首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly purified colony-stimulating factor-1 induced thromboplastin activity in murine macrophages and human monocytes in vitro. The activity increase was inhibited by cycloheximide and prevented by antibodies to CSF-1.  相似文献   

2.
3.
Colony-stimulating factor-1 receptor (c-fms)   总被引:2,自引:0,他引:2  
The macrophage colony-stimulating factor, CSF-1 (M-CSF), is a homodimeric glycoprotein required for the lineage-specific growth of cells of the mononuclear phagocyte series. Apart from its role in stimulating the proliferation of bone marrow-derived precursors of monocytes and macrophages, CSF-1 acts as a survival factor and primes mature macrophages to carry out differentiated functions. Each of the actions of CSF-1 are mediated through its binding to a single class of high-affinity receptors expressed on monocytes, macrophages, and their committed progenitors. The CSF-1 receptor (CSF-1R) is encoded by the c-fms proto-oncogene, and is one of a family of growth factor receptors that exhibits an intrinsic tyrosine-specific protein kinase activity. Transduction of c-fms sequences as a viral oncogene (v-fms) in the McDonough (SM) and HZ-5 strains of feline sarcoma virus has resulted in alterations in receptor coding sequences that affect its activity as a tyrosine kinase and provide persistent signals for cell growth in the absence of its ligand. The genetic alterations in the c-fms gene that unmask its latent transforming potential abrogate its lineage-specific activity and enable v-fms to transform a variety of cells that do not normally express CSF-1 receptors.  相似文献   

4.
Colony-stimulating factor-1 (CSF-1) induces expression of immediate early gene, such as c-myc and c-fos and delayed early genes such as D-type cyclins (D1 and D2), whose products play essential roles in the G1 to S phase transition of the cell cycle. Little is known, however, about the cytoplasmic signal transduction pathways that connect the surface CSF-1 receptor to these genes in the nucleus. We have investigated the signaling mechanism of CSF-1-induced D2 expression. Analyses of CSF-1 receptor autophosphorylation mutants show that, although certain individual mutation has a partial inhibitory effect, only multiple combined mutations completely block induction of D2 in response to CSF-1. We report that at least three parallel pathways, the Src pathway, the MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, and the c-myc pathway, are involved. Induction of D2 is partially inhibited in Src(-/-) bone marrow-derived macrophages and by Src inhibitor PP1 and is enhanced in v-Src-overexpressing cells. Activation of myc's transactivating activity selectively induces D2 but not D1. Blockade of c-myc expression partially blocks CSF-1-induced D2 expression. Complete inhibition of the MEK/ERK pathway causes 50% decrease of D2 expression. Finally, simultaneous inhibition of Src, MEK activation, and c-myc expression additively blocks CSF-1-induced D2 expression. This study indicates that multiple signaling pathways are involved in full induction of a single gene, and this finding may also apply broadly to other growth factor-inducible genes.  相似文献   

5.
Subcellular membrane and granule fractions derived from human platelets contain immunologically identifiable alpha2-macroglobulin and alpha1-antitrypsin. These platelet-derived inhibitors show a reaction of immunologic identity when compared to alpha2-macroglobulin and alpha1-antitrypsin purified from human plasma. Further, the platelet protease inhibitors possessed a similar subunit polypeptide chain structure to their plasma counterparts as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis. Studies of the binding of radiolabeled trypsin to the various solubilized platelet subcellular fractions suggest that the granule-associated alpha2-macroglobulin and alpha1-antitrypsin, as well as membrane-associated alpha2-macroglobulin were functionally active. Quantitatively, circulating platelets contain relatively small concentrations of these inhibitors as compared to platelet-associated fibrinogen and factor VIIIAGN. Platelet protease inhibitors may modulate the protease-mediated events involved in the formation of hemostatic plugs and thrombi.  相似文献   

6.
Carbohydrates were characterized in the human placental alpha 2-macroglobulin receptor and its associated protein. Carbohydrates, largely N-linked, contributed to about 18% of the size of the receptor alpha-chain and to about 25% of the beta-chain. The 40 kDa receptor-associated protein also contained carbohydrate. The alpha- and beta-chains contained a wide variety of carbohydrates as judged by binding of lectins. Monosaccharide-competing inhibition of alpha 2M-methylamine binding by WGA suggested a functional significance of sugars in binding of ligands to the alpha-chain.  相似文献   

7.
The exposure of [3H]arachidonate-radiolabelled murine peritoneal macrophages to alpha 2-macroglobulin-methylamine or alpha 2-macroglobulin-trypsin but not native alpha 2-macroglobulin (alpha 2M) results in the rapid secretion of [3H]eicosanoids. Resident peritoneal macrophages stimulated with 0.1 microM alpha 2M-methylamine exhibited an enhanced secretion within 10 min. The ability of alpha 2M 'fast' forms to stimulate secretion of [3H]eicosanoids was similar to that observed in the presence of the murine macrophage chemoattractant platelet-activating factor. As observed for total [3H]eicosanoid secretion, alpha 2M 'fast' forms also rapidly enhanced the secretion of the cAMP-elevating prostanoid, prostaglandin E2, from resident peritoneal macrophages. Stimulated secretion of prostaglandin E2 in response to 0.1 microM alpha 2M-methylamine was less rapid than that observed using 0.1 microM platelet-activating factor. Similar amounts of secreted prostaglandin E2 were present in media of macrophage cultures after 1 h exposure to the two stimuli. In the presence of 0.1 microM alpha 2M-methylamine, secreted prostaglandin E2 remained elevated, compared to the appropriate buffer control, for at least 24 h. The present results indicate that receptor recognition of alpha 2M 'fast' forms by macrophages results in the rapid stimulation of eicosanoid secretion and suggest that secretion of prostaglandin E2 and other eicosanoids may be involved in the ability of alpha 2 M 'fast' forms to regulate various macrophage functional responses.  相似文献   

8.
The pro-inflammatory activity of Tumor necrosis factor-alpha (TNF-alpha) together with tissue hypoxia determine the clinical outcome in sepsis and septic shock. p38 MAPKinase is the primary intracellular signaling pathway that regulates lipopolysaccharide (LPS)-induced TNF-alpha biosynthesis, however, the effect of hypoxia on LPS mediated activation of p38 is not known. Here we report that SB203580, a specific p38 MAPK inhibitor, which completely abolished LPS-induced TNF-alpha expression by the mouse macrophage cell RAW264.7 in normoxic conditions, lost the inhibitory effect in hypoxic conditions. Hypoxia did not modulate expression of p38 MAPK, but increased that of p-MK2, a downstream target of p38 MAPK. In LPS induced endotoxemia mice model SB203580 had no inhibitory effect on the serum levels of TNF-alpha. Furthermore, hypoxia inducible factor-1alpha (HIF-1alpha) was detected in vivo after LPS administration but its expression was not affected by SB203580. Our data indicate that LPS induced p38 MAPK activation was enhanced by hypoxia and consequently increased TNF-alpha secretion. Furthermore, the induction of HIF-1alpha in mice with endotoxemia suggested a synergistic effect on p38 mediated TNF-alpha expression. These findings provide new insights on the pathophysiological effects of hypoxia in sepsis and septic shock.  相似文献   

9.
10.
11.
Unmethylated CpG motifs within bacterial DNA constitute a pathogen-associated molecular pattern recognized by the innate immune system. Many of the immunomodulatory functions of bacterial DNA can be ascribed to the ability to activate macrophages and dendritic cells. Here we show stimulatory DNA, like LPS, caused growth arrest of murine bone marrow-derived macrophages proliferating in CSF-1. Stimulatory DNA caused selective down-modulation of CSF-1 receptor surface expression. Flow cytometric analysis of CSF-1-deprived bone marrow-derived macrophages revealed that in contrast to the synchronous reduction of CSF-1 receptor upon CSF-1 addition, activating DNA (both bacterial DNA and CpG-containing oligonucleotide) caused rapid removal of receptor from individual cells leading to a bimodal distribution of surface expression at intermediate times or submaximal doses of stimulus. Despite causing growth arrest, both stimulatory DNA and LPS promoted factor-independent survival of bone marrow-derived macrophages, which was associated with phosphorylation of the mitogen-activated protein kinase family members, extracellular-regulated kinase 1 and 2. CSF-1 receptor down-modulation may polarize the professional APC compartment to the more immunostimulatory dendritic cell-like phenotype by suppressing terminal macrophage differentiation mediated by CSF-1.  相似文献   

12.
Exposure of the murine macrophage cell line, RAW 264.7, to murine rIFN-gamma resulted in a significant increase in the number of glucocorticoid receptors (GcR). A doubling in the number of GcR was observed as early as 24 h after rIFN-gamma treatment, and receptor number was maximal by 36 h after rIFN-gamma treatment and represented approximately a fourfold increase. Scatchard analysis indicated that a twofold increase in GcR affinity was concomitant with the rIFN-gamma-induced increase in GcR number in RAW 264.7 cells. Increased GcR numbers were induced after exposure of RAW 264.7 cells to as little as 0.1 U/ml rIFN-gamma, and optimal expression was observed at 5 U/ml. Treatment of peritoneal exudate macrophages from C3H/OuJ mice and the LPS hyporesponsive mouse strain, C3H/HeJ, with rIFN-gamma induced an approximately twofold increase in the GcR with no concomitant change in receptor affinity. These results suggest that IFN-gamma may be essential not only for macrophage activation, but also for increasing macrophage sensitivity to feedback inhibition by glucocorticoids by increasing the number and/or affinity of available GcR.  相似文献   

13.
The binding and mitogenic properties of thrombin have been established in various transformed cell lines. In such systems, thrombin induces cell division in the absence of exogenous growth factors, and the enzyme is considered to act directly as a mitogen. This study explores thrombin's interaction with nontransformed, growth factor-dependent cells. Binding of 125I-alpha-thrombin to colony-stimulating factor (CSF)-1-dependent bone marrow-derived macrophages is saturable, time-dependent, and displaceable by both unlabeled alpha-thrombin, and esterolytically inactive thrombin. Both dissociation studies of pre-bound radio-labeled thrombin and Scatchard analysis assisted by the program "Ligand" suggest adherence of thrombin-binding data to a multi-site model. There are an estimated 2 x 10(4) high affinity sites (Kd = 7 x 10(-9)M) and 2 x 10(6) low affinity sites (Kd = 9 x 10(-7)M) per cell. Quiescent bone marrow-derived macrophages were cultured with either 10(-8)M thrombin, 1000 units of CSF-1/ml, or both and [3H]thymidine incorporation was determined. Thrombin alone did not induce mitogenesis. CSF-1 induced mitogenesis with peak [3H] thymidine incorporation occurring 24 h after addition of the mitogen. This CSF-1-dependent mitogenic influence was enhanced greater than 2-fold by treatment with thrombin.  相似文献   

14.
Colony stimulating factor-1 (CSF-1) stimulates DNA synthesis in murine bone marrow-derived macrophages (BMM); however, unlike BMM, murine resident peritoneal macrophages (RPM) undergo a poor proliferative response. It has previously been shown that phosphatidylinositol-4,5-bisphosphate hydrolysis is not associated with CSF-1 action in BMM. In this report we demonstrate that, despite a lack of inositol trisphosphate generation, CSF-1 transiently elevated both [3H]myristoyl- and [3H]arachidonyl-diacylglycerol (DAG) in BMM in a dose-dependent fashion. CSF-1 failed, however, to stimulate an increase in either species of DAG in RPM. Thus, DAG could be a second messenger for the proliferative action of CSF-1 in macrophages. Other mitogenic agents, 12-0-tetradecanoyl phorbol 13-acetate (TPA) and exogenous phospholipase C, also increased BMM levels of [3H]myristoyl- and [3H]arachidonyl-DAG. The nonmitogenic agents, lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-alpha) and zymosan, had different effects on the generation of either species of DAG in BMM. LPS failed to elevate either form, TNF-alpha increased only [3H]arachidonyl-DAG, while zymosan stimulated levels of both species of DAG. It therefore appears that increased diacylglycerol generation may be necessary, but perhaps not sufficient, for macrophage proliferation.  相似文献   

15.
A 39-kDa protein of unknown function has previously been reported to copurify with the low density lipoprotein receptor-related protein (LRP)/alpha 2-macroglobulin receptor. In this study we demonstrate that a recombinant 39-kDa fusion protein can reversibly bind to the 515-kDa subunit of the LRP/alpha 2-macroglobulin receptor. This interaction inhibits the binding and uptake of the receptor's two known ligands: 1) beta-migrating very low density lipoproteins activated by enrichment with apoprotein E and 2) alpha 2-macroglobulin activated by incubation with plasma proteases or methylamine. A potential in vivo role of the 39-kDa protein is to modulate the uptake of apoE-enriched lipoproteins and activated alpha 2-macroglobulin in hepatic and extrahepatic tissues.  相似文献   

16.
Cellular binding of receptor-recognized forms of alpha2-macroglobulin (alpha2M*) is mediated by the low-density lipoprotein receptor related protein (LRP) and the alpha2M signaling receptor (alpha2MSR). In nonmalignant cells, ligation of alpha2MSR promotes DNA synthesis and cellular proliferation. Here, we report that insulin treatment of highly metastatic 1-LN human prostate carcinoma selectively increases alpha2MSR expression and binding of alpha2M* to 1-LN cells. alpha2M* induces transient increases in intracellular calcium and inositol 1,4,5-trisphosphate in insulin-treated 1-LN cells, consistent with activation of alpha2MSR. Inhibition of signaling cascades activated by insulin blocks upregulation of alpha2MSR. By contrast, alpha2M* does not bind to nor induce intracellular signaling in PC-3 cells, even though 1-LN cells were subcloned from PC-3 cells. We suggest that alpha2M* behaves like a growth factor in these highly malignant cells. The 1-LN metastatic phenotype may result, in part, from aberrant expression of alpha2MSR, indicating the possible involvement of alpha2M* in tumor progression.  相似文献   

17.
18.
Stromal cell-derived growth factor-1alpha (SDF-1alpha) is a member of the CXC chemokines and interacts with the G protein, seven-transmembrane CXCR4 receptor. SDF-1alpha acts as a chemoattractant for immune and hemopoietic cells. The Tac1 gene encodes peptides belonging to the tachykinin family with substance P being the predominant member. Both SDF-1alpha and Tac1 peptides are relevant hemopoietic regulators. This study investigated the effects of SDF-1alpha on Tac1 expression in the major hemopoietic supporting cells, the bone marrow stroma, and addresses the consequence to hemopoiesis. Reporter gene assays with the 5' flanking region of Tac1 showed a bell-shaped effect of SDF-1alpha on luciferase activity with 20 ng/ml SDF-1alpha acting as stimulator, whereas 50 and 100 ng/ml SDF-1alpha acted as inhibitors. Gel shift assays and transfection with wild-type and mutant IkappaB indicate NF-kappaB as a mediator in the repressive effects at 50 and 100 ng/ml SDF-1alpha. Northern analyses and ELISA showed correlations among reporter gene activities, mRNA (beta-preprotachykinin I), and protein levels for substance P. Of relevance is the novel finding by long-term culture-initiating cell assays that showed an indirect effect of SDF-1alpha on hemopoiesis through substance P production. The results also showed neurokinin 1 and not neurokinin 2 as the relevant receptor. Another crucial finding is that substance P does not regulate the production of SDF-1alpha in stroma. The studies indicate that SDF-1alpha levels above baseline production in bone marrow stroma induce the production of substance P to stimulate hemopoiesis. Substance P, however, does not act as autocrine stimulator to induce the production of SDF-1alpha. This study adds SDF-1alpha as a mediator within the neural-immune-hemopoietic axis.  相似文献   

19.
In vitro exposure of murine bone marrow cells to increasing concentrations of zidovudine (AZT, 0.1-50 microM) had a concentration dependent suppressive effect on the growth of granulocyte-monocyte colony forming unit (CFU-GM) derived colonies. In our previous published study, the mechanism of AZT-induced suppression of erythroid colony forming unit (CFU-E) derived colonies was linked to a decrease in erythropoitin receptor (Epo-R) gene expression. In this study, we have observed that AZT exposure also induced a concentration dependent suppressive effect (35-90%) on GM-CSF receptor type alpha (GM-CSFR alpha) gene expression. The suppression of GM-CSFR alpha mRNA expression was specific, since AZT caused a much lower decrease (15-22%) on the IL-3 receptor type alpha (IL-3R alpha) message level, and had an insignificant effect on glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and c-myc message levels. Erythropoietin (Epo) therapy has been used for reversal of AZT induced erythroid toxicity. Exposure to increasing concentrations (10-500 U/ml) of GM-CSF was unable to override the suppressive effect of AZT on CFU-GM derived colonies, however, treatment in combination with IL-3 (10-250 U/ml) ameliorated the suppressive effects of AZT on CFU-GM and on GM-CSFR alpha and IL-3R alpha gene expression. These findings suggest a mechanism via which AZT may suppress granulocyte-monocyte specific differentiation in murine bone marrow cells. These data also suggest that a combination of GM-CSF and IL-3 may be a superior therapeutic intervention for AZT-induced neutropenia.  相似文献   

20.
This study was designed to examine the expression and function of IL-2R on murine macrophages. We used a model system of murine macrophage cell lines (ANA-1 and GG2EE) that was established by infecting normal murine bone marrow-derived cells with the J2 (v-raf/v-myc) recombinant murine retrovirus. ANA-1 macrophages did not constitutively express detectable levels of mRNA for the p55, IL-2R alpha. However, a brief exposure to IFN-gamma was sufficient to induce IL-2R alpha mRNA in ANA-1 macrophages. Flow cytometric analysis indicated that ANA-1 macrophages expressed low constitutive levels of IL-2R alpha on their cell surface that were augmented after treatment of the cells with IFN-gamma. Affinity binding and cross-linking of [125I]IL-2 to ANA-1 macrophages demonstrated that IL-2R alpha and the p70-75, IL-2R beta were both present on ANA-1 macrophages constitutively. IFN-gamma increased the expression of IL-2R alpha on ANA-1 macrophages but did not increase the expression of IL-2R beta on these macrophages. Although IL-2 alone did not induce the tumoricidal activity of ANA-1 macrophages, IL-2 acted synergistically with IFN-gamma to induce macrophage tumoricidal activity. These data demonstrate the expression of IL-2R on murine macrophage cell lines and establish the role of IL-2 as a costimulator of macrophage-mediated tumoricidal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号