首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimal operational factors for nitrite accumulation in batch reactors   总被引:12,自引:0,他引:12  
Bae W  Baek S  Chung J  Lee Y 《Biodegradation》2001,12(5):359-366
The environmental factors that affected the accumulation of nitrite in nitrifying reactors were investigated using a mixed culture. A batch reactor with 50 mg-N/l of ammonia was used. The pH, temperature and dissolved oxygen concentration were varied. The concentration of unionized free ammonia also changed with the oxidation of ammonia and the variation of pH and temperature. The accumulation of nitrite was affected sensitively by pH and temperature. A higher nitrite concentration was observed at pH 8-9 or temperature around 30 °C. The dissolved oxygen also affected, giving the highest nitrite accumulation at around 1.5 mg/l. These were the favoredconditions for nitrite production. The free ammonia concentration influenced thenitrite accumulation also, by inhibiting nitrite oxidation. The inhibition becameapparent at a concentration of approximately 4 mg/l or above, but insignificant atbelow 1 mg/l. Thus, simultaneously high free ammonia concentration and maximumspecific ammonia-oxidation rate (above 15 × 10-3 mg-N/mg-VSSh)were needed for a significant nitrite accumulation. When the two conditions were met, thenthe highest accumulation was observed when the ratio of the maximum specific oxidationrate of ammonia to the maximum specific oxidation rate of nitrite (ka/kn) was highest.Under the optimal operating conditions of pH 8, 30 °C and 1.5 mg/l of dissolvedoxygen, as much as 77% of the removed ammonia accumulated in nitrite.  相似文献   

2.
The present paper reports the results of the application of a control system, based on artificial intelligence concepts, for the automation of a bench-scale SBR treating leachate generated in old landfills. Attention was given to the nitritation and denitritation processes in order to enhance the nitrogen removal efficiency. Nitrification and nitrogen removal were usually higher than 98% and 95%, respectively, whereas COD removal was approximately 20-30% due to the low biodegradability of organic matter in the leachate from old landfills; therefore, external COD was added to accomplish the denitrification process. Adjusting the length of the oxic phase, almost complete inhibition of the nitrite oxidizing organisms was observed. The results confirm the effectiveness of the nitrite route for nitrogen removal optimisation in leachate treatment. A significant saving of approximately 35% in external COD addition was achieved.  相似文献   

3.
The effect of hydraulic selection pressure on the development of nitrifying granules was investigated in four column-type sequencing batch reactors (SBR). The nature of SBR is cycle operation, thus SBR cycle time can serve as a main hydraulic selection pressure imposed on the microbial community in the system. No nitrifying granulation was observed in the SBR operated at the longest cycle time of 24 h, due to a very weak hydraulic selection pressure, while the washout of nitrifying sludge was found in the SBR run at the shortest cycle time of 3 h, and led to a failure of nitrifying granulation. Excellent nitrifying granules with a mean diameter of 0.25 mm and specific gravity of 1.014 were developed in a SBR operated at cycle times of 6 h and 12 h, respectively. The results further showed that a short cycle time would stimulate microbial activity, production of cell polysaccharides and also improve the cell hydrophobicity. These hydraulic selection pressure-induced microbial changes favour the formation of nitrifying granules. This work, probably for the first time, shows that nitrifying granules can be developed at a proper hydraulic selection pressure in terms of SBR cycle time. Nitrifying granulation is a novel biotechnology which has a great potential for wastewater nitrification.  相似文献   

4.
The cultivation of stable aerobic granules as well as granular structure and stability in sequencing batch reactors under different shear force were investigated in this study. Four column sequencing batch reactors (R1–R4) were operated under various shear force, in terms of superficial upflow air velocity of 0.8, 1.6, 2.4, and 3.2 cm s−1, respectively. Aerobic granules were formed in all reactors in the experiment. It was found that the magnitude of shear force has an important impact on the granule stability. At shear force of 2.4 and 3.2 cm s−1, granules can maintain a robust structure and have the potential of long-term operation. Granules developed in low shear force (R1, 0.8 cm s−1 and R2, 1.6 cm s−1) deteriorated to large-sized filamentous granules with irregular shape, loose structure and resulted in poor performance and operation instability. Granules cultivated under high shear force (R3, 2.4 cm s−1 and R4, 3.2 cm s−1) stabilized to clear outer morphology, dense and compact structure, and with good performance in 120 days operation. Fractal dimension (Df) represents the internal structure of granules and can be used as an important indicator to describe the structure and stability of granules. Due to the combined effects of shear force and growth force, the mature granules developed in R3 and R4 also displayed certain differences in granular structure and characteristics.  相似文献   

5.
A laboratory scale experiment was described in this paper to enhance biological nitrogen removal by simultaneous nitrification and denitrification (SND) via nitrite with a sequencing batch biofilm reactor (SBBR). Under conditions of total nitrogen (TN) about 30 mg/L and pH ranged 7.15–7.62, synthetic wastewater was cyclically operated within the reactor for 110 days. Optimal operation conditions were established to obtain consistently high TN removal rate and nitrite accumulation ratio, which included an optimal temperature of 31 °C and an aeration time of 5 h under the air flow of 50 L/h. Stable nitrite accumulation could be realized under different temperatures and the nitrite accumulation ratio increased with an increase of temperature from 15 to 35 °C. The highest TN removal rate (91.9%) was at 31 °C with DO ranged 3–4 mg/L. Process control could be achieved by observing changes in DO and pH to judge the end-point of oxidation of ammonia and SND.  相似文献   

6.
Growth kinetics of aerobic granules developed in sequencing batch reactors   总被引:8,自引:0,他引:8  
AIMS: This paper attempts to develop a kinetic model to describe the growth of aerobic granules developed under different operation conditions. METHODS AND RESULTS: A series of experiments were conducted by using four-column sequencing batch reactors to study the formation of aerobic granules under different conditions, e.g. organic loading rates, hydrodynamic shear forces and substrate N/COD ratios. A simple kinetic model based on the Linear Phenomenological Equation was successfully derived to describe the growth of aerobic granules. It was found that the growth of aerobic granules in terms of equilibrium size and size-dependent growth rate were inversely related to shear force imposed to microbial community, while a high organic loading favoured the growth of aerobic granules, leading to a large size granule. The effect of substrate N/COD ratio on the growth kinetics of aerobic granules was realized through change in microbial populations, and enriched nitrifying population in aerobic granules developed at high substrate N/COD ratio resulted in a low overall growth rate of aerobic granules. CONCLUSIONS: The proposed model can provide good prediction for the growth of aerobic granules indicated by the correlation coefficient >0.95. SIGNIFICANCE AND IMPACT OF THE STUDY: The kinetic model proposed could offer a useful tool for studying the growth kinetics of cell-to-cell immobilization process. The study confirmed that the growth of aerobic granules and biofilms are subject to a similar kinetic pattern. This work would also be helpful for better understanding the mechanism of aerobic granulation.  相似文献   

7.
The present investigation examines the way to enhance aerobic granulation by controlling the microbial communities via applying different settling times. Early granulation of aerobic granules is noticeable at a settling time of 5 min. The functional strains are enriched in granules without challenge of non-flocculating strains. Short settling times at initial stage principally determine the efficiency of subsequent granulation processes.  相似文献   

8.
The biofilm airlift suspension (BAS) reactor can treat wastewater at a high volumetric loading rate combined with a low sludge loading. Two BAS reactors were operated, with an ammonium load of 5 kg N/(m(3) d), in order to study the influence of biomass and oxygen concentration on the nitrification process. After start-up the nitrifying biomass in the reactors gradually increased up to 30 g VSS/L. Due to this increased biomass concentration the gas-liquid mass transfer coefficient was negatively influenced. The resulting gradual decrease in dissolved oxygen concentration (over a 2-month period) was associated with a concomitantly nitrite build-up. Short term experiments showed a similar relation between dissolved oxygen concentration (DO) and nitrite accumulation. It was possible to obtain full ammonium conversion with approximately 50% nitrate and 50% nitrite in the effluent. The facts that (i) nitrite build up occurred only when DO dropped, (ii) the nitrite formation was stable over long periods, and (iii) fully depending on DO levels in short term experiments, led to the conclusion that it was not affected by microbial adaptations but associated with intrinsic characteristics of the microbial growth system. A simple biofilm model based on the often reported difference of oxygen affinity between ammonium and nitrite oxydizers was capable of adequately describing the phenomena.Measurements of biomass density and concentration are critical for the interpretation of the results, but highly sensitive to sampling procedures. Therefore we have developed an independent method, based on the residence time of Dextran Blue, to check the experimental methods. There was a good agreement between procedures.The relation between biomass concentration, oxygen mass transfer rate and nitrification in a BAS reactor is discussed. (c) 1997 John Wiley & Sons, Inc.  相似文献   

9.
Phosphorus (P)-accumulating microbial granules were developed at different substrate P/chemical oxygen demand (COD) ratios in the range of 1/100 to 10/100 by weight in sequencing batch reactors. The soluble COD and PO4-P profiles showed that the granules had typical P-accumulating characteristics, with concomitant uptake of soluble organic carbon and the release of phosphate in the anaerobic stage, followed by rapid phosphate uptake in the aerobic stage. The size of P-accumulating granules exhibited a decreasing trend with the increase in substrate P/COD ratio, while the structure of the granules became more compact and denser as the substrate P/COD ratio increased. The P uptake by granules fell within the range of 1.9% to 9.3% by weight, which is comparable with uptake obtained in conventional enhanced biological phosphorus removal (EBPR) processes. It was further found that low aerobic respirometric activity of granules in terms of specific oxygen utilization rate favors P uptake by granules. The results presented would be useful for the further development of a novel granule-based EBPR technology.  相似文献   

10.
In this study, anammox bacteria were rapidly enriched in sequencing batch biofilm reactors (SBBRs) with different inoculations. The activated sludge taken from a sequencing batch reactor was used and inoculated to SBBR1, while SBBR2 was seeded with stored anaerobic sludge from an upflow anaerobic fixed bed (2-year stored at 5–15 °C). Nitrogen removal performance, anammox activity, biofilm characteristics and variation of the microbial community were evaluated. The maximum total nitrogen loading rate (NLR) of SBBR1 gradually reached to 1.62 kg?N/(m3/day) with a removal efficiency higher than 88 % and the NLR of SBBR2 reached to 1.43 kg?N/(m3/day) with a removal efficiency of 86 %. SBBR2 was more stable compared to SBBR1. These results, combined with molecular techniques such as scanning electron microscope, fluorescence in situ hybridization, and terminal restriction fragment length polymorphism, indicated that different genera of anammox bacteria became dominant. This research also demonstrates that SBBR is a promising bioreactor for starting up and enriching anammox bacteria.  相似文献   

11.
Arsenic is one of the major groundwater contaminants worldwide. It was previously demonstrated that the beta-proteobacterium Cenibacterium arsenoxidans has an efficient As[III] oxidation ability. The present study was conducted to evaluate the performance of alginate-immobilized ULPAs1 in the oxidation of As[III] to As[V] in batch reactors. A two-level full factorial experimental design was applied to investigate the influence of main parameters involved in the oxidation process, i.e., pH (7-8), temperature (4 degrees C-25 degrees C), kind of nutrient media (2%-20% sauerkraut brine), and arsenic concentration (10-100 mg/L). One hundred milligram per liter of As[III] was fully oxidized by calcium-alginate immobilized cells in 1 h. It was found that the temperature as well as the kind of nutrient media used were significant parameters at a 95% confidence interval whereas only temperature was a significant parameter at a 99% confidence interval. The immobilization of the As[III] oxidizing strain in alginate beads offers a promising way to implement new treatment processes in the remediation of arsenic contaminated waters.  相似文献   

12.
Effect of pH and nitrite concentration on nitrite oxidation rate   总被引:1,自引:0,他引:1  
The effect of pH and nitrite concentration on the activity of the nitrite oxidizing bacteria (NOB) in an activated sludge reactor has been determined by means of laboratory batch experiments based on respirometric techniques. The bacterial activity was measured at different pH and at different total nitrite concentrations (TNO?). The experimental results showed that the nitrite oxidation rate (NOR) depends on the TNO? concentration independently of the free nitrous acid (FNA) concentration, so FNA cannot be considered as the real substrate for NOB. NOB were strongly affected by low pH values (no activity was detected at pH 6.5) but no inhibition was observed at high pH values (activity was nearly the same for the pH range 7.5-9.95). A kinetic expression for nitrite oxidation process including switch functions to model the effect of TNO? concentration and pH inhibition is proposed. Substrate half saturation constant and pH inhibition constants have been obtained.  相似文献   

13.
14.
The design and development of the neural network (NN)-based controller performance for the activated sludge process in sequencing batch reactor (SBR) is presented in this paper. Here we give a comparative study of various neural network (NN)-based controllers such as the direct inverse control, internal model control (IMC) and hybrid NN control strategies to maintain the dissolved oxygen (DO) level of an activated sludge system by manipulating the air flow rate. The NN inverse model-based controller with the model-based scheme represents the controller, which relies solely upon the simple NN inverse model. In the IMC, both the forward and inverse models are used directly as elements within the feedback loop. The hybrid NN control consists of a basic NN controller in parallel with a proportional integral (PI) controller. Various simulation tests involving multiple set-point changes, disturbances rejection and noise effects were performed to review the performances of these various controllers. From the results it can be seen that hybrid controller gives the best results in tracking set-point changes under disturbances and noise effects.  相似文献   

15.
Qu Y  Zhou J  Wang J  Fu X  Xing L 《FEMS microbiology letters》2005,246(1):143-149
Sphingomonas xenophaga QYY with the ability to degrade bromoamine acid (BAA) was previously isolated from sludge samples. The enhancement of BAA removal by strain QYY in sequencing batch reactors (SBRs) was investigated in this study. The results showed that augmented SBRs exhibited stronger abilities to degrade BAA than the non-augmented control one. In order to estimate the relationship between community dynamics and function of augmented SBRs, a combined method based on fingerprints (ribosomal intergenic spacer analysis, RISA) and 16S rRNA gene sequencing was used. The results indicated that the microbial community dynamics were substantially changed, and the introduced strain QYY was persistent in the augmented systems. This study suggests that it is feasible and potentially useful to enhance BAA removal using BAA-degrading bacteria, such as S. xenophaga QYY.  相似文献   

16.
Aerobic granular sludge sequencing batch reactors (SBR) are a promising technology for treating wastewater. Increasing evidence suggests that aerobic granulation in SBRs is driven by selection pressures exerted on microorganisms. Three major selection pressures have been identified as follows: settling time, volume exchange ratio and discharge time. This review demonstrates that these three major selection pressures can all be unified to one, the minimal settling velocity of bio-particles, that determines aerobic granulation in SBRs. The unified selection pressure theory is a useful guide for manipulating and optimizing the formation and characteristics of aerobic granules in SBRs. Furthermore, the unified theory provides a single engineering basis for scale up of aerobic granular sludge SBRs.  相似文献   

17.
This paper describes and discusses the main problems related to anaerobic batch and fed-batch processes for wastewater treatment. A critical analysis of the literature evaluated the industrial application viability and proposed alternatives to improve operation and control of this system. Two approaches were presented in order to make this anaerobic discontinuous process feasible for industrial application: (1) optimization of the operating procedures in reactors containing self-immobilized sludge as granules, and (2) design of bioreactors with inert support media for biomass immobilization. Received: 22 May 2000 / Received revision: 20 July 2000 / Accepted: 21 July 2000  相似文献   

18.
Natural zeolite was added to the sequencing batch reactors to assess its role in ammonium exchange. Even though the biofilm was fully developed on the zeolite surface, ammonium removal and the biological regeneration of the zeolite occurred constantly during the anoxic-fill phase and the reaction phase, respectively. However, the specific nitrification rate of the bio-flocculated zeolite was lower than that observed in the control on account of the limited ammonium release to the liquid phase.  相似文献   

19.
The study investigated effect of high influent nitrate concentration on poly-beta-hydroxybutyrate, (PHB), storage in a sequencing batch reactor, (SBR), under anoxic conditions. Acetate was fed as pulse during anoxic phase, sustained with external nitrate feeding. SBR operation involved three runs at steady state with COD/N ratios of 3.84, 2.93 and 1.54 gCOD/gN, where external nitrate concentrations gradually increased from 50 mg N/l to 114 mg N/l and 226 mg N/l, in 1st, 2nd and 3rd runs, respectively. In 1st run, acetate was fully converted into PHB with the storage yield value of 0.57-0.59 gCOD/gCOD, calculated both in terms of PHB formation and NO(X) utilization, confirming storage was the sole substrate utilization mechanism. In the following runs, PHB formation was reduced and the storage yield based on PHB dropped down to 0.40 and 0.33 gCOD/gCOD with increasing influent nitrate concentrations, indicating that higher portions of acetate were diverted to simultaneous direct growth. The observations suggested that nitrite accumulation detected at low COD/N ratios was responsible for inhibition of PHB storage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号