首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus subtilis mutants with null mutations in the spo0 A gene are resistant to oxidative stress during the exponential phase of growth. This resistance phenotype can be suppressed by mutations in the abrB gene, or in the hpr gene. Both of these gene products are negative regulatory proteins which are over-produced in a spo0 A strain, and the over-production of the hpr gene product results from over-production of the abrB gene product. The results suggested that the resistance to oxidative stress in a spo0 A strain is due to the lack of a protein directly controlled by the hpr negative regulator. Other mutations in the spo0 A gene conferring resistance to ethanol stress (eth) or suppressors of sporulation phenotypes (sof) had no effect on the sensitivity to oxidative stress of strains bearing them.  相似文献   

2.
The role of catalase in response of the yeast Saccharomyces cerevisiae to oxidative stress induced by hydrogen peroxide under starvation was investigated. It was shown that under conditions used in this study 0.5 mM H2O2 did not change the number of viable cells in the wild strain YPH250, but this parameter was decreased by 15% in the acatalsaemic strain YWT1. Cells treatment with 0.5 mM H2O2 for 30 min did not modify the levels of carbonyl proteins in the parental strain, but caused its 1.4-fold increase in the defective strain. The observed 1.5-fold activation of catalase in the wild strain cells in response to H2O2-stress suggests that under starvation conditions catalase can be involved in the yeast cell protection, particularly they can prevent oxidative modification of some antioxidant and associated enzymes.  相似文献   

3.
4.
The isiAB genes have proven to be highly stress-responsive under a variety of environmental conditions, including iron deficiency, high salt and oxidative stress. In order to understand the function of IsiA and its importance in oxidative stress, we constructed a knock out mutant of the isiA gene and compared differential gene expression of the DeltaisiA strain in the presence and absence of H2O2. We used the full genome microarray for the cyanobacterium Synechocystis sp. PCC 6803 as previously described [Postier BL, Wang HL, Singh A, Impson L, Andrews, HL, Klahn J, Li H, Risinger G, Pesta D, Deyholos M, Galbraith DW, Sherman LA and Burnap RL (2003) BMC Genenomics 4: 23-34]. We determined that one of the main differences in DeltaisiA compared to wild-type (in the absence of peroxide) was the induction of a gene cluster (sll1693-sll1696) that encoded genes resembling pilins or general secretory proteins (Gsp). These proteins are targeted to the cytoplasmic membrane and we suggest that they may be involved in the assembly of membrane complexes, including pigment-protein complexes. The DeltaisiA strain was more resistant to H2O2 compared to the wild-type. In the presence of 1.5 mM H2O2 for 30 min, a cluster of genes that includes a peroxiredoxin was induced 7- to 8-fold and we suggest that this peroxide scavenging enzyme is responsible for the increased peroxide resistance of the DeltaisiA strain.  相似文献   

5.
This study describes how a metabolic engineering approach can be used to improve bacterial stress resistance. Some Lactococcus lactis strains are capable of taking up glutathione, and the imported glutathione protects this organism against H(2)O(2)-induced oxidative stress. L. lactis subsp. cremoris NZ9000, a model organism of this species that is widely used in the study of metabolic engineering, can neither synthesize nor take up glutathione. The study described here aimed to improve the oxidative-stress resistance of strain NZ9000 by introducing a glutathione biosynthetic capability. We show that the glutathione produced by strain NZ9000 conferred stronger resistance on the host following exposure to H(2)O(2) (150 mM) and a superoxide generator, menadione (30 microM). To explore whether glutathione can complement the existing oxidative-stress defense systems, we constructed a superoxide dismutase deficient mutant of strain NZ9000, designated as NZ4504, which is more sensitive to oxidative stress, and introduced the glutathione biosynthetic capability into this strain. Glutathione produced by strain NZ4504(pNZ3203) significantly shortens the lag phase of the host when grown aerobically, especially in the presence of menadione. In addition, cells of NZ4504(pNZ3203) capable of producing glutathione restored the resistance of the host to H(2)O(2)-induced oxidative stress, back to the wild-type level. We conclude that the resistance of L. lactis subsp. cremoris NZ9000 to oxidative stress can be increased in engineered cells with glutathione producing capability.  相似文献   

6.
7.
8.
Exponential phase cells of the yeast, Saccharomyces cerevisiae when treated with a non-lethal concentration of hydrogen peroxide (H2O2; 0.2mM) for 60 min adapted to become resistant to the lethal effects of a higher dose of H2O2 (2mM). From studies using cycloheximide to inhibit protein synthesis it appears that protein synthesis is required for maximal induction of resistance but that some degree of protection from the lethal effects of peroxide can be acquired in the absence of protein synthesis. Treatment of cells with 50 micrograms cycloheximide ml-1 alone lead to them acquiring some protection from peroxide. Cells subjected to heat shock became more resistant to 2mM-H2O2; however, peroxide pretreatment did not confer thermotolerance. L-[35S]Methionine labelling of cells subjected to 0.2 mM-H2O2 stress showed that synthesis of at least ten polypeptides was induced by peroxide treatment. Some of these were also induced in cells subjected to heat shock (23 to 37 degrees C shift) but the synthesis of at least four polypeptides (45, 39.5, 38 and 24 kDa) was unique to peroxide-stressed cells. Resistance to peroxide was also inducible in an isogenic petite and an isogenic strain with a mutation in the HAP1 gene, indicating that the adaptive response does not require functional mitochondria.  相似文献   

9.
10.
11.
This study was undertaken to determine whether bioavailable zinc can influence the effects of oxidative stress on cultured human retinal pigment epithelial (RPE) cells. RPE cells were maintained for 7 d in culture medium containing 14 microM total zinc, or in medium containing 0.55 microM total zinc. After 1 week, MTT assays were performed to determine the relative cytotoxicity of H2O2 or paraquat on RPE cells. Conjugated dienes and thiobarbituric acid reactive substances (TBARS) were measured in RPE cells treated with 0, 0.5 mM H2O2, 10 microM FeSO4 + 0.5 mM H2O2 or 10 microM FeSO4 + xanthine/xanthine oxidase for 24 h or paraquat for 7 d. Oxidized proteins were determined by the formation of carbonyl residues. The antioxidants metallothionein, catalase, superoxide dismutase, and glutathione peroxidase were also measured. The MTT assays showed that zinc protected cultured RPE from the toxicity of H2O2 and paraquat. RPE cells in 0.55 microM zinc medium contained higher levels of TBARS, conjugated dienes and protein carbonyls due to the oxidative stresses, compared to cells in 14 microM zinc. Catalase and MT content were reduced in cells cultured in 0.55 microM zinc medium and were reduced additionally when treated with above stresses. Superoxide dismutase activity increased in 0.55 microM zinc medium in response to these stresses. Our results show RPE cells cultured in zinc-reduced medium are more susceptible to oxidative insult.  相似文献   

12.
The effects of hydrogen peroxide treatments on Escherichia coli KS400 and AB1157 cells were assessed by monitoring the accumulation of oxidative damage products, carbonyl proteins and thiobarbituric acid-reactive substances (TBARS), as well as the activities of selected antioxidant enzymes. H(2)O(2) treatment stimulated increases in both TBARS and carbonyl protein levels in dose- and time-dependent manners in KS400 cells. The accumulation of TBARS was much more variable with H(2)O(2) treatment; TBARS content was significantly increased in response to 5 microM H(2)O(2), whereas a significant increase in carbonyl protein content occurred at 100 microM H(2)O(2). Similarly, treatment with 20 microM hydrogen peroxide for different lengths of time resulted in peak TBARS accumulation by 20 min, whereas carbonyl protein levels were significantly elevated only after 60 min. In AB1157 cells, treatment with 20 microM hydrogen peroxide for 20 min led to strong increases in both carbonyl protein and TBARS levels. This treatment also triggered increased activities of enzymes of the oxyR regulon (catalase, peroxidase, and glutathione reductase) in both strains. In the AB1157 strain, H(2)O(2) exposure also increased the activities of two enzymes of the soxRS regulon (superoxide dismutase and glucose-6-phosphate dehydrogenase) by 50-60%. The data show differential variability of lipids versus proteins to oxidative damage induced by H(2)O(2,) as well as strain-specific differences in the accumulation of damage products and the responses by antioxidant enzymes to H(2)O(2) stress.  相似文献   

13.
Regulation of spo0H, an early sporulation gene in bacilli.   总被引:19,自引:15,他引:4       下载免费PDF全文
E J Dubnau  K Cabane    I Smith 《Journal of bacteriology》1987,169(3):1182-1191
The construction of lacZ fusions in frame with the spo0H gene of Bacillus licheniformis enabled us to study the expression of this gene under various growth conditions and in various genetic backgrounds. spo0H was expressed during vegetative growth, but the levels increased during early stationary phase and then decreased several hours later. Expression of the gene was not repressed by glucose, but was induced by decoyinine, an inhibitor of guanine nucleotide biosynthesis, which can induce sporulation. Of those tested, the only spo0 gene required for the expression of spo0H was spo0A, and this requirement was eliminated by the abrB mutation, a partial suppressor of spo0A function. spo0H-lacZ expression was much higher in a strain with a deletion in the spo0H gene.  相似文献   

14.
The kinA (spoIIJ) locus contains a single gene which codes for a protein of 69,170 daltons showing strong homology to the transmitter kinases of two component regulatory systems. The purified kinase autophosphorylates in the presence of ATP and mediates the transfer of phosphate to the Spo0A and Spo0F sporulation regulatory proteins. Spo0F protein was a much better phosphoreceptor for this kinase than Spo0A protein in vitro. Mutants with deletion mutations in the kinA gene were delayed in their sporulation. They produced about a third as many spores as the wild type in 24 h, but after 72 h on solid medium, the level of spores approximated that found for the wild-type strain. Such mutations had no effect on the regulation of the abrB gene or on the timing of subtilisin expression and therefore did not impair the repression function of the Spo0A protein. Placement of the kinA locus on a multicopy vector suppressed the sporulation-defective phenotype of spo0B, spo0E, and spo0F mutations but not of spo0A mutations. The results suggest that the spo0B-, spo0E-, and spo0F-dependent pathway of activation (phosphorylation) of the Spo0A regulator may be by-passed through the kinA gene product if it is present at sufficiently high intracellular concentration. The results suggest that multiple kinases exist for the Spo0A protein.  相似文献   

15.
To determine the contribution of sigma B (sigma(B)) to survival of stationary-phase Listeria monocytogenes cells following exposure to environmental stresses, we compared the viability of strain 10403S with that of an isogenic nonpolar sigB null mutant strain after exposure to heat (50 degrees C), ethanol (16.5%), or acid (pH 2.5). Strain viabilities were also determined under the same conditions in cultures that had been previously exposed to sublethal levels of the same stresses (45 degrees C, 5% ethanol, or pH 4.5). The DeltasigB and wild-type strains had similar viabilities following exposure to ethanol and heat, but the DeltasigB strain was almost 10,000-fold more susceptible to lethal acid stress than its parent strain. However, a 1-h preexposure to pH 4.5 yielded a 1,000-fold improvement in viability for the DeltasigB strain. These results suggest the existence in L. monocytogenes of both a sigma(B)-dependent mechanism and a pH-dependent mechanism for acid resistance in the stationary phase. sigma(B) contributed to resistance to both oxidative stress and carbon starvation in L. monocytogenes. The DeltasigB strain was 100-fold more sensitive to 13.8 mM cumene hydroperoxide than the wild-type strain. Following glucose depletion, the DeltasigB strain lost viability more rapidly than the parent strain. sigma(B) contributions to viability during carbon starvation and to acid resistance and oxidative stress resistance support the hypothesis that sigma(B) plays a role in protecting L. monocytogenes against environmental adversities.  相似文献   

16.
Mitochondrial membrane potential (delta psi(m)) was determined in intact isolated nerve terminals using the membrane potential-sensitive probe JC-1. Oxidative stress induced by H2O2 (0.1-1 mM) caused only a minor decrease in delta psi(m). When complex I of the respiratory chain was inhibited by rotenone (2 microM), delta psi(m) was unaltered, but on subsequent addition of H2O2, delta psi(m) started to decrease and collapsed during incubation with 0.5 mM H2O2 for 12 min. The ATP level and [ATP]/[ADP] ratio were greatly reduced in the simultaneous presence of rotenone and H2O2. H2O2 also induced a marked reduction in delta psi(m) when added after oligomycin (10 microM), an inhibitor of F0F1-ATPase. H2O2 (0.1 or 0.5 mM) inhibited alpha-ketoglutarate dehydrogenase and decreased the steady-state NAD(P)H level in nerve terminals. It is concluded that there are at least two factors that determine delta psi(m) in the presence of H2O2: (a) The NADH level reduced owing to inhibition of alpha-ketoglutarate dehydrogenase is insufficient to ensure an optimal rate of respiration, which is reflected in a fall of delta psi(m) when the F0F1-ATPase is not functional. (b) The greatly reduced ATP level in the presence of rotenone and H2O2 prevents maintenance of delta psi(m) by F0F1-ATPase. The results indicate that to maintain delta psi(m) in the nerve terminal during H2O2-induced oxidative stress, both complex I and F0F1-ATPase must be functional. Collapse of delta psi(m) could be a critical event in neuronal injury in ischemia or Parkinson's disease when H2O2 is generated in excess and complex I of the respiratory chain is simultaneously impaired.  相似文献   

17.
18.
H(2)O(2) induces a specific protein oxidation in yeast cells, and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (Tdh) is a major target. Using a 2D-gel system to study protein carbonylation, it is shown in this work that both Tdh2p and Tdh3p isozymes were oxidized during exposure to H(2)O(2). In addition, we identified two other proteins carbonylated and inactivated: Cu,Zn-superoxide dismutase and phosphoglycerate mutase. The oxidative inactivation of Cu,Zn-superoxide dismutase decreases the antioxidant capacity of yeast cells and probably contributes to H(2)O(2)-induced cell death. Cyclophilin 1 was also carbonylated, but CPH1 gene disruption did not affect peroxide stress sensitivity. The correlation between H(2)O(2) sensitivity and the accumulation of oxidized proteins was evaluated by assaying protein carbonyls in mutants deficient in the stress response regulators Yap1p and Skn7p. The results show that the high sensitivity of yap1delta and skn7delta mutants to H(2)O(2) was correlated with an increased induction of protein carbonylation. In wild-type cells, the acquisition of stress resistance by pre-exposure to a sublethal H(2)O(2) stress was associated with a lower accumulation of oxidized proteins. However, pre-exposure of yap1delta and skn7delta cells to 0.4 mM H(2)O(2) decreased protein carbonylation induced by 1.5 mM H(2)O(2), indicating that the adaptive mechanism involved in the protection of proteins from carbonylation is Yap1p- and Skn7p-independent.  相似文献   

19.
Expression of the Bacillus thuringiensis cryIIIA gene encoding a Coleoptera-specific toxin is weak during vegetative growth and is activated at the onset of the stationary phase. cryIIIA'-'lacZ fusions and primer extension analysis show that the regulation of cryIIIA expression is similar in Bacillus subtilis and in B. thuringiensis. Activation of cryIIIA expression was not altered in B. subtilis mutant strains deficient for the sigma H and sigma E sporulation-specific sigma factors or for minor sigma factors such as sigma B, sigma D, or sigma L. This result and the nucleotide sequence of the -35 and -10 regions of the cryIIIA promoter suggest that cryIIIA expression might be directed by the E sigma A form of RNA polymerase. Expression of the cryIIIA'-'lacZ fusion is shut off after t2 (2 h after time zero) of sporulation in the B. subtilis wild-type strain grown on nutrient broth sporulation medium. However, no decrease in cryIIIA-directed beta-galactosidase activity occurred in sigma H, kinA, or spo0A mutant strains. Moreover, beta-galactosidase activity was higher and remained elevated after t2 in the spo0A mutant strain. beta-Galactosidase activity was weak in abrB and spo0A abrB mutant strains, suggesting that AbrB is responsible for the higher level of cryIIIA expression observed in a spo0A mutant. However, both in spo0A and spo0A abrB mutant strains, beta-galactosidase activity remained elevated after t2, suggesting that even in the absence of AbrB, cryIIIA expression is controlled through modulation of the phosphorylated form of Spo0A. When the cryIIIA gene is expressed in a B. subtilis spo0A mutant strain or in the 168 wild-type strain, large amounts of toxins are produced and accumulate to form a flat rectangular crystal characteristic of the coleopteran-specific B. thuringiensis strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号