首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduced hen lysozyme has a residual structure involving long-range interaction. It has been demonstrated that a single mutation (A9G, W62G, W111G, or W123G) in the residual structure differently modulates the long-range interactions of reduced lysozyme. To examine whether such variations in the residual structure affect amyloid formation, reduced and alkylated mutant lysozymes were incubated under the amyloid-fibrillation condition. From the analyses of CD spectra and thioflavine T fluorescences, it was suggested that variation in residual structure led to different amyloid formation. Interestingly, the extent of amyloid formation did not always correlate with the extent to which the residual structure was maintained, resulting in the involvement of a hydrophobic cluster normally contained in W111 in the reduced lysozyme.  相似文献   

2.
Six hydrophobic clusters involved in long-range interaction have been identified in the residual structure of reduced lysozyme at pH 2. Recently, it was found that modulation in the residual structure affected amyloid formation. In this paper, we examined the effect of the hydrophobic cluster containing W111 (cluster 5) on amyloid fibril formation of reduced lysozyme. The reduced W62G lysozyme, in which most of the hydrophobic clusters except for cluster 5 are disrupted, formed hardly any amyloid fibrils in comparison with the reduced wild-type. However, the disruption of cluster 5 by the mutation of Trp111 to Gly allowed significant amyloid fibril formation of reduced W62G lysozyme. Moreover, the extent of amyloid formation in the reduced W62G/W111G lysozyme was greater than that of the reduced wild-type lysozyme. From the above results, it became clear that cluster 5 contributed to retarding the amyloid fibrils formation of the W62G lysozyme.  相似文献   

3.
In previous paper, we showed that W62G mutation caused ill effects at the early stages of folding of the reduced hen lysozyme in vitro. Here, we investigated whether the single mutation brings about drastic turn to in vivo folding of lysozyme. W62G lysozyme was secreted from yeast cells and then purified with ion-exchange chromatography. From the results of gel chromatography and peptide analysis, the species with two cysteines, Cys80 and Cys94, and non-native cystine, Cys64-Cys76, was partially present in secreted product of yeast containing gene for W62G lysozyme. Thus, it was suggested that W62G mutation also affected the in vivo folding of lysozyme.  相似文献   

4.
In order to obtain a better understanding of the possible influence of the primary sequence of a protein on its folding pathway, renaturation of reduced human milk lysozyme was compared to that of reduced hen egg white lysozyme. Following disulfide bond formation, under identical conditions, similar products were found during the folding of both lysozymes, but the kinetics of appearance and disappearance of these intermediates as well as the appearance of the native conformation were different.  相似文献   

5.
The effects of chemical modifications of Trp62 and Trp108 on the folding of hen egg-white lysozyme from the reduced form were investigated by means of the sulfhydryl-disulfide interchange reaction at pH 8 and 40 degrees C. The folding of reduced lysozyme was monitored by following the recovery of the original activity. Under the conditions employed, the apparent first-order rate constant for the folding of reduced lysozyme was not changed by the modifications of both Trp62 and Trp108 and the folding was completed within 30 min. However, the extent of the correct folding was changed by the modification of Trp62 but not by that of Trp108. Native and oxindolealanine108 lysozymes recovered 80 and 81% of their original activities after 30-min refolding, respectively, but Trp62-modified lysozymes recovered their activities to a lesser extent than native and oxindolealanine108 lysozymes. The recovered activities of Trp62-modified lysozymes after 30-min refolding were 63% for oxindolealanine62 lysozyme, 65% for delta 1-carboxamidomethylthiotryptophan62 lysozyme, and 52% for delta 1-carboxymethylthiotryptophan62 lysozyme. These results suggest that Trp62 is important for preventing the misfolding of reduced lysozyme, but that neither Trp62 nor Trp108 is involved in the rate-determining step (the slowest step) in the folding pathway. A decrease in the hydrophobic nature of Trp62 seems to increase the misfolding and thus to decrease the extent of the correct folding of reduced lysozyme. A mechanism for the involvement of Trp62 in the folding pathway of reduced lysozyme is proposed.  相似文献   

6.
The oxidative refolding of hen lysozyme has been studied by a variety of time-resolved biophysical methods in conjunction with analysis of folding intermediates using reverse-phase HPLC. In order to achieve this, refolding conditions were designed to reduce aggregation during the early stages of the folding reaction. A complex ensemble of relatively unstructured intermediates with on average two disulfide bonds is formed rapidly from the fully reduced protein after initiation of folding. Following structural collapse, the majority of molecules slowly form the four-disulfide-containing fully native protein via rearrangement of a highly native-like, kinetically trapped intermediate, des-[76-94], although a significant population (approximately 30%) appears to fold more quickly via other three-disulfide intermediates. The folding catalyst PDI increases dramatically both yields and rates of lysozyme refolding, largely by facilitating the conversion of des-[76-94] to the native state. This suggests that acceleration of the folding rate may be an important factor in avoiding aggregation in the intracellular environment.  相似文献   

7.
The recovery of proteins following denaturation is optimal at low protein concentrations. The decrease in yield at high concentrations has been explained by the kinetic competition of folding and "wrong aggregation". In the present study, the renaturation-reoxidation of hen and turkey egg white lysozyme was used as a model system to analyze the committed step in aggregate formation. The yield of renatured protein for both enzymes decreased with increasing concentration in the folding process. In addition, the yield decreased with increasing concentrations of the enzyme in the denatured state (i.e., prior to its dilution in the renaturation buffer). The kinetics of renaturation of turkey lysozyme were shown to be very similar to those of hen lysozyme, with a half-time of about 4.5 min at 20 degrees C. The rate of formation of molecular species that lead to formation of aggregates (and therefore fail to renature) was shown to be rapid. Most of the reaction occurred in less than 5 s after the transfer to renaturation buffer, and after 1 min, the reaction was essentially completed. Yet, by observing the effects of the delayed addition of denatured hen lysozyme to refolding turkey lysozyme, it was shown that folding intermediates become resistant to aggregation only much more slowly, with kinetics indistinguishable from those observed for the appearance of native molecules. The interactions leading to the formation of aggregates were nonspecific and do not involve disulfide bonds. These observations are discussed in terms of possible kinetic and structural aspects of the folding pathway.  相似文献   

8.
Previous studies have shown that reduced hen egg white lysozyme refolds and oxidizes according to a linear model, in which the number of disulfide bonds increases sequentially. In this study, we describe the kinetics of native tertiary structure formation during the oxidative-renaturation of reduced hen egg white lysozyme, as monitored using an immunochemical pulsed-labeling method based on enzyme-linked immunosorbent assay (ELISA) in conjunction with two monoclonal antibodies (mAb). Each of these antibodies recognizes a separate face of the native lysozyme surface and, more importantly, each epitope is composed of discontinuous regions of the polypeptide chain. Renaturation kinetics were studied under the same refolding conditions as previous investigations of the kinetics of the regain of far-UV CD, fluorescence, enzymatic activity, and disulfide bonds. Comparison of our results with the results from those studies showed that the immunoreactivity (i.e., the native fold) of the alpha-domain appeared in intermediates containing two SS bonds only (C6-C127 and C30-C115), while the immunoreactivity of the beta-domain appeared together with the formation of the third SS bond (C64-C80). Thus, the alpha-domain folds before the beta-domain during the oxidative folding of reduced lysozyme.  相似文献   

9.
To assess the respective roles of local and long-range interactions during protein folding, the influence of the native disulfide bonds on the early formation of secondary structure was investigated using continuous-flow circular dichroism. Within the first 4 ms of folding, lysozyme with intact disulfide bonds already had a far-UV CD spectrum reflecting large amounts of secondary structure. Conversely, reduced lysozyme remained essentially unfolded at this early folding time. Thus, native disulfide bonds not only stabilize the cfinal conformation of lysozyme but also provide, in early folding intermediates, the necessary stabilization that favors the formation of secondary structure.  相似文献   

10.
Shioi S  Imoto T  Ueda T 《Biochemistry》2004,43(18):5488-5493
Twenty-eight hen lysozyme variants that contained a pair of cysteines were constructed to examine the formation of the individual native and nonnative disulfide bonds. We analyzed the extent of the formation of a disulfide bond in each lysozyme variant using a redox buffer (pH 8) containing 1.0 mM reduced and 0.1 mM oxidized glutathione in the absence or presence of 6 M guanidine hydrochloride. In the presence of 6 M guanidine hydrochloride, the extent of the formation of the disulfide bond in each lysozyme variant was proportional to the distance between cysteine residues, indicating that reduced hen lysozyme under a highly denaturing condition adopted a randomly coiled structure. In aqueous solution, the formations of all disulfide bonds occurred much more easily than under a denatured condition. This finding indicated that reduced lysozyme had a somewhat compact structure. Moreover, the scattering data for the extents of the formation of the disulfide bonds among all lysozyme variants were observed. These results suggested that the nonrandom folding occurred in the early stage of the folding of reduced lysozyme, which should provide new insight into the early-stage events in the folding process of reduced lysozyme.  相似文献   

11.
DsbA (disulfide bond formation protein A) is essential for disulfide bond formation directly affecting the nascent peptides folding to the correct conformation in vivo. In this paper, recombinant DsbA protein was employed to catalyze denatured lysozyme refolding and inhibit the aggregation of folding intermediates in vitro. Statistical methods, i.e., Plackett–Burman design and small central composite design, were adopted to screen out important factors affecting the refolding process and correlating these parameters with the refolding efficiency including both protein recovery and specific activity of refolded lysozyme. Four important parameters: initial lysozyme concentration, urea concentration, KCl concentration and GSSG (glutathione disulfide) concentration were picked out and operating conditions were optimized by introducing the effectiveness coefficient method and transforming the multiple objective programming into an ordinary constrained optimization issue. Finally, 99.7% protein recovery and 25,600 U/mg specific activity of lysozyme were achieved when 281.35 μg/mL denatured lysozyme refolding was catalyzed by an equivalent molar of DsbA at the optimal settings. The results indicated that recombinant DsbA protein could effectively catalyze the oxidized formation and reduced isomerization of intramolecular disulfide bonds in the refolding of lysozyme in vitro.  相似文献   

12.
Amyloid deposits are frequently formed by mutant proteins that have a lower stability than the wild-type proteins. Some reports, however, have shown that mutant-induced thermodynamic destabilization is not always a general mechanism of amyloid formation. To obtain a better understanding of the mechanism of amyloid fibril formation, we show in this study that equilibrium and kinetic refolding-unfolding reaction experiments with two amyloidogenic mutant human lysozymes (I56T and D67H) yield folding pathways that can be drawn as Gibbs energy diagrams. The equilibrium stabilities between the native and denatured states of both mutant proteins were decreased, but the degrees of instability were different. The Gibbs energy diagrams of the folding process reveal that the Gibbs energy change between the native and folding intermediate states was similar for both proteins, and also that the activation Gibbs energy change from the native state to the transition state decreased. Our results confirm that the tendency to favor the intermediate of denaturation facilitates amyloid formation by the mutant human lysozymes more than equilibrium destabilization between the native and completely denatured states does.  相似文献   

13.
Catalytic properties of hen egg white lysozyme were analyzed during the renaturation of the enzyme from completely reduced and denatured material. The formation of intermediate folding products and the generation of native lysozyme was monitored by acetic acid/urea electrophoresis. The results showed that during the beginning of renaturation almost all reduced and denatured lysozyme is converted to forms possessing lower compactness than native lysozyme, probably as a result of formation of only one or two disulfide bonds. Kinetic analysis of lysozyme during renaturation showed that the generation of lysozyme with four disulfide bonds was not necessarily equivalent to the formation lysozyme with native-like catalytic properties. It appeared that the formation rate of the structures of the structures of the substrate binding site and of the catalytic site were limited by the generation of four disulfide bonds containing lysozyme. The catalytic properties of intermediate folding products made it evident that the final structures of the substrate binding site and of the catalytic site were formed after the generation of all disulfide bonds.  相似文献   

14.
We simulate the aggregation thermodynamics and kinetics of proteins L and G, each of which self-assembles to the same alpha/beta [corrected] topology through distinct folding mechanisms. We find that the aggregation kinetics of both proteins at an experimentally relevant concentration exhibit both fast and slow aggregation pathways, although a greater proportion of protein G aggregation events are slow relative to those of found for protein L. These kinetic differences are correlated with the amount and distribution of intrachain contacts formed in the denatured state ensemble (DSE), or an intermediate state ensemble (ISE) if it exists, as well as the folding timescales of the two proteins. Protein G aggregates more slowly than protein L due to its rapidly formed folding intermediate, which exhibits native intrachain contacts spread across the protein, suggesting that certain early folding intermediates may be selected for by evolution due to their protective role against unwanted aggregation. Protein L shows only localized native structure in the DSE with timescales of folding that are commensurate with the aggregation timescale, leaving it vulnerable to domain swapping or nonnative interactions with other chains that increase the aggregation rate. Folding experiments that characterize the structural signatures of the DSE, ISE, or the transition state ensemble (TSE) under nonaggregating conditions should be able to predict regions where interchain contacts will be made in the aggregate, and to predict slower aggregation rates for proteins with contacts that are dispersed across the fold. Since proteins L and G can both form amyloid fibrils, this work also provides mechanistic and structural insight into the formation of prefibrillar species.  相似文献   

15.
GdmCl (6 M) unfolded lysozyme was previously shown to refold via kinetically partitioned pathways (Kiefhaber in Proc Natl Acad Sci 92:9029–9033, 1995). About 80% of the unfolded lysozyme molecules refold on a slow pathway with well-populated intermediates. The remaining 20% of denatured lysozyme refold on a fast track without detectable intermediate. This kinetic heterogeneity has been proposed to originate from the collapsed state of lysozyme folding. Using the method of disulfide scrambling, we demonstrate in this report that these two populations of unfolded lysozyme can be isolated and analyzed separately. GdmCl (6 M) denatured lysozyme actually comprises two major populations of unfolded isomers, namely X-LYZ-a and X-LYZ-b with molar ratio of about 80:20. X-LYZ-a and X-LYZ-b exist in equilibrium in the unfolded state. Their disulfide structures and CD properties indicate that X-LYZ-a is more extensively unfolded than X-LYZ-b. Refolding experiments using the method of disulfide scrambling also show that folding kinetics of X-LYZ-a is about 8–10 times slower than that of X-LYZ-b and folding intermediates of X-LYZ-a is far more heterogeneous than that of X-LYZ-b. The results highlight the implication of the conformational heterogeneity of 6 M GdmCl denatured proteins for the interpretation of the initial stage of protein folding mechanism.  相似文献   

16.
In order to clarify whether modulation of long-range interactions in the denatured state affect native disulfide bond (SS bond) formations of hen egg white lysozyme (HEL) containing a pair of cysteine residues, we examined the extent of SS bond formation among 12 variants containing a pair of cysteines. The loss of clusters 5 and 6 in the denatured state affected the formation of Cys30-Cys115 and Cys6-Cys127 respectively.  相似文献   

17.
In order to clarify whether modulation of long-range interactions in the denatured state affect native disulfide bond (SS bond) formations of hen egg white lysozyme (HEL) containing a pair of cysteine residues, we examined the extent of SS bond formation among 12 variants containing a pair of cysteines. The loss of clusters 5 and 6 in the denatured state affected the formation of Cys30-Cys115 and Cys6-Cys127 respectively.  相似文献   

18.
The chaperonin GroEL binds unfolded polypeptides, preventing aggregation, and then mediates their folding in an ATP-dependent process. To understand the structural features in non-native polypeptides recognized by GroEL, we have used alpha-lactalbumin (alpha LA) as a model substrate. alpha LA (14.2 kDa) is stabilized by four disulfide bonds and a bound Ca2+ ion, offering the possibility of trapping partially folded disulfide intermediates between the native and the fully unfolded state. The conformers of alpha LA with high affinity for GroEL are compact, containing up to three disulfide bonds, and have significant secondary structure, but lack stable tertiary structure and expose hydrophobic surfaces. Complex formation requires almost the complete alpha LA sequence and is strongly dependent on salts that stabilize hydrophobic interactions. Unfolding of alpha LA to an extended state as well as the burial of hydrophobic surface upon formation of ordered tertiary structure prevent the binding to GroEL. Interestingly, GroEL interacts only with a specific subset of the many partially folded disulfide intermediates of alpha LA and thus may influence in vitro the kinetics of the folding pathways that lead to disulfide bonds with native combinations. We conclude that the chaperonin interacts with the hydrophobic surfaces exposed by proteins in a flexible compact intermediate or molten globule state.  相似文献   

19.
A continuous-flow mixing device with a dead time of 100 micros coupled with intrinsic tryptophan and 1-anilinonaphthalene-8-sulfonate (ANS) fluorescence was used to monitor structure formation during early stages of the folding of staphylococcal nuclease (SNase). A variant with a unique tryptophan fluorophore in the N-terminal beta-barrel domain (Trp76 SNase) was obtained by replacing the single Trp140 in wild-type SNase with His in combination with Trp substitution of Phe76. A common background of P47G, P117G and H124L mutations was chosen in order to stabilize the protein and prevent accumulation of cis proline isomers under native conditions. In contrast to WT(*) SNase, which shows no changes in tryptophan fluorescence prior to the rate-limiting folding step ( approximately 100 ms), the F76W/W140H variant shows additional changes (enhancement) during an early folding phase with a time constant of 75 micros. Both proteins exhibit a major increase in ANS fluorescence and identical rates for this early folding event. These findings are consistent with the rapid accumulation of an ensemble of states containing a loosely packed hydrophobic core involving primarily the beta-barrel domain while the specific interactions in the alpha-helical domain involving Trp140 are formed only during the final stages of folding. The fact that both variants exhibit the same number of kinetic phases with very similar rates confirms that the folding mechanism is not perturbed by the F76W/W140H mutations. However, the Trp at position 76 reports on the rapid formation of a hydrophobic cluster in the N-terminal beta-sheet region while the wild-type Trp140 is silent during this early stage of folding. Quantitative modeling of the (un)folding kinetics and thermodynamics of these two proteins versus urea concentration revealed that the F76W/W140H mutation selectively destabilizes the native state relative to WT(*) SNase while the stability of transient intermediates remains unchanged, leading to accumulation of intermediates under equilibrium conditions at moderate denaturant concentrations.  相似文献   

20.
Morozova-Roche LA 《FEBS letters》2007,581(14):2587-2592
Calcium-binding equine lysozyme (EL) combines the structural and folding properties of c-type lysozymes and alpha-lactalbumins, connecting these two most studied subfamilies. The structural insight into its native and partially folded states is particularly illuminating in revealing the general principles of protein folding, amyloid formation and its inhibition. Among lysozymes EL forms one of the most stable molten globules and shows the most uncooperative refolding kinetics. Its partially-folded states serve as precursors for calcium-dependent self-assembly into ring-shaped and linear amyloids. The innate amyloid cytotoxicity of the ubiquitous lysozyme highlights the universality of this phenomenon and necessitates stringent measures for its prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号