共查询到20条相似文献,搜索用时 0 毫秒
1.
Fawzi NL Chubukov V Clark LA Brown S Head-Gordon T 《Protein science : a publication of the Protein Society》2005,14(4):993-1003
We simulate the aggregation thermodynamics and kinetics of proteins L and G, each of which self-assembles to the same alpha/beta [corrected] topology through distinct folding mechanisms. We find that the aggregation kinetics of both proteins at an experimentally relevant concentration exhibit both fast and slow aggregation pathways, although a greater proportion of protein G aggregation events are slow relative to those of found for protein L. These kinetic differences are correlated with the amount and distribution of intrachain contacts formed in the denatured state ensemble (DSE), or an intermediate state ensemble (ISE) if it exists, as well as the folding timescales of the two proteins. Protein G aggregates more slowly than protein L due to its rapidly formed folding intermediate, which exhibits native intrachain contacts spread across the protein, suggesting that certain early folding intermediates may be selected for by evolution due to their protective role against unwanted aggregation. Protein L shows only localized native structure in the DSE with timescales of folding that are commensurate with the aggregation timescale, leaving it vulnerable to domain swapping or nonnative interactions with other chains that increase the aggregation rate. Folding experiments that characterize the structural signatures of the DSE, ISE, or the transition state ensemble (TSE) under nonaggregating conditions should be able to predict regions where interchain contacts will be made in the aggregate, and to predict slower aggregation rates for proteins with contacts that are dispersed across the fold. Since proteins L and G can both form amyloid fibrils, this work also provides mechanistic and structural insight into the formation of prefibrillar species. 相似文献
2.
《Bioscience, biotechnology, and biochemistry》2013,77(8):2072-2074
In order to clarify whether modulation of long-range interactions in the denatured state affect native disulfide bond (SS bond) formations of hen egg white lysozyme (HEL) containing a pair of cysteine residues, we examined the extent of SS bond formation among 12 variants containing a pair of cysteines. The loss of clusters 5 and 6 in the denatured state affected the formation of Cys30-Cys115 and Cys6-Cys127 respectively. 相似文献
3.
Native disulfide bonds greatly accelerate secondary structure formation in the folding of lysozyme. 下载免费PDF全文
To assess the respective roles of local and long-range interactions during protein folding, the influence of the native disulfide bonds on the early formation of secondary structure was investigated using continuous-flow circular dichroism. Within the first 4 ms of folding, lysozyme with intact disulfide bonds already had a far-UV CD spectrum reflecting large amounts of secondary structure. Conversely, reduced lysozyme remained essentially unfolded at this early folding time. Thus, native disulfide bonds not only stabilize the cfinal conformation of lysozyme but also provide, in early folding intermediates, the necessary stabilization that favors the formation of secondary structure. 相似文献
4.
Trefethen JM Pace CN Scholtz JM Brems DN 《Protein science : a publication of the Protein Society》2005,14(7):1934-1938
Gaining a better understanding of the denatured state ensemble of proteins is important for understanding protein stability and the mechanism of protein folding. We studied the folding kinetics of ribonuclease Sa (RNase Sa) and a charge-reversal variant (D17R). The refolding kinetics are similar, but the unfolding rate constant is 10-fold greater for the variant. This suggests that charge-charge interactions in the denatured state and the transition state ensembles are more favorable in the variant than in RNase Sa, and shows that charge-charge interactions can influence the kinetics and mechanism of protein folding. 相似文献
5.
Huwentoxin-I, a neurotoxic peptide with 33 ammo acid residues and three disulfide bonds, was used to investigate the pathway of reduction/denaturation and of oxidative folding in small proteins with multiple disulfide bonds. Titration of thiol groups, reversed-phase HPLC, 1D NMR spectroscopy, and biological activity assays were used to monitor the extent of reduction/denaturation and renaturation of the toxin. The reduction and denaturation of huwentoxin-I resulted in a 100% loss of bioactivity as measured in a mouse phrenic nerve-diaphragm preparation. About 90% of full biological activity could be restored under optimized conditions of oxidative refolding of the reduced peptide. Several reaction conditions employing air oxidation, oxidized and reduced glutathione (GSSG and GSH), and cystine/cysteine were investigated in order to find optimal conditions for renaturation of huwentoxin-I. The best renaturation yield was achieved in 0.1 mM GSSG and 1 mM GSH at pH 8.5 and 4°C over 24 hr. High concentrations of glutathione and high temperatures reduced renaturation yields. Oxidative refolding of huwentoxin-I in air requires about 6 days for maximal yields and is inhibited by EDTA. 相似文献
6.
The equilibrium and kinetics of folding of hen egg-white lysozyme were studied by means of CD spectroscopy in the presence of varying concentrations of ethanol under acidic condition. The equilibrium transition curves of guanidine hydrochloride-induced unfolding in 13 and 26% (v/v) ethanol have shown that the unfolding significantly deviates from a two-state mechanism. The kinetics of denaturant-induced refolding and unfolding of hen egg-white lysozyme were investigated by stopped-flow CD at three ethanol concentrations: 0, 13, and 26% (v/v). Immediately after dilution of the denaturant, the refolding curves showed a biphasic time course in the far-UV region, with a burst phase with a significant secondary structure and a slower observable phase. However, when monitored by the near-UV CD, the burst phase was not observed and all refolding kinetics were monophasic. To clarify the effect of nonnative secondary structure induced by the addition of ethanol on the folding/unfolding kinetics, the kinetic m values were estimated from the chevron plots obtained for the three ethanol concentrations. The data indicated that the folding/unfolding kinetics of hen lysozyme in the presence of varying concentrations of ethanol under acidic condition is explained by a model with both on-pathway and off-pathway intermediates of protein folding. 相似文献
7.
Immunochemical pulsed-labeling characterization of intermediates during hen lysozyme oxidative folding 下载免费PDF全文
Jarrett NM Djavadi-Ohaniance L Willson RC Tachibana H Goldberg ME 《Protein science : a publication of the Protein Society》2002,11(11):2584-2595
Previous studies have shown that reduced hen egg white lysozyme refolds and oxidizes according to a linear model, in which the number of disulfide bonds increases sequentially. In this study, we describe the kinetics of native tertiary structure formation during the oxidative-renaturation of reduced hen egg white lysozyme, as monitored using an immunochemical pulsed-labeling method based on enzyme-linked immunosorbent assay (ELISA) in conjunction with two monoclonal antibodies (mAb). Each of these antibodies recognizes a separate face of the native lysozyme surface and, more importantly, each epitope is composed of discontinuous regions of the polypeptide chain. Renaturation kinetics were studied under the same refolding conditions as previous investigations of the kinetics of the regain of far-UV CD, fluorescence, enzymatic activity, and disulfide bonds. Comparison of our results with the results from those studies showed that the immunoreactivity (i.e., the native fold) of the alpha-domain appeared in intermediates containing two SS bonds only (C6-C127 and C30-C115), while the immunoreactivity of the beta-domain appeared together with the formation of the third SS bond (C64-C80). Thus, the alpha-domain folds before the beta-domain during the oxidative folding of reduced lysozyme. 相似文献
8.
Perturbations of the denatured state ensemble: modeling their effects on protein stability and folding kinetics. 下载免费PDF全文
By considering the denatured state of a protein as an ensemble of conformations with varying numbers of sequence-specific interactions, the effects on stability, folding kinetics, and aggregation of perturbing these interactions can be predicted from changes in the molecular partition function. From general considerations, the following conclusions are drawn: (1) A perturbation that enhances a native interaction in denatured state conformations always increases the stability of the native state. (2) A perturbation that promotes a non-native interaction in the denatured state always decreases the stability of the native state. (3) A change in the denatured state ensemble can alter the kinetics of aggregation and folding. (4) The loss (or increase) in stability accompanying two mutations, each of which lowers (or raises) the free energy of the denatured state, will be less than the sum of the effects of the single mutations, except in cases where both mutations affect the same set of partially folded conformations. By modeling the denatured state as the ensemble of all non-native conformations of hydrophobic-polar (HP) chains configured on a square lattice, it can be shown that the stabilization obtained from enhancement of native interactions derives in large measure from the avoidance of non-native interactions in the D state. In addition, the kinetic effects of fixing single native contacts in the denatured state or imposing linear gradients in the HH contact probabilities are found, for some sequences, to significantly enhance the efficiency of folding by a simple hydrophobic zippering algorithm. Again, the dominant mechanism appears to be avoidance of non-native interactions. These results suggest stabilization of native interactions and imposition of gradients in the stability of local structure are two plausible mechanisms involving the denatured state that could play a role in the evolution of protein folding and stability. 相似文献
9.
Comparatively little is known about the role of non-native interactions in protein folding and their role in both folding and stability is controversial. We demonstrate that non-native electrostatic interactions involving specific residues in the denatured state can have a significant effect upon protein stability and can persist in the transition state for folding. Mutation of a single surface exposed residue, Lys12 to Met, in the N-terminal domain of the ribosomal protein L9 (NTL9), significantly increased the stability of the protein and led to faster folding. Structural and energetic studies of the wild-type and K12M mutant show that the 1.9 kcal mol(-1) increase in stability is not due to native state effects, but rather is caused by modulation of specific non-native electrostatic interactions in the denatured state. pH dependent stability measurements confirm that the increased stability of the K12M is due to the elimination of favorable non-native interactions in the denatured state. Kinetic studies show that the non-native electrostatic interactions involving K12 persist in the transition state. The analysis demonstrates that canonical Phi-values can arise from the disruption of non-native interactions as well as from the development of native interactions. 相似文献
10.
11.
12.
Guez V Roux P Navon A Goldberg ME 《Protein science : a publication of the Protein Society》2002,11(5):1136-1151
To probe the role of individual disulfide bonds in the folding kinetics of hen lysozyme, the variants with two mutations, C30A,C115A, C64A,C80A, and C76A,C94A, were constructed. The corresponding proteins, each lacking one disulfide bond, were produced in Escherichia coli as inclusion bodies and solubilized, purified, and renatured/oxidized using original protocols. Their enzymatic, spectral, and hydrodynamic characteristics confirmed that their conformations were very similar to that of native wild-type (WT) lysozyme. Stopped-flow studies on the renaturation of these guanidine-unfolded proteins with their three disulfides intact showed that, for the three variants, the native far-UV ellipticity was regained in a burst phase within the 4-ms instrument dead-time. The transient overshoots of far-UV ellipticity and tryptophan fluorescence that follow the burst phase, as well as the kinetics of transient 8-anilino-1-naphthalene-sulfonic acid (ANS) binding, were diversely affected depending on the variant. Together with previous reports on the folding kinetics of WT lysozyme carboxymethylated on cysteines 6 and 127, detailed analysis of the kinetics showed that (1) none of the disulfide bonds were indispensable for the rapid formation (<4 ms) of the native-like secondary structure; (2) the two intra-alpha-domain disulfides (C6-C127 and C30-C115) must be simultaneously present to generate the trapped intermediate responsible for the slow folding population observed in WT lysozyme; and (3) the intra-beta-domain (C64-C80) and the inter-alphabeta-domains (C76-C94) disulfides do not affect the kinetics of formation of the trapped intermediate but are involved in its stability. 相似文献
13.
Van Dael H Haezebrouck P Joniau M 《Protein science : a publication of the Protein Society》2003,12(3):609-619
Thermal and chemical unfolding studies of the calcium-binding canine lysozyme (CL) by fluorescence and circular dichroism spectroscopy show that, upon unfolding in the absence of calcium ions, a very stable equilibrium intermediate state is formed. At room temperature and pH 7.5, for example, a stable molten globule state is attained in 3 M GdnHCl. The existence of such a pure and stable intermediate state allowed us to extend classical stopped-flow fluorescence measurements that describe the transition from the native to the unfolded form, with kinetic experiments that monitor separately the transition from the unfolded to the intermediate state and from the intermediate to the native state, respectively. The overall refolding kinetics of apo-canine lysozyme are characterized by a significant drop in the fluorescence intensity during the dead time, followed by a monoexponential increase of the fluorescence with k = 3.6 s(-1). Furthermore, the results show that, unlike its drastic effect on the stability, Ca(2+)-binding only marginally affects the refolding kinetics. During the refolding process of apo-CL non-native interactions, comparable to those observed in hen egg white lysozyme, are revealed by a substantial quenching of tryptophan fluorescence. The dissection of the refolding process in two distinct steps shows that these non-native interactions only occur in the final stage of the refolding process in which the two domains match to form the native conformation. 相似文献
14.
Development of high efficiency and low cost protein refolding methods is a highlighted research focus in biotechnology. Artificial molecular chaperone (AMC) and protein folding liquid chromatography (PFLC) are two attractive refolding methods developed in recent years. In the present work, AMC and one branch of PFLC, ion exchange chromatography (IEC), are integrated to form a new refolding method, artificial molecular chaperone‐ion exchange chromatography (AMC‐IEC). This new method is applied to the refolding of a widely used model protein, urea‐denatured/dithiothreitol‐reduced lysozyme. Many factors influencing the refolding of lysozyme, such as urea concentration, β‐cyclodextrin concentration, molar ratio of detergent to protein, mobile phase flow rate, and type of detergent, were investigated, respectively, to optimize the conditions for lysozyme refolding by AMC‐IEC. Compared with normal IEC refolding method, the activity recoveries of lysozyme obtained by AMC‐IEC were much higher in the investigated range of initial protein concentrations. Moreover, the activity recoveries obtained by using this newly developed refolding method were still quite high for denatured/reduced lysozyme at high initial concentrations. When the initial protein concentration was 200 mg mL?1, the activity recovery was over 60%. In addition, the lifetime of the chromatographic column during AMC‐IEC was much longer than that during protein refolding by normal IEC. Therefore, AMC‐IEC is a high efficient and low cost protein refolding method. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
15.
Comparison of the kinetics of S-S bond, secondary structure, and active site formation during refolding of reduced denatured hen egg white lysozyme 下载免费PDF全文
Roux P Ruoppolo M Chaffotte AF Goldberg ME 《Protein science : a publication of the Protein Society》1999,8(12):2751-2760
To investigate the role of some tertiary interactions, the disulfide bonds, in the early stages of refolding of hen lysozyme, we report the kinetics of reoxidation of denatured and reduced lysozyme under the same refolding conditions as those previously used to investigate the kinetics of regain of its circular dichroism (CD), fluorescence, and activity. At different stages of the refolding, the oxidation of the protein was blocked by alkylation of the free cysteines with iodoacetamide and the various oxidation states present in the samples were identified by electrospray-mass spectrometry. Thus, it was possible to monitor the appearance and/or disappearance of the species with 0 to 4 disulfide bonds. Using a simulation program, these kinetics were compared with those of regain of far-UV CD, fluorescence, and enzymatic activity and were discussed in terms of a refined model for the refolding of reduced hen egg white lysozyme. 相似文献
16.
《Expert review of proteomics》2013,10(5):545-559
Green fluorescent protein (GFP) and its many variants are probably the most widely used proteins in medical and biological research, having been extensively engineered to act as markers of gene expression and protein localization, indicators of protein–protein interactions and biosensors. GFP first folds, before it can undergo an autocatalytic cyclization and oxidation reaction to form the chromophore, and in many applications the folding efficiency of GFP is known to limit its use. Here, we review the recent literature on protein engineering studies that have improved the folding properties of GFP. In addition, we discuss in detail the biophysical work on the folding of GFP that is beginning to reveal how this large and complex structure forms. 相似文献
17.
Clarke J Hounslow AM Bond CJ Fersht AR Daggett V 《Protein science : a publication of the Protein Society》2000,9(12):2394-2404
The effects of engineered disulfide bonds on protein stability are poorly understood because they can influence the structure, dynamics, and energetics of both the native and denatured states. To explore the effects of two engineered disulfide bonds on the stability of barnase, we have conducted a combined molecular dynamics and NMR study of the denatured state of the two mutants. As expected, the disulfide bonds constrain the denatured state. However, specific extended beta-sheet structure can also be detected in one of the mutant proteins. This mutant is also more stable than would be predicted. Our study suggests a possible cause of the very high stability conferred by this disulfide bond: the wild-type denatured ensemble is stabilized by a nonnative hydrophobic cluster, which is constrained from occurring in the mutant due to the formation of secondary structure. 相似文献
18.
The fully reduced hen egg white lysozyme (HEWL), which is a good model of random coil structure, has been converted to highly organized amyloid fibrils at low pH by adding ethanol. In the presence of 90% (v/v) ethanol, the fully reduced HEWL adopts beta-sheet secondary structure at pH 4.5 and 5.0, and an alpha-to-beta transition is observed at pH 4.0. A red shift of the Congo red absorption spectrum caused by the precipitation of the fully reduced HEWL in the presence of 90% (v/v) ethanol is typical of the presence of amyloid aggregation. EM reveals unbranched fibrils with a diameter of 2-5 nm and as long as 1-2 microm. The pH dependence of the initial structure of the fully reduced HEWL in the presence of 90% (v/v) ethanol suggests that Asp and His residues may play an important role. 相似文献
19.
《Biochemical and biophysical research communications》2013,435(1):64-68
Nucleophosmin (NPM1) is a nucleolar protein implicated in ribosome biogenesis, centrosome duplication and cell cycle control; the NPM1 gene is the most frequent target for mutations in Acute Myeloid Leukemia. Mutations map to the C-terminal domain of the protein and cause its unfolding, loss of DNA binding properties and aberrant cellular localization. Here we investigate the folding pathway and denatured state properties of a NPM1 C-terminal domain construct encompassing the last 70 residues in the reference sequence. This construct is more stable than the previously characterized domain, which consisted of the last 53 residues. Data reveal that, similarly to what was discovered for the shorter construct, also the 70-residue construct of NPM1 displays a detectable residual structure in its denatured state. The higher stability of the latter domain allows us to conclude that the denatured state is robust to changes in solvent composition and that it consists of a discrete state in equilibrium with the expanded fully unfolded conformation. This observation, which might appear as a technicality, is in fact of general importance for the understanding of the folding of proteins. The implications of our results are discussed in the context of previous works on single domain helical proteins. 相似文献
20.
Chemical shifts of resonances of specific protons in the 1H NMR spectrum of thermally denatured hen lysozyme have been determined by exchange correlation with assigned native state resonances in 2D NOESY spectra obtained under conditions where the two states are interconverting. There are subtle but widespread deviations of the measured shifts from the values which would be anticipated for a random coil; in the case of side chain protons these are virtually all net upfield shifts and it is shown that this may be the averaged effect of interactions with aromatic rings in a partially collapsed denatured state. In a very few cases, notably that of two sequential tryptophan residues, it is possible to interpret these effects in terms of specific, local interresidue interactions. Generally, however, there is no correlation with either native state shift perturbations or with sequence proximity to aromatic groups. Diminution of most of the residual shift perturbations on reduction of the disulfide cross-links confirms that they are not simply effects of residues adjacent in the sequence. Similar effects of chemical denaturants, with the disulfides intact, demonstrate that the shift perturbations reflect an enhanced tendency to side chain clustering in the thermally denatured state. The temperature dependences of the shift perturbations suggest that this clustering is noncooperative and is driven by small, favorable enthalpy changes. While the extent of conformational averaging is clearly much greater than that observed for a homologous protein, alpha-lactalbumin, in its partially folded "molten globule" state, the results clearly show that thermally denatured lysozyme differs substantially from a random coil, principally in that it is partially hydrophobically collapsed. 相似文献