首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a myocardial disease characterized by fibro-fatty replacement of right ventricular free wall myocardium and life-threatening ventricular arrhythmias. A missense mutation, c.1073C>T (p.S358L) in the transmembrane protein 43 (TMEM43) gene, has been genetically identified to cause ARVC type 5 in a founder population from Newfoundland. It is unclear whether this mutation occurs in other populations outside of this founder population or if other variants of TMEM43 are associated with ARVC disease. We sought to identify non-Newfoundland individuals with TMEM43 variants among patient samples sent for genetic assessment for possible ARVC. Of 195 unrelated individuals with suspected ARVC, mutation of desmosomal proteins was seen in 28 and the p.S358L TMEM43 mutation in six. We identified a de novo p.S358L mutation in a non-Newfoundland patient and five separate rare TMEM43 (four novel) sequence variants in non-Newfoundland patients, each occurring in an evolutionarily conserved amino acid. TMEM43 mutations occur outside of the founder population of the island of Newfoundland where it was originally described. TMEM43 sequencing should be incorporated into clinical genetic testing for ARVC patients.  相似文献   

2.

Background

Desmin-related myopathy (DRM) is an autosomally inherited skeletal and cardiac myopathy, mainly caused by dominant mutations in the desmin gene (DES). We describe new families carrying the p.S13F or p.N342D DES mutations, the cardiac phenotype of all carriers, and the founder effects.

Methods

We collected the clinical details of all carriers of p.S13F or p.N342D. The founder effects were studied using genealogy and haplotype analysis.

Results

We identified three new index patients carrying the p.S13F mutation and two new families carrying the p.N342D mutation. In total, we summarised the clinical details of 39 p.S13F carriers (eight index patients) and of 21 p.N342D carriers (three index patients). The cardiac phenotype of p.S13F carriers is fully penetrant and severe, characterised by cardiac conduction disease and cardiomyopathy, often with right ventricular involvement. Although muscle weakness is a prominent and presenting symptom in p.N342D carriers, their cardiac phenotype is similar to that of p.S13F carriers. The founder effects of p.S13F and p.N342D were demonstrated by genealogy and haplotype analysis.

Conclusion

DRM may occur as an apparently isolated cardiological disorder. The cardiac phenotypes of the DES founder mutations p.S13F and p.N342D are characterised by cardiac conduction disease and cardiomyopathy, often with right ventricular involvement.

Electronic supplementary material

The online version of this article (doi:10.1007/s12471-011-0233-y) contains supplementary material, which is available to authorized users.  相似文献   

3.

Background

Recently, we showed that the c.40_42delAGA (p.Arg14del) mutation in the phospholamban (PLN) gene can be identified in 10–15 % of Dutch patients with dilated cardiomyopathy or arrhythmogenic cardiomyopathy. The arrhythmogenic burden of the p.Arg14del mutation was illustrated by the high rate of appropriate ICD discharges and a positive family history for sudden cardiac death.

Methods

Our goal was to evaluate the geographical distribution and the origin of this specific mutation in the Netherlands and to get an estimation of the prevalence in a Dutch population cohort. Therefore, we investigated the postal codes of the places of residence of PLN p.Arg14del mutation carriers and places of birth of their ancestors. In addition, a large population-based cohort (PREVEND) was screened for the presence of this mutation.

Results

By April 2012, we had identified 101 probands carrying the PLN p.Arg14del mutation. A total of 358 family members were also found to carry this mutation, resulting in a total of 459 mutation carriers. The majority of mutation carriers live in the northern part of the Netherlands and analysing their grandparents’ places of birth indicated that the mutation likely originated in the eastern part of the province of Friesland. In the PREVEND cohort we identified six heterozygous PLN p.Arg14del mutation carriers out of 8,267 subjects (0.07 %).

Conclusion

The p.Arg14del mutation in the PLN gene is the most frequently identified mutation in Dutch cardiomyopathy patients. The mutation that arose 575–825 years ago is likely to have originated from the eastern part of the province of Friesland and is highly prevalent in the general population in the northern part of the Netherlands.  相似文献   

4.
Hereditary motor and sensory neuropathy type 1X (HMSN 1X) is the second most frequent form of demyelinating polyneuropathies and is caused by mutations in the gene for connexin 32 protein (Cx32, GJB1). The contribution of HMSN 1X to the structure of HMSN in the Republic of Bashkortostan was determined. The GJB1 mutations were detected in 18 out of 131 unrelated patients, which constituted 13.7%. The four missense mutations identified were represented by: p.Pro87Ala (c.259C > G) with the frequency of 10%; p.Arg22Gln (c.65G > A) (2.98%); p.Arg15Gln (c.44G > A); and p.Thr86Ile (c.257C > T) (0.8%). The latter mutation was never described before. The frequent mutation p.Pro87Ala was tested for linkage disequilibrium with the alleles of five polymorphic microsatellite DNA loci associated with the GJB1. It was demonstrated that 10 out of 13 chromosomes carrying the mutation mentioned had common DXS8111-DXS983-DXS8107-DXS8052 haplotype. This finding suggested the distribution of this mutation on the territory of the Republic of Bashkortostan as a result of the founder effect. The mutational spectrum of GJB1 and mutation frequencies observed in the HMSN 1X patients examined were characterized by ethnic heterogeneity. This finding will provide development of most optimal algorithm of the HMSN DNA diagnostics in the region.  相似文献   

5.
Mutations in the lamin A/C gene (LMNA) were associated with dilated cardiomyopathy (DCM) and, recently, were related to severe forms of arrhythmogenic right ventricular cardiomyopathy (ARVC). Both genetic and phenotypic overlap between DCM and ARVC was observed; molecular pathomechanisms leading to the cardiac phenotypes caused by LMNA mutations are not yet fully elucidated. This study involved a large Italian family, spanning 4 generations, with arrhythmogenic cardiomyopathy of different phenotypes, including ARVC, DCM, system conduction defects, ventricular arrhythmias, and sudden cardiac death. Mutation screening of LMNA and ARVC-related genes PKP2, DSP, DSG2, DSC2, JUP, and CTNNA3 was performed. We identified a novel heterozygous mutation (c.418_438dup) in LMNA gene exon 2, occurring in a highly conserved protein domain across several species. This newly identified variant was not found in 250 ethnically-matched control subjects. Genotype-phenotype correlation studies suggested a co-segregation of the LMNA mutation with the disease phenotype and an incomplete and age-related penetrance. Based on clinical, pedigree, and molecular genetic data, this mutation was considered likely disease-causing. To clarify its potential pathophysiologic impact, functional characterization of this LMNA mutant was performed in cultured cardiomyocytes expressing EGFP-tagged wild-type and mutated LMNA constructs, and indicated an increased nuclear envelope fragility, leading to stress-induced apoptosis as the main pathogenetic mechanism. This study further expands the role of the LMNA gene in the pathogenesis of cardiac laminopathies, suggesting that LMNA should be included in mutation screening of patients with suspected arrhythmogenic cardiomyopathy, particularly when they have ECG evidence for conduction defects. The combination of clinical, genetic, and functional data contribute insights into the pathogenesis of this form of life-threatening arrhythmogenic cardiac laminopathy.  相似文献   

6.
The primary structure of the APC gene DNA was examined in 108 patients younger than 45 years old diagnosed with “familial adenomatous polyposis, classic form” using PCR, conformation-sensitive electrophoresis, and Sanger sequencing. Mutations in the APC gene were observed in 78 patients; de novo mutations were observed in 17 cases. In the majority of cases (n = 45), patients exhibited frameshift mutations, 28 patients had nonsense mutations, and other 5 patients showed splicing mutations. We also revealed recurring variants: p.Arg232X (2 cases), p.Asp849GlufsX11 (2), p.Ser1068GlyfsX57 (2), p.Arg216X (3), p.Gln1062X (5), p.Arg213X (5), and p.Glu1309AspfsX4 (16). It was shown that, compared with other pathogenic variants in the APC gene in Russian patients, mutation p.Glu1309AspfsX4 does not result in earlier development of colorectal cancer and polyps. Nineteen mutations were described for the first time. The identified mutations were located between codons 142 and 1492 of the APC gene. This indicates the importance of investigation of all the gene coding exons. Pathogenic variants were observed in 16 of 35 studied relatives of the mutation carriers. All 16 relatives were included in the “risk group” for lifelong clinical monitoring.  相似文献   

7.
Retinoblastoma (Rb), the most common pediatric intraocular neoplasm, results from inactivation of both alleles of the RB1 tumor suppressor gene. The second allele is most commonly lost, as demonstrated by loss of heterozygosity studies. RB1 germline carriers usually develop bilateral tumors, but some Rb families display low penetrance and variable expressivity. In order to decipher the underlying mechanisms, 23 unrelated low penetrance pedigrees segregating the common c.1981C>T/p.Arg661Trp mutation and other low penetrance mutations were studied. In families segregating the c.1981C>T mutation, we demonstrated, for the first time, a correlation between the gender of the transmitting carrier and penetrance, as evidenced by Fisher’s exact test: the probability of being unaffected is 90.3% and 32.5% when the mutation is inherited from the mother and the father, respectively (p-value = 7.10−7). Interestingly, a similar correlation was observed in families segregating other low penetrance alleles. Consequently, we investigated the putative involvement of an imprinted, modifier gene in low penetrance Rb. We first ruled out a MED4-driven mechanism by MED4 methylation and expression analyses. We then focused on the differentially methylated CpG85 island located in intron 2 of RB1 and showing parent-of-origin-specific DNA methylation. This differential methylation promotes expression of the maternal c.1981C>T allele. We propose that the maternally inherited c.1981C>T/p.Arg661Trp allele retains sufficient tumor suppressor activity to prevent retinoblastoma development. In contrast, when the mutation is paternally transmitted, the low residual activity would mimic a null mutation and subsequently lead to retinoblastoma. This implies that the c.1981C>T mutation is not deleterious per se but needs to be destabilized in order to reach pRb haploinsufficiency and initiate tumorigenesis. We suggest that this phenomenon might be a general mechanism to explain phenotypic differences in low penetrance Rb families.  相似文献   

8.

Background

About 2-7% of familial cardiomyopathy cases are caused by a mutation in the gene encoding cardiac troponin I (TNNI3). The related clinical phenotype is usually severe with early onset. Here we report on all currently known mutations in the Dutch population and compared these with those described in literature.

Methods

TheTNNI3 gene was screened for mutations in all coding exons and flanking intronic sequences in a large cohort of cardiomyopathy patients. All Dutch index cases carrying a TNNI3 mutation that are described in this study underwent extensive cardiological evaluation and were listed by their postal codes.

Results

In 30 families, 14 different mutations were identified. Three TNNI3 mutations were found relatively frequently in both familial and non-familial cases of hypertrophic cardiomyopathy (HCM) or restrictive cardiomyopathy (RCM). Haplotype analysis showed that p.Arg145Trp and p.Ser166Phe are founder mutations in the Netherlands, while p.Glu209Ala is not. The majority of Dutch TNNI3 mutations were associated with a HCM phenotype. Mean age at diagnosis was 36.5 years. Mutations causing RCM occurred less frequently, but were identified in very young children with a poor prognosis.

Conclusion

In line with previously published data, we found TNNI3 mutations to be rare and associated with early onset and severe clinical presentation.  相似文献   

9.
Rare germline mutations in TP53 (17p13.1) cause a highly penetrant predisposition to a specific spectrum of early cancers, defining the Li-Fraumeni Syndrome (LFS). A germline mutation at codon 337 (p.Arg337His, c1010G>A) is found in about 0.3% of the population of Southern Brazil. This mutation is associated with partially penetrant LFS traits and is found in the germline of patients with early cancers of the LFS spectrum unselected for familial history. To characterize the extended haplotypes carrying the mutation, we have genotyped 9 short tandem repeats on chromosome 17p in 12 trios of Brazilian p.Arg337His carriers. Results confirm that all share a common ancestor haplotype of Caucasian/Portuguese-Iberic origin, distant in about 72–84 generations (2000 years assuming a 25 years intergenerational distance) and thus pre-dating European migration to Brazil. So far, the founder p.Arg337His haplotype has not been detected outside Brazil, with the exception of two residents of Portugal, one of them of Brazilian origin. On the other hand, increased meiotic recombination in p.Arg337His carriers may account for higher than expected haplotype diversity. Further studies comparing haplotypes in populations of Brazil and of other areas of Portuguese migration are needed to understand the historical context of this mutation in Brazil.  相似文献   

10.
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a heart muscle disorder of unknown cause that is characterised by fibrofatty replacement, primarily of the right ventricular myocardium, which can lead to life-threatening arrhythmias. It is a disease with a very diverse phenotype. In the present article we describe two sisters, each with a different manifestation of this disorder. The first patient died suddenly at the age of 18 during exercise. Her 17-year-old sister did not have any abnormalities at first cardiac consultation, but a few years later she met several diagnostic criteria for ARVC and an internal cardioverter defibrillator was implanted. Genetic analysis identified a mutation in the plakophilin- 2 (PKP2) gene. Cardiac evaluation of a third sister did not reveal any abnormalities and no mutation in the PKP2 gene was found. Thus, ARVC can vary in its clinical presentation, not only between siblings but also in time. This raises difficulties for the physician for diagnosis, treatment and followup. It is important for the physician involved to consider this disease in patients with palpitations and syncope, especially when there is a family history of ARVC or unexplained sudden death. (Neth Heart J 2007;15:348-53.)  相似文献   

11.
Background. About 30% of dilated cardiomyopathy (DCM) cases are familial. Mutations are mostly found in the genes encoding lamin A/C, beta-myosin heavy chain and the sarcomeric protein cardiac troponin-T (TNNT2). Mutations in TNNT2 are reported in approximately 3% of DCM patients. The overall phenotype caused by TNNT2 mutations is thought to be a fully penetrant, severe disease. This also seems to be true for a recurrent deletion in the TNNT2 gene; p.K217del (also known as p.K210del). Methods. We compared the phenotype of all Dutch patients identified as carrying the TNNT2 p.K217del mutation with those described in the literature. All index patients underwent cardiological evaluation. Family screening was done in all described families. Results. Six DCM patients carrying the TNNT2 p.K217del mutation were identified from four Dutch families. Mean age of disease manifestation was 33 years. Heart transplantation was required in three of them at ages 12, 18 and 19 years. These outcomes are comparable with those described in the literature. Conclusion. Carriers of the TNNT2 p.K217del mutation in our Dutch families, as well as in families described in the literature before, generally show a severe, early-onset form of DCM. (Neth Heart J 2010;18:478-85.)  相似文献   

12.
In this part of a series on cardiogenetic founder mutations in the Netherlands, we review the Dutch founder mutations in hypertrophic cardiomyopathy (HCM) patients. HCM is a common autosomal dominant genetic disease affecting at least one in 500 persons in the general population. Worldwide, most mutations in HCM patients are identified in genes encoding sarcomeric proteins, mainly in the myosin-binding protein C gene (MYBPC3, OMIM #600958) and the beta myosin heavy chain gene (MYH7, OMIM #160760). In the Netherlands, the great majority of mutations occur in the MYBPC3, involving mainly three Dutch founder mutations in the MYBPC3 gene, the c.2373_2374insG, the c.2864_2865delCT and the c.2827C>T mutation. In this review, we describe the genetics of HCM, the genotype-phenotype relation of Dutch founder MYBPC3 gene mutations, the prevalence and the geographic distribution of the Dutch founder mutations, and the consequences for genetic counselling and testing. (Neth Heart J 2010;18:248-54.)  相似文献   

13.
Left ventricular outflow tract obstruction (LVOTO) comprises a spectrum of stenotic lesions. Previous studies have shown that the vascular endothelial growth factor (VEGF) signaling system plays a critical role in cardiac cushion formation, vasculogenesis, and angiogenesis. We hypothesize that VEGFA may be a potential candidate gene associated with the spectrum of LVOTO lesions. However, it remains unclear whether the VEGFA gene is responsible for the development of LVOTO malformations. In this study, we identified three exon mutations in the VEGFA gene in three of 192 nonsyndromic LVOTO patients, and the overall mutation frequency was 1.6% (3/192). The c.454C>T (p.Arg152X) nonsense mutation and c.19_22dupGACA (p.Thr8ArgfsX78) internal tandem duplication mutation each introduced a premature stop codon and are predicted to produce a truncated VEGFA protein. The c.998G>A missense mutation changes a highly conserved arginine to a glutamine at residue 333 (p.Arg333Gln). These mutations were carried by some family members, and average penetrance was 33.3%. The present study suggests, for the first time to our knowledge, that VEGFA mutations may be associated with congenital LVOTO malformations. We provide evidence that LVOTO is likely oligogenic.  相似文献   

14.
Nearly every ciliated organism possesses three B9 domain-containing proteins: MKS1, B9D1, and B9D2. Mutations in human MKS1 cause Meckel syndrome (MKS), a severe ciliopathy characterized by occipital encephalocele, liver ductal plate malformations, polydactyly, and kidney cysts. Mouse mutations in either Mks1 or B9d2 compromise ciliogenesis and result in phenotypes similar to those of MKS. Given the importance of these two B9 proteins to ciliogenesis, we examined the role of the third B9 protein, B9d1. Mice lacking B9d1 displayed polydactyly, kidney cysts, ductal plate malformations, and abnormal patterning of the neural tube, concomitant with compromised ciliogenesis, ciliary protein localization, and Hedgehog (Hh) signal transduction. These data prompted us to screen MKS patients for mutations in B9D1 and B9D2. We identified a homozygous c.301A>C (p.Ser101Arg) B9D2 mutation that segregates with MKS, affects an evolutionarily conserved residue, and is absent from controls. Unlike wild-type B9D2 mRNA, the p.Ser101Arg mutation failed to rescue zebrafish phenotypes induced by the suppression of b9d2. With coimmunoprecipitation and mass spectrometric analyses, we found that Mks1, B9d1, and B9d2 interact physically, but that the p.Ser101Arg mutation abrogates the ability of B9d2 to interact with Mks1, further suggesting that the mutation compromises B9d2 function. Our data indicate that B9d1 is required for normal Hh signaling, ciliogenesis, and ciliary protein localization and that B9d1 and B9d2 are essential components of a B9 protein complex, disruption of which causes MKS.  相似文献   

15.
Arrhythmogenic cardiomyopathy, or its most well-known subform arrhythmogenic right ventricular cardiomyopathy (ARVC), is a cardiac disease mainly characterised by a gradual replacement of the myocardial mass by fibrous and fatty tissue, leading to dilatation of the ventricular wall, arrhythmias and progression towards heart failure. ARVC is commonly regarded as a disease of the intercalated disk in which mutations in desmosomal proteins are an important causative factor. Interestingly, the Dutch founder mutation PLN R14Del has been identified to play an additional, and major, role in ARVC patients within the Netherlands. This is remarkable since the phospholamban (PLN) protein plays a leading role in regulation of the sarcoplasmic reticulum calcium load rather than in the establishment of intercellular integrity. In this review we outline the intracellular cardiac calcium dynamics and relate pathophysiological signalling, induced by disturbed calcium handling, with activation of calmodulin dependent kinase II (CaMKII) and calcineurin A (CnA). We postulate a thus far unrecognised role for Ca2+ sensitive signalling proteins in maladaptive remodelling of the macromolecular protein complex that forms the intercalated disk, during pro-arrhythmic remodelling of the heart.  相似文献   

16.
BackgroundDeep vein thrombosis (DVT) genetic predisposition is partially known.ObjectivesThis study aimed at assessing the functional impact of nine ADAMTS13 single nucleotide variants (SNVs) previously reported to be associated as a group with DVT in a burden test and the individual association of selected variants with DVT risk in two replication studies.MethodsWild-type and mutant recombinant ADAMTS13 were transiently expressed in HEK293 cells. Antigen and activity of recombinant ADAMTS13 were measured by ELISA and FRETS-VWF73 assays, respectively. The replication studies were performed in an Italian case-control study (Milan study; 298/298 patients/controls) using a next-generation sequencing approach and in a Dutch case-control study (MEGA study; 4306/4887 patients/controls) by TaqMan assays.ResultsIn vitro results showed reduced ADAMTS13 activity for three SNVs (p.Val154Ile [15%; 95% confidence interval [CI] 14–16], p.Asp187His [19%; 95%[CI] 17–21], p.Arg421Cys [24%; 95%[CI] 22–26]) similar to reduced plasma ADAMTS13 levels of patients carriers for these SNVs. Therefore these three SNVs were interrogated for risk association. The first replication study identified 3 heterozygous carriers (2 cases, 1 control) of p.Arg421Cys (odds ratio [OR] 2, 95%[CI] 0.18–22.25). The second replication study identified 2 heterozygous carriers (1 case, 1 control) of p.Asp187His ([OR] 1.14, 95%[CI] 0.07–18.15) and 10 heterozygous carriers (4 cases, 6 controls) of p.Arg421Cys ([OR] 0.76, 95%[CI] 0.21–2.68).ConclusionsThree SNVs (p.Val154Ile, p.Asp187His and p.Arg421Cys) showed reduced ex vivo and in vitro ADAMTS13 levels. However, the low frequency of these variants makes it difficult to confirm their association with DVT.  相似文献   

17.
In this part of a series on founder mutations in the Netherlands, we review a Dutch family carrying the SCN5a 1795insD mutation. We describe the advances in our understanding of the premature sudden cardiac deaths that have accompanied this family in the past centuries. The mutation carriers show a unique overlap of long-QT syndrome (type 3), Brugada syndrome and progressive cardiac conduction defects attributed to a single mutation in the cardiac sodium channel gene SCN5a. It is at present one of the largest and best-described families worldwide and we have learned immensely from the mouse strains with the murine homologue of the SCN5a 1795insD mutation (SCN5a 1798insD). From the studies currently performed we are about to obtain new insights into the phenotypic variability in this monogenic arrhythmia syndrome, and this might also be relevant for other arrhythmia syndromes and the general population. (Neth Heart J 2009;17:422–8.)  相似文献   

18.

Background

Mutations in the mitochondrial tyrosyl-tRNA synthetase (YARS2) gene have previously been identified as a cause of the tissue specific mitochondrial respiratory chain (RC) disorder, Myopathy, Lactic Acidosis, Sideroblastic Anaemia (MLASA). In this study, a cohort of patients with a mitochondrial RC disorder for who anaemia was a feature, were screened for mutations in YARS2.

Methods

Twelve patients were screened for YARS2 mutations by Sanger sequencing. Clinical data were compared. Functional assays were performed to confirm the pathogenicity of the novel mutations and to investigate tissue specific effects.

Results

PathogenicYARS2 mutations were identified in three of twelve patients screened. Two patients were found to be homozygous for the previously reported p.Phe52Leu mutation, one severely and one mildly affected. These patients had different mtDNA haplogroups which may contribute to the observed phenotypic variability. A mildly affected patient was a compound heterozygote for two novel YARS2 mutations, p.Gly191Asp and p.Arg360X. The p.Gly191Asp mutation resulted in a 38-fold loss in YARS2 catalytic efficiency and the p.Arg360X mutation did not produce a stable protein. The p.Phe52Leu and p.Gly191Asp/p.Arg360X mutations resulted in more severe RC deficiency of complexes I, III and IV in muscle cells compared to fibroblasts, but had relatively normal YARS2 protein levels. The muscle-specific RC deficiency can be related to the increased requirement for RC complexes in muscle. There was also a failure of mtDNA proliferation upon myogenesis in patient cells which may compound the RC defect. Patient muscle had increased levels of PGC1-α and TFAM suggesting mitochondrial biogenesis was activated as a potential compensatory mechanism.

Conclusion

In this study we have identified novel YARS2 mutations and noted marked phenotypic variability among YARS2 MLASA patients, with phenotypes ranging from mild to lethal, and we suggest that the background mtDNA haplotype may be contributing to the phenotypic variability. These findings have implications for diagnosis and prognostication of the MLASA and related phenotypes.
  相似文献   

19.
Hereditary paraganglioma type 1 (PGL1) is characterized by slow-growing and vascularized tumors that often develop in the carotid body (CB) and is caused by mutations in the gene for succinate dehydrogenase D (SDHD) of mitochondrial complex II. The mechanisms of tumorigenesis and the factors affecting penetrance and expressivity are unknown. Because chronic hypoxic stimulation at high altitudes causes sporadic CB paragangliomas, it has been hypothesized that the SDHD gene product may be involved in oxygen sensing. On this background, we examined genotype-phenotype-environment relationships and tested whether higher altitudes adversely affect the phenotype in PGL1. An analysis of 58 subjects from 23 families revealed that nonsense/splicing mutation carriers developed symptoms 8.5 years earlier than missense mutation carriers (P<0.012). We also found that subjects who were diagnosed with single tumors at their first clinical evaluation lived at lower average altitudes and were exposed to lower altitude-years than those with multiple tumors (P<0.012). Pheochromocytomas developed in six subjects (approximately 10%), five of whom had nonsense mutations (P=0.052). Subjects with pheochromocytomas also lived at higher average altitudes and were exposed to higher altitude-years than those without them (P=0.026). To test whether altitude is also associated with the more frequent detection of germ-line founder mutations among sporadic cases in The Netherlands than in the USA (P=0.00033), we calculated population-weighted elevations of the two countries. We found that the population-weighted elevations were approximately 260 m for the US and 2 m for the central-western Netherlands (P~0), where three Dutch founder mutations were discovered. This finding suggests that low altitudes in The Netherlands reduce penetrance and relax the natural selection on SDHD mutations. Collectively, these data suggest that higher altitudes and nonsense/splicing mutations are associated with phenotypic severity in PGL1 and support the hypothesis that SDHD mutations impair oxygen sensing.  相似文献   

20.
BackgroundArrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart disease that causes heart failure and/or sudden cardiac death. Several desmosomal genes (DSC2, PKG, PKP2, DSP, and RyR2) are thought to be the causative gene involved in ARVC. Out of them, DSC2 mutations account for 2% of ARVC genetic abnormalities. This study aimed to clarify the effect of G790del mutation in DSC2 on the arrhythmogenic mechanism and cardiac function in a mouse model.ResultNeither the heterozygous +/G790del nor homozygous G790del/G790del mice showed structural and functional defects in the right ventricle (RV) or lethal arrhythmia. The homozygous G790del/G790del 6-month-old mice slightly showed left ventricular (LV) dysfunction. Cell shortening decreased with prolongation of intracellular Ca2+ transient in cardiomyocytes isolated from the homozygous G790del/G790del mice, and spontaneous Ca2+ transients were frequently observed in response to isoproterenol.ConclusionsG790del mutation in DSC2 was not relevant to the pathogenesis of ARVC, but showed a slight contractile dysfunction and Ca2+ dysregulation in the LV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号