首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R. Giordano  S. L. O''Neill    H. M. Robertson 《Genetics》1995,140(4):1307-1317
Various stocks of Drosophila mauritiana and D. sechellia were found to be infected with Wolbachia, a Rickettsia-like bacterium that is known to cause cytoplasmic incompatibility and other reproductive abnormalities in arthropods. Testing for the expression of cytoplasmic incompatibility in these two species showed partial incompatibility in D. sechellia but no expression of incompatibility in D. mauritiana. To determine whether absence of cytoplasmic incompatibility in D. mauritiana was due to either the bacterial or host genome, we transferred bacteria from D. mauritiana into an uninfected strain of D. simulans, a host species known to express high levels of incompatibility with endogenous Wolbachia. We also performed the reciprocal transfer of the natural D. simulans Riverside infection into a tetracycline-treated stock of D. mauritiana. In each case, the ability to express incompatibility was unaltered by the different host genetic background. These experiments indicate that in D. simulans and D. mauritiana expression of the cytoplasmic incompatibility phenotype is determined by the bacterial strain and that D. mauritiana harbors a neutral strain of Wolbachia.  相似文献   

2.
Gotoh T  Noda H  Hong XY 《Heredity》2003,91(3):208-216
Wolbachia are a group of maternally inherited bacteria that infect a wide range of arthropods. Wolbachia infections are known to result in the expression of various abnormal reproductive phenotypes, the best known being cytoplasmic incompatibility. The first systematic survey of 42 spider mite species in Japan revealed that seven species (16.7%) were infected with Wolbachia. Wolbachia in the spider mites were grouped into three subgroups in supergroup B by phylogenetic analyses of the wsp gene. Most spider mites did not show cytoplasmic incompatibility when infected males were crossed with uninfected females. However, all infected populations of Panonychus mori and Oligonychus gotohi (five and four populations, respectively) possessed modification-positive strains of Wolbachia, and the cytoplasmic incompatibility decreased egg hatchability and female ratio of the spider mites. Thus, some Wolbachia strains cause sex ratio distortion in their hosts.  相似文献   

3.
沃尔巴克氏体Wolbachia为母系传播的胞内共生菌,可通过对宿主产生多种调控方式扩大其自身在宿主种群的传播。据推测,有40%~60%的节肢动物都感染有Wolbachia,并可根据不同株系间的系统发育关系将其分为多个超群。为了有助于深入研究Wolbachia对其宿主的调控方式及其调控机制及提出更为有效的害虫生物防治策略,本文综述了节肢动物内共生菌Wolbachia的研究现状。1924年Wolbachia被报道首次发现于尖音库蚊Culex pipiens的生殖组织中,1971年确认其与宿主的胞质不亲和现象有关。Wolbachia可以通过胞质不亲和、杀雄、雌性化、孤雌生殖等作用方式调控宿主的生殖。除生殖调控之外,Wolbachia对宿主的调控方式还包括调控宿主新陈代谢、抵制病原菌、影响宿主生殖力等。Wolbachia调控的胞质不亲和现象可用“修饰-营救”(modification-rescue)模型解释,且已有与Wolbachia诱导宿主胞质不亲和相关的功能基因被报道。wMel株系是首个公布全基因组序列的Wolbachia株系,随后又有数十种不同株系的Wolbachia基因组陆续被破译。wMel株系Wolbachia可起到抑制登革热病毒传播的作用;同时,Wolbachia和昆虫不育技术的结合对白纹伊蚊Aedes albopictus野外种群起到良好的控制效果。鉴于目前节肢动物内共生菌Wolbachia的研究现状,我们认为未来应开展以下研究:(1)Wolbachia基因组及生殖调控作用关键功能基因的研究;(2)Wolbachia与宿主间互作机制的研究;(3)Wolbachia在生物防治方面的应用。  相似文献   

4.
Maternally inherited rickettsial symbionts of the genus Wolbachia occur commonly in arthropods, often behaving as reproductive parasites by manipulating host reproduction to enhance the vertical transmission of infections. One manipulation is cytoplasmic incompatibility (CI), which causes a significant reduction in brood hatch and promotes the spread of the maternally inherited Wolbachia infection into the host population (i.e., cytoplasmic drive). Here, we have examined a Wolbachia superinfection in the mosquito Aedes albopictus and found the infection to be associated with both cytoplasmic incompatibility and increased host fecundity. Relative to uninfected females, infected females live longer, produce more eggs, and have higher hatching rates in compatible crosses. A model describing Wolbachia infection dynamics predicts that increased fecundity will accelerate cytoplasmic drive rates. To test this hypothesis, we used population cages to examine the rate at which Wolbachia invades an uninfected Ae. albopictus population. The observed cytoplasmic drive rates were consistent with model predictions for a CI-inducing Wolbachia infection that increases host fecundity. We discuss the relevance of these results to both the evolution of Wolbachia symbioses and proposed applied strategies for the use of Wolbachia infections to drive desired transgenes through natural populations (i.e., population replacement strategies).  相似文献   

5.
The aim of this study is to examine the expression of cytoplasmic incompatibility and investigate the distribution and population frequencies of Wolbachia pipientis strains in Drosophila simulans. Nucleotide sequence data from 16S rDNA and a Wolbachia surface protein coding sequence and cytoplasmic incompatibility assays identify four distinct Wolbachia strains: wHa, wRi, wMa, and wAu. The levels of cytoplasmic incompatibility between six lines carrying these strains of bacteria and three control lines without bacteria are characterized. Flies infected with wHa and wRi are bidirectionally incompatible, and males that carry either strain can only successfully produce normal numbers of offspring with females carrying the same bacterial strain. Males infected with wAu do not express incompatibility. Males infected with the wMa strain express intermediate incompatibility when mated to females with no bacteria and no incompatibility with females with any other Wolbachia strain. We conduct polymerase chain reaction/restriction fragment length polymorphism assays to distinguish the strain of Wolbachia and the mitochondrial haplotype to survey populations for each type and associations between them. Drosophila simulans is known to have three major mitochondrial haplotypes (siI, sill, and siIII) and two subtypes (siIIA and siIIB). All infected lines of the sil haplotype carry wHa, wNo, or both; wMa and wNo are closely related and it is not clear whether they are distinct strains or variants of the same strain. Infected lines with the silIA haplotype harbor wRi and the siIIB haplotype carries wAu. The wMa infection is found in siIII haplotype lines. The phenotypic expression of cytoplasmic incompatibility and its relation to between-population differences in frequencies of Wolbachia infection are discussed.  相似文献   

6.
Wolbachia are obligate, maternally inherited, intracellular bacteria that infect numerous insects and other invertebrates. Wolbachia infections have evolved multiple mechanisms to manipulate host reproduction and facilitate invasion of naive host populations. One such mechanism is cytoplasmic incompatibility (CI) that occurs in many insect species, including Aedes albopictus (Asian tiger mosquito). The multiple Wolbachia infections that occur naturally in A. albopictus make this mosquito a useful system in which to study CI. Here, experiments employ mosquito strains that have been introgressed to provide genetically similar strains that harbor differing Wolbachia infection types. Cytoplasmic incompatibility levels, host longevity, egg hatch rates, and fecundity are examined. Crossing results demonstrate a pattern of additive unidirectional cytoplasmic incompatibility. Furthermore, relative to uninfected females, infected females are at a reproductive advantage due to both cytoplasmic incompatibility and a fitness increase associated with Wolbachia infection. In contrast, no fitness difference was observed in comparisons of single- and superinfected females. We discuss the observed results in regard to the evolution of the Wolbachia/A. albopictus symbiosis and the observed pattern of Wolbachia infection in natural populations.  相似文献   

7.
Maroja LS  Clark ME  Harrison RG 《Heredity》2008,101(5):435-444
Wolbachia are cytoplasmically inherited alpha-proteobacteria that can cause cytoplasmic incompatibility (CI) in insects. This incompatibility between sperm and egg is evident when uninfected females mate with infected males. Wolbachia-driven reproductive incompatibilities are of special interest because they may play a role in speciation. However, the presence of Wolbachia does not always imply incompatibility. The field crickets Gryllus firmus and G. pennsylvanicus exhibit a very clear unidirectional incompatibility and have been cited as a possible example of Wolbachia-induced CI. Here, we conduct curing experiments, intra- and interspecific crosses, cytological examination of Wolbachia in testes and Wolbachia quantifications through real-time PCR. All of our data strongly suggest that Wolbachia are not involved in the reproductive incompatibility between G. firmus and G. pennsylvanicus.  相似文献   

8.
In this study, we report data about the presence of Wolbachia in Drosophila yakuba, D. teissieri, and D. santomea. Wolbachia strains were characterized using their wsp gene sequence and cytoplasmic incompatibility assays. All three species were found infected with Wolbachia bacteria closely related to the wAu strain, found so far in D. simulans natural populations, and were unable to induce cytoplasmic incompatibility. We injected wRi, a CI-inducing strain naturally infecting D. simulans, into the three species and the established transinfected lines exhibited high levels of CI, suggesting that absence of CI expression is a property of the Wolbachia strain naturally present or that CI is specifically repressed by the host. We also tested the relationship between the natural infection and wRi and found that it fully rescues the wRi modification. This result was unexpected, considering the significant evolutionary divergence between the two Wolbachia strains.  相似文献   

9.
Gotoh T  Noda H  Fujita T  Iwadate K  Higo Y  Saito S  Ohtsuka S 《Heredity》2005,94(2):237-246
Maternally transmitted bacteria of the genus Wolbachia are obligate, intracellular symbionts that are responsible for cytoplasmic incompatibility in a wide range of arthropods such as insects and mites. Spider mites often show uni- and bidirectional incompatibilities among populations with and without Wolbachia. Therefore, we surveyed the presence of Wolbachia by PCR and then conducted crossing experiments among 25 populations of Panonychus mori to determine how Wolbachia are related to the incompatibility in this species. Five out of the 25 populations were infected with Wolbachia. These five populations were treated with an antibiotic (rifampicin) to eliminate Wolbachia. We carried out round-robin crosses among 20 Wolbachia-uninfected populations, five infected populations and five rifampicin-treated populations (30 x 30=900 crosses in total). Incompatibility among P. mori populations was caused by Wolbachia infection, nuclear-cytoplasmic interactions or nuclear-nuclear interactions. Wolbachia-mediated incompatibility was observed in crosses between uninfected females and infected males or between females and males harboring different Wolbachia strains. Nuclear-cytoplasmic interactions may be responsible for the unidirectional incompatibility in crosses between the two northern populations and one of the southern populations. Bidirectional incompatibility caused by nuclear-nuclear interactions was observed in 99 combinations of interpopulation crosses (99/300=0.33). Although no geographical trends were detected in the distribution of bidirectionally compatible populations, the results reveal a genetic divergence among P. mori populations.  相似文献   

10.
Wolbachia infections are a model for understanding intracellular, bacterial symbioses. While the symbiosis is often studied from a binary perspective of host and bacteria, it is increasingly apparent that additional trophic levels can influence the symbiosis. For example, Wolbachia in arthropods harbor a widespread temperate bacteriophage, termed WO, that forms virions and rampantly transfers between coinfections. Here we test the hypothesis that temperatures at the extreme edges of an insect's habitable range alter bacteriophage WO inducibility and in turn, Wolbachia densities and the penetrance of cytoplasmic incompatibility. We report four key findings using the model wasp, Nasonia vitripennis: First, both cold treatment at 18 C and heat treatment at 30 C reduce Wolbachia densities by as much as 74% relative to wasps reared at 25 C. Second, in all cases where Wolbachia densities decline due to temperature changes, phage WO densities increase and inversely associate with Wolbachia densities. Heat has a marked effect on phage WO, yielding phage densities that are 552% higher than the room temperature control. Third, there is a significant affect of insect family on phage WO and endoysmbiont densities. Fourth, at extreme temperatures, there was a temperature-mediated adjustment to the density threshold at which Wolbachia cause complete cytoplasmic incompatibility. Taken together, these results demonstrate that temperature simultaneously affects phage WO densities, endosymbiont densities, and the penetrance of cytoplasmic incompatibility. While temperature shock enhances bacteriophage inducibility and the ensuing bacterial mortality in a wide range of medically and industrially-important bacteria, this is the first investigation of the associations in an obligate intracellular bacteria. Implications to a SOS global sensing feedback mechanism in Wolbachia are discussed.  相似文献   

11.
Wolbachia are maternally inherited endosymbionts that can invade arthropod populations through manipulation of their reproduction. In mosquitoes, Wolbachia induce embryonic death, known as cytoplasmic incompatibility (CI), whenever infected males mate with females either uninfected or infected with an incompatible strain. Although genetic determinants of CI are unknown, a functional model involving the so-called mod and resc factors has been proposed. Natural populations of Culex pipiens mosquito display a complex CI relationship pattern associated with the highest Wolbachia (wPip) genetic polymorphism reported so far. We show here that C. pipiens populations from La Réunion, a geographically isolated island in the southwest of the Indian Ocean, are infected with genetically closely related wPip strains. Crossing experiments reveal that these Wolbachia are all mutually compatible. However, crosses with genetically more distant wPip strains indicate that Wolbachia strains from La Réunion belong to at least five distinct incompatibility groups (or crossing types). These incompatibility properties which are strictly independent from the nuclear background, formally establish that in C. pipiens, CI is controlled by several Wolbachia mod/resc factors.  相似文献   

12.
Clark ME  Anderson CL  Cande J  Karr TL 《Genetics》2005,170(4):1667-1675
Wolbachia is an intracellular microbe harbored by a wide variety of arthropods (including Drosophila) and filarial nematodes. Employing several different strategies including male killing, induced parthenogenesis, cytoplasmic incompatibility, and feminization, and acting by as-yet-unknown mechanisms, Wolbachia alters host reproduction to increase its representation within a population. Wolbachia is closely associated with gametic incompatibility but also interacts with Drosophila in other, little understood ways. We report here significant and widespread infection of Wolbachia within laboratory stocks and its real and potential impact on Drosophila research. We describe the results of a survey indicating that approximately 30% of stocks currently housed at the Bloomington Drosophila Stock Center are infected with Wolbachia. Cells of both reproductive tissues and numerous somatic organs harbor Wolbachia and display considerable variation in infection levels within and between both tissue types. These results are discussed from the perspective of Wolbachia's potential confounding effects on both host fitness and phenotypic analyses. In addition to this cautionary message, the infection status of stock centers may provide further opportunities to study the genetic basis of host/symbiosis.  相似文献   

13.
Wolbachia pipientis is an obligate bacterial endosymbiont, which has successfully invaded approximately 20% of all insect species by manipulating their normal developmental patterns. Wolbachia-induced phenotypes include parthenogenesis, male killing, and, most notably, cytoplasmic incompatibility. In the future these phenotypes might be useful in controlling or modifying insect populations but this will depend on our understanding of the basic molecular processes underlying insect fertilization and development. Wolbachia-infected Drosophila simulans express high levels of cytoplasmic incompatibility in which the sperm nucleus is modified and does not form a normal male pronucleus when fertilizing eggs from uninfected females. The sperm modification is somehow rescued in eggs infected with the same strain of Wolbachia. Thus, D. simulans has become an excellent model organism for investigating the manner in which endosymbionts can alter reproductive programs in insect hosts. This paper reviews the current knowledge of Drosophila early development and particularly sperm function. Developmental mutations in Drosophila that are known to affect sperm function will also be discussed.incompatibility.  相似文献   

14.
Wolbachia is a cytoplasmically inherited alpha-proteobacterium found in a wide range of host arthropod and nematode taxa. Wolbachia infection in Drosophila is closely associated with the expression of a unique form of post-fertilization lethality termed cytoplasmic incompatibility (CI). This form of incompatibility is only expressed by infected males suggesting that Wolbachia exerts its effect during spermatogenesis. The growth and distribution of Wolbachia throughout sperm development in individual spermatocysts and elongating sperm bundles is described. Wolbachia growth within a developing cyst seems to begin during the pre-meiotic spermatocyte growth phase with the majority of bacteria accumulating during cyst elongation. Wolbachia are predominantly localized in the proximal end of the immature cyst, opposite the spermatid nuclei, and throughout development there appears little movement of Wolbachia between spermatids via the connecting cytoplasmic bridges. The overall number of new cysts infected as well as the number of spermatids/cysts infected seems to decrease with age and corresponds to the previously documented drop in CI with age. In contrast, in one CI expressing line of Drosophila melanogaster, fewer cysts are infected and a much greater degree of variation in numbers is observed between spermatids. Furthermore, the initiation and extent of the fastest period of Wolbachia growth in the D. melanogaster strain lags behind that of Drosophila simulans. The possible implications on the as yet unexplained mechanism of CI are discussed.  相似文献   

15.
In Drosophila simulans, we described a cytoplasmic incompatibility (CI) system (Seychelles) restricted to insular populations that harbor the mitochondrial type SiI. Since then, these populations have been shown to be heterogeneous, some being infected by one Wolbachia genetic variant only (wHa), while others are infected simultaneously by wHa and by another variant (wNo) always found in association with wHa. We have experimentally obtained two D. simulans strains only infected by the wNo variant. This variant determines its own cytoplasmic incompatibility type. In particular, the cross between wNo-bearing flies and wHa-bearing ones is bidirectionally incompatible. The Seychelles CI type, stricto sensu, is distinguished by being determined by the simultaneous presence of two Wolbachia variants that we found to be mutually incompatible. In addition, we observed incomplete maternal transmission of the Wolbachia.  相似文献   

16.
Cytoplasmically inherited symbiotic Wolbachia bacteria are known to induce a diversity of phenotypes on their numerous arthropod hosts including cytoplasmic incompatibility, male-killing, thelytokous parthenogenesis, and feminization. In the wasp Asobara tabida (Braconidae), in which all individuals harbor three genotypic Wolbachia strains (wAtab1, wAtab2 and wAtab3), the presence of Wolbachia is required for insect oogenesis. To elucidate the phenotype of each Wolbachia strain on host reproduction, especially on oogenesis, we established lines of A. tabida harboring different combinations of these three bacterial strains. We found that wAtab3 is essential for wasp oogenesis, whereas the two other strains, wAtabl and wAtab2, seem incapable to act on this function. Furthermore, interline crosses showed that strains wAtab1 and wAtab2 induce partial (about 78%) cytoplasmic incompatibility of the female mortality type. These results support the idea that bacterial genotype is a major factor determining the phenotype induced by Wolbachia on A. tabida hosts. We discuss the implications of these findings for current hypotheses regarding the evolutionary mechanisms by which females of A. tabida have become dependent on Wolbachia for oogenesis.  相似文献   

17.
Infections with the rickettsial microorganism Wolbachia are cytoplasmically inherited and occur in a wide range of insect species and several other arthropods. Wolbachia infection often results in unidirectional cytoplasmic incompatibility (CI): crosses between infected males and uninfected females are incompatible and show a reduction of progeny or complete inviability. Unidirectional CI can also occur when males harbouring two incompatible Wolbachia strains are crossed with females infected with only one of the two strains. In the flour beetle Tribolium confusum, Wolbachia infections are of particular interest because of the severity of incompatibility. Typically, no progeny results from the incompatible cross, whereas only partial incompatibility is observed in most other hosts. Werren et al. (1995a) reported that Wolbachia infections in T. confusum consist of two bacterial strains belonging to distinct phylogenic groups, based on PCR amplification and sequence analysis of the bacterial cell division gene ftsZ. However, Fialho & Stevens (1996) showed that eight strains of T. confusum were infected with a single and common incompatibility type. Here we report analysis of the ftsZ gene by specific PCR amplification. Diagnostic restriction enzyme assays revealed no evidence of double infections in 11 geographic strains of T. confusum, including the strain examined by Werren et al. (1995a). Further, sequence analysis of the Wolbachia ftsZ gene and an internal transcribed spacer (ITS) region in two of these strains displayed no nucleotide variation or evidence of polymorphisms. Results suggest that T. confusum is infected with B-group Wolbachia only.  相似文献   

18.
Fry AJ  Palmer MR  Rand DM 《Heredity》2004,93(4):379-389
Maternally inherited Wolbachia bacteria are extremely widespread among insects and their presence is usually associated with parasitic modifications of host fitness. Wolbachia pipientis infects Drosophila melanogaster populations from all continents, but their persistence in this species occurs despite any strong parasitic effects. Here, we have investigated the symbiosis between Wolbachia and D. melanogaster and found that Wolbachia infection can have significant survival and fecundity effects. Relative to uninfected flies, infected females from three fly strains showed enhanced survival or fecundity associated with Wolbachia infection, one strain showed both and one strain responded positively to Wolbachia removal. We found no difference in egg hatch rates (cytoplasmic incompatibility) for crosses between infected males and uninfected females, although there were fecundity differences. Females from this cross consistently produced fewer eggs than infected females and these fecundity differences could promote the spread of infection just like cytoplasmic incompatibility. More surprising, we found that infected females often had the greatest fecundity when mated to uninfected males. This could also promote the spread of Wolbachia infection, though here the fitness benefits would also help to spread infection when Wolbachia are rare. We suggest that variable fitness effects, in both sexes, and which interact strongly with the genetic background of the host, could increase cytoplasmic drive rates in some genotypes and help explain the widespread persistence of Wolbachia bacteria in D. melanogaster populations. These interactions may further explain why many D. melanogaster populations are polymorphic for Wolbachia infection. We discuss our results in the context of host-symbiont co-evolution.  相似文献   

19.
Wolbachia are intracellular bacteria transmitted almost exclusively vertically through eggs. In response to this mode of transmission, Wolbachia strategically manipulate their insect hosts' reproduction. In the most common manipulation type, cytoplasmic incompatibility, infected males can only mate with infected females, but infected females can mate with all males. The mechanism of cytoplasmic incompatibility is unknown; theoretical and empirical findings need to converge to broaden our understanding of this phenomenon. For this purpose, two prominent models have been proposed: the mistiming-model and the lock-key-model. The former states that Wolbachia manipulate sperm of infected males to induce a fatal delay of the male pronucleus during the first embryonic division, but that the bacteria can compensate the delay by slowing down mitosis in fertilized eggs. The latter states that Wolbachia deposit damaging "locks" on sperm DNA of infected males, but can also provide matching "keys" in infected eggs to undo the damage. The lock-key-model, however, needs to assume a large number of locks and keys to explain all existing incompatibility patterns. The mistiming-model requires fewer assumptions but has been contradicted by empirical results. We therefore expand the mistiming-model by one quantitative dimension to create the new, so-called goalkeeper-model. Using a method based on formal logic, we show that both lock-key- and goalkeeper-model are consistent with existing data. Compared to the lock-key-model, however, the goalkeeper-model assumes only two factors and provides an idea of the evolutionary emergence of cytoplasmic incompatibility. Available cytological evidence suggests that the hypothesized second factor of the goalkeeper-model may indeed exist. Finally, we suggest empirical tests that would allow to distinguish between the models. Generalizing our results might prove interesting for the study of the mechanism and evolution of other host-parasite interactions.  相似文献   

20.
Vertically transmitted symbionts suffer a severe reduction in numbers when they pass through host generations, resulting in genetic homogeneity or even clonality of their populations. Wolbachia endosymbionts that induce cytoplasmic incompatibility in their hosts depart from this rule, because cytoplasmic incompatibility actively maintains multiple infection within hosts. Hosts and symbionts are thus probably under peculiar selective pressures that must shape the way intracellular bacterial populations are regulated. We studied the density and location of Wolbachia within adult Leptopilina heterotoma, a haplodiploid wasp that is parasitic on Drosophila and that is naturally infected with three Wolbachia strains, but for which we also obtained one simply infected and two doubly infected lines. Comparison of these four lines by quantitative polymerase chain reaction using a real-time detection system showed that total Wolbachia density varies according to the infection status of individuals, while the specific density of each Wolbachia strain remains constant regardless of the presence of other strains. This suggests that Wolbachia strains do not compete with one another within the same host individual, and that a strain-specific regulatory mechanism is operating. We discuss the regulatory mechanisms that are involved, and how this process might have evolved as a response to selective pressures acting on both partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号