首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Plants respond to virus infections by activation of RNA-based silencing, which limits infection at both the single-cell and system levels. Viruses encode RNA silencing suppressor proteins that interfere with this response. Wild-type Arabidopsis thaliana is immune to silencing suppressor (HC-Pro)-deficient Turnip mosaic virus, but immunity was lost in the absence of DICER-LIKE proteins DCL4 and DCL2. Systematic analysis of susceptibility and small RNA formation in Arabidopsis mutants lacking combinations of RNA-dependent RNA polymerase (RDR) and DCL proteins revealed that the vast majority of virus-derived small interfering RNAs (siRNAs) were dependent on DCL4 and RDR1, although full antiviral defense also required DCL2 and RDR6. Among the DCLs, DCL4 was sufficient for antiviral silencing in inoculated leaves, but DCL2 and DCL4 were both involved in silencing in systemic tissues (inflorescences). Basal levels of antiviral RNA silencing and siRNA biogenesis were detected in mutants lacking RDR1, RDR2, and RDR6, indicating an alternate route to form double-stranded RNA that does not depend on the three previously characterized RDR proteins.  相似文献   

3.
In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different effector molecules in the RNA silencing pathway. Evidence has shown that plants also encode endogenous suppressors of RNA silencing (ESRs) that function in proper regulation of RNA silencing. The possibility that these cellular proteins can be subverted by viruses to thwart host defense is intriguing but has not been fully explored. Here we report that the Nicotiana benthamiana calmodulin-like protein Nbrgs-CaM is required for the functions of the VSR βC1, the sole protein encoded by the DNA satellite associated with the geminivirus Tomato yellow leaf curl China virus (TYLCCNV). Nbrgs-CaM expression is up-regulated by the βC1. Transgenic plants over-expressing Nbrgs-CaM displayed developmental abnormities reminiscent of βC1-associated morphological alterations. Nbrgs-CaM suppressed RNA silencing in an Agrobacterium infiltration assay and, when over-expressed, blocked TYLCCNV-induced gene silencing. Genetic evidence showed that Nbrgs-CaM mediated the βC1 functions in silencing suppression and symptom modulation, and was required for efficient virus infection. Moreover, the tobacco and tomato orthologs of Nbrgs-CaM also possessed ESR activity, and were induced by betasatellite to promote virus infection in these Solanaceae hosts. We further demonstrated that βC1-induced Nbrgs-CaM suppressed the production of secondary siRNAs, likely through repressing RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) expression. RDR6-deficient N. benthamiana plants were defective in antiviral response and were hypersensitive to TYLCCNV infection. More significantly, TYLCCNV could overcome host range restrictions to infect Arabidopsis thaliana when the plants carried a RDR6 mutation. These findings demonstrate a distinct mechanism of VSR for suppressing PTGS through usurpation of a host ESR, and highlight an essential role for RDR6 in RNA silencing defense response against geminivirus infection.  相似文献   

4.
Ren B  Guo Y  Gao F  Zhou P  Wu F  Meng Z  Wei C  Li Y 《Journal of virology》2010,84(24):12914-12923
RNA silencing is a potent mechanism of antiviral defense response in plants and other organisms. For counterdefense, viruses have evolved a variety of suppressors of RNA silencing (VSRs) that can inhibit distinct steps of a silencing pathway. We previously identified Pns10 encoded by Rice dwarf phytoreovirus (RDV) as a VSR, the first of its kind from double-stranded RNA (dsRNA) viruses. In this study we investigated the mechanisms of Pns10 function in suppressing systemic RNA silencing in the widely used Nicotiana benthamiana model plant. We report that Pns10 suppresses local and systemic RNA silencing triggered by sense mRNA, enhances viral replication and/or viral RNA stability in inoculated leaves, accelerates the systemic spread of viral infection, and enables viral invasion of shoot apices. Mechanistically, Pns10 interferes with the perception of silencing signals in recipient tissues, binds double-stranded small interfering RNA (siRNAs) with two-nucleotide 3' overhangs, and causes the downregulated expression of RDR6. These results significantly deepen our mechanistic understanding of the VSR functions encoded by a dsRNA virus and contribute additional evidence that binding siRNAs and interfering with RDR6 expression are broad mechanisms of VSR functions encoded by diverse groups of viruses.  相似文献   

5.
6.
Arabidopsis thaliana defense against distinct positive-strand RNA viruses requires production of virus-derived secondary small interfering RNAs (siRNAs) by multiple RNA-dependent RNA polymerases. However, little is known about the biogenesis pathway and effector mechanism of viral secondary siRNAs. Here, we describe a mutant of Cucumber mosaic virus (CMV-Δ2b) that is silenced predominantly by the RNA-DEPENDENT RNA POLYMERASE6 (RDR6)-dependent viral secondary siRNA pathway. We show that production of the viral secondary siRNAs targeting CMV-Δ2b requires SUPPRESSOR OF GENE SILENCING3 and DICER-LIKE4 (DCL4) in addition to RDR6. Examination of 25 single, double, and triple mutants impaired in nine ARGONAUTE (AGO) genes combined with coimmunoprecipitation and deep sequencing identifies an essential function for AGO1 and AGO2 in defense against CMV-Δ2b, which act downstream the biogenesis of viral secondary siRNAs in a nonredundant and cooperative manner. Our findings also illustrate that dicing of the viral RNA precursors of primary and secondary siRNA is insufficient to confer virus resistance. Notably, although DCL2 is able to produce abundant viral secondary siRNAs in the absence of DCL4, the resultant 22-nucleotide viral siRNAs alone do not guide efficient silencing of CMV-Δ2b. Possible mechanisms for the observed qualitative difference in RNA silencing between 21- and 22-nucleotide secondary siRNAs are discussed.  相似文献   

7.
8.
9.
10.
11.
Like other eukaryotes, plants use DICER-LIKE (DCL) proteins as the central enzymes of RNA silencing, which regulates gene expression and mediates defense against viruses. But why do plants like Arabidopsis express four DCLs, a diversity unmatched by other kingdoms? Here we show that two nuclear DNA viruses (geminivirus CaLCuV and pararetrovirus CaMV) and a cytoplasmic RNA tobamovirus ORMV are differentially targeted by subsets of DCLs. DNA virus-derived small interfering RNAs (siRNAs) of specific size classes (21, 22 and 24 nt) are produced by all four DCLs, including DCL1, known to process microRNA precursors. Specifically, DCL1 generates 21 nt siRNAs from the CaMV leader region. In contrast, RNA virus infection is mainly affected by DCL4. While the four DCLs are partially redundant for CaLCuV-induced mRNA degradation, DCL4 in conjunction with RDR6 and HEN1 specifically facilitates extensive virus-induced silencing in new growth. Additionally, we show that CaMV infection impairs processing of endogenous RDR6-derived double-stranded RNA, while ORMV prevents HEN1-mediated methylation of small RNA duplexes, suggesting two novel viral strategies of silencing suppression. Our work highlights the complexity of virus interaction with host silencing pathways and suggests that DCL multiplicity helps mediate plant responses to diverse viral infections.  相似文献   

12.
In Arabidopsis, genetic evidence demonstrates that RNA-dependent RNA polymerase 6 (RDR6) plays a fundamental role in at least four RNA silencing pathways whose functions range from defense against transgenes or viruses to endogene regulation in development and in stress responses. Despite its critical role in RNA silencing, the biochemical activities of RDR6 have yet to be characterized. In this study, we transiently expressed Arabidopsis RDR6 in Nicotiana benthamiana and investigated the biochemical activities of immunopurified RDR6 in vitro. We showed that RDR6 possesses terminal nucleotidyltransferase activity as well as primer-independent RNA polymerase activity on single-stranded RNAs. We found that RDR6 cannot distinguish RNAs with or without a cap or poly(A) tail. We also demonstrated that RDR6 has strong polymerase activity on single-stranded DNA. All these activities require the conserved catalytic Asp(867) residue. Our findings have important implications on the processes involving RDR6 in vivo and provide new biochemical insights into the mechanisms of RNA silencing in Arabidopsis.  相似文献   

13.
Several RNA silencing pathways in plants restrict viral infections and are suppressed by distinct viral proteins. Here we show that the endogenous trans-acting (ta)siRNA pathway, which depends on Dicer-like (DCL) 4 and RNA-dependent RNA polymerase (RDR) 6, is suppressed by infection of Arabidopsis with Cauliflower mosaic virus (CaMV). This effect was associated with overaccumulation of unprocessed, RDR6-dependent precursors of tasiRNAs and is due solely to expression of the CaMV transactivator/viroplasmin (TAV) protein. TAV expression also impaired secondary, but not primary, siRNA production from a silenced transgene and increased accumulation of mRNAs normally silenced by the four known tasiRNA families and RDR6-dependent secondary siRNAs. Moreover, TAV expression upregulated DCL4, DRB4 and AGO7 that mediate tasiRNA biogenesis. Our findings suggest that TAV is a general inhibitor of silencing amplification that impairs DCL4-mediated processing of RDR6-dependent double-stranded RNA to siRNAs. The resulting deficiency in tasiRNAs and other RDR6-/DCL4-dependent siRNAs appears to trigger a feedback mechanism that compensates for the inhibitory effects.  相似文献   

14.
Viral suppression of systemic silencing   总被引:14,自引:0,他引:14  
RNA silencing in plants is a form of antiviral defense that was originally discovered from the anomalous effects of transgenes. The process is associated with a systemic signal, presumed to be RNA, and is suppressed by plant virus-encoded proteins. One of these proteins, the 2b protein of cucumber mosaic virus, prevents systemic spread of the signal molecule but, curiously, is located in the nucleus of infected cells. The antiviral role of silencing might also apply in animals because a suppressor of silencing encoded by an insect virus was identified recently.  相似文献   

15.
In plants, transgenes with inverted repeats are used to induce efficient RNA silencing, which is also frequently induced by highly transcribed sense transgenes. RNA silencing induced by sense transgenes is dependent on RNA-dependent RNA polymerase 6 (RDR6), which converts single-stranded (ss) RNA into double-stranded (ds) RNA. By contrast, it has been proposed that RNA silencing induced by self-complementary hairpin RNA (hpRNA) does not require RDR6, because the hpRNA can directly fold back on itself to form dsRNA. However, it is unclear whether RDR6 plays a role in hpRNA-induced RNA silencing by amplifying dsRNA to spread RNA silencing within the plant. To address the efficiency of hpRNA-induced RNA silencing in the presence or absence of RDR6, Wild type (WT, Col-0) and rdr6-11 Arabidopsis thaliana lines expressing green fluorescent protein (GFP) were generated and transformed with a GFP-RNA interference (RNAi) construct. Whereas most GFP-RNAi-transformed WT lines exhibited almost complete silencing of GFP expression in the T1 generation, various levels of GFP expression remained among the GFP-RNAi-transformed rdr6-11 lines. Homozygous expression of GFP-RNAi in the T3 generation was not sufficient to induce complete GFP silencing in several rdr6-11 lines. Our results indicate that RDR6 is required for efficient hpRNA-induced RNA silencing in plants.  相似文献   

16.
17.
RNA silencing plays an important antiviral role in plants and invertebrates. To counteract antiviral RNA silencing, most plant viruses have evolved viral suppressors of RNA silencing (VSRs). TRIPLE GENE BLOCK PROTEIN1 (TGBp1) of potexviruses is a well-characterized VSR, but the detailed mechanism by which it suppresses RNA silencing remains unclear. We demonstrate that transgenic expression of TGBp1 of plantago asiatica mosaic virus (PlAMV) induced developmental abnormalities in Arabidopsis thaliana similar to those observed in mutants of SUPPRESSOR OF GENE SILENCING3 (SGS3) and RNA-DEPENDENT RNA POLYMERASE6 (RDR6) required for the trans-acting small interfering RNA synthesis pathway. PlAMV-TGBp1 inhibits SGS3/RDR6-dependent double-stranded RNA synthesis in the trans-acting small interfering RNA pathway. TGBp1 interacts with SGS3 and RDR6 and coaggregates with SGS3/RDR6 bodies, which are normally dispersed in the cytoplasm. In addition, TGBp1 forms homooligomers, whose formation coincides with TGBp1 aggregation with SGS3/RDR6 bodies. These results reveal the detailed molecular function of TGBp1 as a VSR and shed new light on the SGS3/RDR6-dependent double-stranded RNA synthesis pathway as another general target of VSRs.  相似文献   

18.
19.
20.
RNA-dependent RNA polymerase 1 (RDR1) is essential for plant antiviral defence, but its role in plant defence against viroid infection remains unknown. The present study aimed to identify the function and mechanism of RDR1 in plant resistance to viroid infection. Overexpression of Nicotiana tabacum RDR1 (NtRDR1) delayed the accumulation of potato spindle tuber viroid (PSTVd) genomic RNA and PSTVd-derived small RNA (sRNA) in Nicotiana benthamiana plants at the early invasion stage, but not in the late stage of infection. Conversely, virus-induced gene silencing of tomato RDR1 (SlRDR1a) increased the susceptibility to PSTVd infection (increased viroid accumulation). Salicylic acid (SA) pretreatment induced SlRDR1a expression and enhanced the defence against PSTVd infection in tomato plants. Our study demonstrated that RDR1 is involved in SA-mediated defence and restricts the early systemic invasion by PSTVd in plants. The decreased PSTVd accumulation in Nbenthamiana was not caused by efficient accumulation of PSTVd sRNAs. These results deepen our understanding of the mechanism of RDR1 in plant defence responses to viroid attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号