially by platelet-derived growth factor (PDGF). Treatment with neutralizing anti-PDGF antibody did not suppress TIG-3S cell migration, whereas neutralizing anti-bFGF antibody did, which indicates that bFGF is an autocrine and PDGF a paracrine factor involved in cell migration. Next, an experiment was performed to ascertain whether the extracellular matrix is involved in TIG-3S cell migration. Monensin, an inhibitor of extracellular matrix secretion, inhibited cell migration, which was reversed by adding excess type I collagen, but not excess plasma fibronectin. In addition, further evidence for the involvement of collagen was provided by the observation that ethyl-3,4-dihydroxybenzoate, a specific inhibitor of collagen synthesis, suppressed cell migration. These results suggest that the autonomous migration of TIG-3S human fetal skin fibroblasts is mediated by bFGF and type I collagen, which they produce and secrete.  相似文献   

19.
Proliferation and migratory behavior of L929 murine fibroblasts were shown to be modified in the presence of a cytosolic extract of Phormidium sp. (Cyanobacteria). The addition of Phormidium extract to the growth medium (Dulbecco's modified Eagle's medium) supplemented with 0.5% newborn calf serum increased cell proliferation. The effect was shown to be cell line specific. A quantitative analysis performed according to De Laat, Tertoolen, and Bluemink (1981, Eur. J. Cell Biol., 23, 273-279), showed that Phormidium extract was a potential aggregative effector for fibroblasts. Heating (100 degrees C, 4 min) inactivated the clustering effect of the extract, but the effect on cell proliferation was retained. A video analysis of cells after divisions showed that the extract activated cell migration in the same way as 5% serum did during the first 24 h of treatment. Between 24 and 48 h of treatment, cell migration in the presence of the extract was inhibited when compared to migration in 0.5 or 5% serum. We have shown that Phormidium extract may contain two or three kinds of effectors which acted as exogenous growth factors (allowing attachment and proliferation) and as modulator(s) of the cell migratory behavior (activator of migration in early times of the growth and inhibitor later).  相似文献   

20.
Summary Dissociated embryonic chicken retinal cells regenerate in rotary culture into cellular spheres that consist of subareas expressing all three nuclear layers in an inside-out sequence (rosetted vitroretinae). However, when pigmented cells from the eye margin (peripheral retinal pigment epithelium) are added to the system, the sequence of layers is identical with that of an in-situ retina (laminar vitroretinae). In order to elucidate further the lamina-stabilizing effect exerted by the retinal pigment epithelium, we have compared both systems, laying particular emphasis on the ultrastructure of the basal lamina and of Müller glia processes. Ultrastructurally, in both systems, an outer limiting membrane, inner segments of photoreceptors and the segregation of cell bodies into three cell layers develop properly. Synapses are detectable in a premature state, although only in the inner plexiform layer of laminar vitroretinae. Although present in both systems, radial processes of juvenile Müller glia cells are properly fixed at their endfeet only in laminar vitroretinae, since a basal lamina is only expressed here. Large amounts of laminin are detected immunohistochemically within the retinal pigment epithelium and along a basal stalk that reaches inside the laminar vitroretinae. We conclude that the peripheral retinal pigment epithelium is essential for the expression of a basal lamina in vitro. Moreover, the basal lamina may be responsible both for stabilizing the correct polarity of retinal layers and for the final differentiation of the Müller cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号